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Abstract— This work presents a motion planning algorithm
for legged robots capable of constructing long-horizon dynamic
plans in real-time. Many existing methods use models that
prohibit flight phases or even require static stability, while those
that permit these dynamics often plan over short horizons or
take minutes to compute. The algorithm presented here resolves
these issues through a reduced-order dynamical model that
handles motion primitives with stance and flight phases and
supports an RRT-Connect framework for rapid exploration.
Kinematic and dynamic constraint approximations are com-
puted efficiently and validated with a whole-body trajectory
optimization. The algorithm is tested over challenging terrain
requiring long planning horizons and dynamic motions in
seconds – an order of magnitude faster than existing methods.
The speed and global nature of the planner offer a new level
of autonomy for legged robot applications.

I. INTRODUCTION

Legged robots must be able to autonomously execute
dynamic motions to succeed in useful mobility applications.
Figure 1 shows an example of terrain commonly found in
outdoor mapping, inspection, or delivery tasks and that de-
mands the ability to step and leap without falling. Automat-
ing these tasks requires the ability to plan ahead to ensure
the robot has the appropriate positioning and velocity to
execute the desired motion. This planning is challenging due
to nonlinear dynamics, underactuation, intermittent contact
including flight phases, and dependence on the terrain itself.

Model-based trajectory planning has proven an effective
tool for planning motions while accounting for these chal-
lenges. The most straightforward form of trajectory planning
is to give the planner full knowledge of the forces the robot
can apply to the world and the constrained manner in which
it can apply them, enabling the planner to predict how it can
feasibly navigate the terrain and generate corresponding con-
trol inputs [1]. These methods have demonstrated impressive
results in simulation, yet their numerical complexity renders
them infeasible for real-time hardware deployment.

Rather than solve for the entire motion all at once with
a high fidelity model, many successful robot implementa-
tions employ hierarchical control structures [2–4]. Such an
architecture breaks the problem into multiple sub-problems
that can be solved in parallel. Typically these layers include
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Fig. 1. Demonstration of the presented algorithm generating a long
dynamical plan over terrain challenging for a legged robot in under three
seconds. The trajectory from the start pose to the goal (green circle) is
overlaid on an image of the environment used to generate the plan.

a long-horizon “global” planner to determine a rough path
through the terrain to the destination, a short-horizon “local”
planner that refines this motion and often selects footholds,
and a low level controller that computes joint torques to send
to the motors, Fig. 2. Distributing model complexity – with
higher complexity for shorter horizons – ensures that each
layer can be computed in real-time, yet presents the challenge
of ensuring that any model simplifications can be resolved
by lower layers.

The global planner is critical to this pipeline due to its
place at the top of the planning stack. A good global planner
must have an accurate idea of what the robot can and cannot
do to ensure that the other layers can resolve the motion,
but also must have a long enough horizon to avoid local
minima which is difficult to achieve in real time. Most global
planners used in existing hierarchies achieve fast solution
times by either ignoring dynamics to employ geometric
planning methods like A* [5], restricting the horizon to only
a few steps [6], or relying on traversability maps that use
simple heuristics like maximum step height to avoid certain
areas of the terrain [7].

This work introduces a fast global motion planning frame-
work that can compute long-horizon feasible robot pose tra-
jectories (body position and orientation) from which whole-
body motions can be found, while accounting for intermittent
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Fig. 2. The global planner presented in this work is at the top of
a hierarchical planning and control stack. It is responsible for planning
locomotion primitives to move the robot body from the current state to the
goal state given terrain knowledge. It then passes those primitives down to
footstep planning and low-level control for execution.

contact, underactuation, and constrained kinematics and dy-
namics. The framework plans with motion primitives that use
a computationally efficient state and action parameterization
in order to enable dynamic exploration of environments
while also permitting the connection of two states for fast
exploitation of trivial terrain. The framework also supports
path length reduction methods to produce high quality paths,
which is important for practical robot implementation. We
present the results of four simulation experiments: the first
demonstrates the validity of the constraint approximations
with a whole-body trajectory optimization, the second an-
alyzes the speed and horizon length of the planner, the
third demonstrates path length reduction capabilities, and the
fourth shows that this planner finds paths faster than state-of-
the-art legged motion planning algorithms on a benchmark
environment.

II. RELATED WORK

Legged robots have long shown remarkable ability to
perform dynamic behaviors, demonstrating walking, running,
and even front-flipping as early as the 1980s [8,9]. Though
these robots exhibit surprisingly robust locomotion, they rely
on hand-tuned motions or clever mechanical stability through
compliant legs or tails. These simple methods (which form
the basis for the presented algorithm) are adept at walking
over relatively flat terrain but cannot easily handle obstacles
that require leaping. More recent robots have demonstrated
impressive obstacle-leaping behaviors [10,11], but without
a global planner that includes flight phases they cannot
autonomously determine when and how to perform these
tasks in unstructured terrain.

Accounting for unstructured terrain requires a notion of
the capabilities of the system, and a method to employ this
knowledge to plan a path through the environment. The
clearest way to achieve this is through trajectory optimization
with a full-order representation of both the kinematics and
dynamics of the robot, an accurate model of the terrain, and
a nonlinear solver that can find a feasible trajectory from
the start to the goal. This method has shown impressive
results in walking, running, jumping, and object manipulation
[1,12,13], yet fully representing the nonlinearities and inter-

mittent contact of legged locomotion yields extremely large
and highly constrained nonlinear programs that take hours to
solve on state-of-the-art solvers. Researchers have shown that
ignoring any limb dynamics and modeling just the centroidal
momentum of the system is sufficient to perform challenging
tasks like running, jumping, and brachiation [2,14,15]. This
approach reduces computation times from hours to minutes,
but the problem still cannot be solved fast enough to be used
in real time.

These solution times can be improved by further reducing
the model complexity while relying on the aforementioned
hierarchical control structure to handle any small feasibility
violations. One common method of reducing model com-
plexity is approximating kinematic constraints with more
efficiently computed heuristics such as bounding boxes [6],
reachability sets [16], learned measures [17,18], or ignoring
them entirely [19]. Conservative kinematic approximations
reduce the space of trajectories, but overly optimistic approx-
imations can lead to infeasible plans that cannot be resolved
lower in the hierarchy. Other methods simplify the dynamics
further by enforcing quasi-static, inverted pendulum, or Zero
Moment Point dynamics [3–5,20]. These reductions allow
for planning over a long horizon of many steps but result
in slow motion and cannot leverage momentum to overcome
obstacles.

Some planners augment the terrain map with a notion
of traversability, such that regions of the environment are
processed and labeled with regards to the capabilities of the
robot [7,21]. Features such as terrain slope, surface rough-
ness, and step height yield a terrain score that approximates
the likelihood of successful navigation. Common sampling-
based methods such as Rapidly-exploring Random Trees
(RRT) and their optimal counterparts (RRT*) [22] can then
be employed to maximize the traversability of the given path.
This approach has some features of a dynamic global planner
in that it can be computed in real-time and account for the
dynamic capabilities of the robot, but the construction of the
traversability map is highly heuristic, robot and controller
dependent, and unable to synthesize new motions to navigate.

One of the most promising methods, [23], utilizes the
RRT-Connect algorithm [24] to quickly synthesize kinody-
namic motions. This algorithm connects states by solving
linear programs (LPs) to determine feasible acceleration
bounds, then interpolates between states with these bounds.
The algorithm plans flight phases by identifying states that
violate a reachability requirement and searching for ballistic
trajectories to surpass them. The repeated solving of LPs
and heuristic approach to handling flight phases restrict the
horizon under which this method can plan. The algorithm in
this work parameterizes the state and action spaces similarly
for compatibility with RRT-Connect, but in a way that allows
for the automatic generation of feasible actions by randomly
sampling within bounds on force constraints. This parame-
terization also directly incorporates flight phases rather than
identifying them with heuristics. In addition, the presented
algorithm incorporates path length reduction methods such
as RRT* and anytime planning with short-cutting to produce



high quality paths more amenable to execution on a robot.

III. PLANNING ALGORITHM

The core of the presented algorithm is the reduction of the
dynamics of legged locomotion to a state-action pair con-
ducive to both RRT-Connect for rapid exploration of mostly
flat terrain and kinodynamic RRT (KD-RRT) for exploration
of challenging terrain [25]. This is achieved by reducing the
system state to just the robot’s body position, orientation, and
their velocities, with double integrator dynamics to determine
the overall path through the environment. So long as the
resulting trajectories can be feasibly tracked with whole-body
motions – as shown in Section IV-A – this reduction permits
efficient long-horizon planning while allowing more complex
tasks such as footstep planning to be solved with existing
shorter-horizon methods [6,26].

Pose motion is expressed as a sequence of piece-wise
polynomials due to their computational efficiency and closed
form solutions. Expressing motion with polynomials also
allows dynamic constraints such as ballistic motion during
flight phases and non-adhesive forces, friction cones, and
actuation limits in stance phases to be automatically satisfied
through the selection of appropriate polynomial coefficients.
Motions are then planned by stitching these piece-wise
trajectories in a way that satisfies kinematic constraints, in
particular collision avoidance and reachability.

A. State Parameterization

Sampling-based planning methods rely on a set of states
and actions that map to other states. The algorithm presented
here defines these discrete time states as the position and
orientation of the body of the robot along with their time
derivatives. This sort of center of mass (COM) trajectory
planning is not itself a new concept in sampling-based plan-
ning [25,27], but here we explicitly reason about intermittent
contact and formulate the actions to account for the dynamics
and kinematics of the system.

The discrete time states are defined at the beginning of a
stance phase and denoted as,

si =

[
qi
q̇i

]
=
[

qx,i qy,i qz,i qp,i q̇x,i q̇y,i q̇z,i q̇p,i
]T

, (1)

where si ∈ R8 is the state at the beginning of the ith stance
phase, qi ∈R4 is the position and pitch of the system, x,y,z
subscripts denote Cartesian directions, and the p subscript
denotes the pitch. Roll is set to zero and yaw is defined as
qy,i = atan2(q̇y,i, q̇x,i). These assumptions improve the speed
of the algorithm at the cost of some model veracity, yet they
are consistent with common locomotion trends of regulating
roll and aligning heading with velocity. A stance phase is
defined as a period of motion where a ground reaction
force (GRF) is applied to the robot (and may correspond
to multiple overlapping stance phases for each individual
foot). Each stance phase is then followed by a flight phase
consisting of ballistic motion, after which the next state
si+1 denotes the beginning of the following stance phase.

Fig. 3. Example state trajectory over one stance and one flight phase. Each
planning state is defined as the body position, orientation, and velocity at the
beginning of the stance phase. Each action is defined as a piece-wise linear
acceleration trajectory during stance combined with the durations of stance
and flight phases, yielding piece-wise cubic and quadratic polynomials
for the position and velocity. During the flight phase the robot undergoes
ballistic motion until it reaches touchdown. Robot legs are shown for context
but not explicitly included in state or action definitions.

Figure 3 shows example states and the stance and flight
phase trajectories connecting them. More complicated stance
trajectories can be synthesized by setting the flight time t f
to zero to string multiple actions together.

Efficiently computed kinematic constraint approximations
are applied at discrete intervals over the entire state trajec-
tory. The ground clearance of the corners and center of the
underside of the body are checked against a minimum height
threshold to avoid collision with the ground. During the
stance phase a maximum height threshold of the base of the
leg linkage is also applied to ensure the ground is reachable
for each leg. No such maximum is applied in flight, allowing
the robot to reach terrain of different elevation by leaping up
or falling down. These constraints can be written as,

hbody(q(t))≥ hmin ∀t ∈ [0, ts + t f ], (2)
hleg(q(t))≤ hmax ∀t ∈ [0, ts], (3)

where hbody(q(t)) and hleg(q(t)) are the clearance of the
corners of the underside of the body and the base of the leg
linkages, respectively, and hmin and hmax are the clearance
thresholds.

B. Action Parameterization

These discrete time states are connected by actions that
account for double integrator dynamics and synthesize piece-
wise polynomial COM trajectories. Similar polynomial state
trajectories have been employed in prior motion planners
[23,28,29] but have not explicitly handled the intermittent
contact of legged locomotion including flight phase dynam-
ics. By specifying piece-wise linear ground reaction forces
during stance, the resulting velocity and position trajectories
are quadratic and cubic, respectively. Polynomials of this
order are useful because cubic splines can efficiently connect
states while maintaining dynamic feasibility. Each action is



defined as,

a =
[

q̈T
T D q̈T

TO ts t f
]T

= [ q̈x,T D q̈y,T D q̈z,T D q̈p,T D · · ·
q̈x,TO q̈y,TO q̈z,TO q̈p,TO ts t f ]T (4)

where a∈R10 is the action taken, q̈ denotes the acceleration
of the system, ts and t f are the stance and flight time, and
the subscripts T D and TO denote touchdown and take-off
(start and end of stance times). Under this parameterization,
the acceleration, velocity, and position of the system during
stance can be written as,

q̈(t) = (q̈TO− q̈T D)
t
ts
+ q̈T D, (5)

q̇(t) = (q̈TO− q̈T D)
t2

2ts
+ q̈T Dt + q̇T D, (6)

q(t) = (q̈TO− q̈T D)
t3

6ts
+ q̈T D

t2

2
+ q̇T Dt +qT D, (7)

where t ∈ [0, ts] is the time since the beginning of the stance
phase. Examples of these trajectories can be seen in Fig. 3.
During flight the only acceleration is due to gravity, yielding
the following trajectories,

q̈(t) = g, (8)
q̇(t) = g(t− ts)+ q̇TO, (9)

q(t) =
g(t− ts)

2

2
+ q̇TO (t− ts)+qTO, (10)

where t ∈ [ts, ts + t f ] and g is the gravity vector. These
polynomials can also be reversed in time to enable planning
tree growth from the goal towards the start.

Dynamic constraints are easily applied by computing
bounds on the valid actions. Rather than bounding ac-
celerations directly, or solving an LP to find acceleration
boundaries as in [23], valid ground reaction forces at the
beginning and end of stance are sampled directly, and then
transformed into valid accelerations. This transformation is
given by Newton’s second law,[

mI3 0
0 Jp

]
q̈ =

[
fGRF +mg

τp

]
, (11)

where fGRF is the GRF, τp is the torque applied about the
pitch axis, m and Jp are the mass and pitch inertia of the
system, and I3 is a 3×3 identity matrix. This transformation
allows for actuation limits, non-penetration, and friction cone
constraints to be respectively enforced by,

|fGRF | ≤ fmax, |τp| ≤ τmax, (12)

fz ≥ 0, µ fz ≥
√

f 2
x + f 2

y , (13)

where fmax is a fixed maximum ground reaction force, τmax
is a maximum torque threshold, fz and f{x,y} are the normal
and tangential components of the GRF respectively, and µ

is the friction coefficient. Randomly sampling GRF vectors
and torques at touchdown and takeoff within the bounds of
these constraints, rotating into the world frame, and applying
(11) allows for the automatic generation of feasible actions.

The resulting piece-wise cubic position trajectories are then
checked at regular intervals for kinematic feasibility to ensure
collision avoidance and reachability. Upper and lower bounds
are placed on the stance and flight times to aid the planner
in producing feasible state-action pairs.

C. Planning Framework

These state-action pairs form the basis of the tree struc-
ture that RRT-Connect employs to explore the state space.
While we refer the reader to prior literature for the detailed
workings of RRT-Connect [24,27], the general strategy is to
grow trees from the start and goal by alternately extending
the trees towards randomly sampled states, then attempting
to connect the trees together. These extend and connect
functions can be thought of as two different locomotion prim-
itives which together efficiently explore the environment.
The planning framework presented here follows the RRT-
Connect algorithm from [24], with particular instantiations of
the extend and connect functions to account for the dynamics
and kinematics of this problem.

The extend function in any RRT planner guides the plan-
ning tree towards new, unexplored areas of the state space
by generating a random state, identifying the closest state in
the tree, and leveraging a local planner to extend from that
closest state towards the random one. The local planner im-
plemented here samples desired states (1) uniformly but with
zero pitch velocity to regulate orientation. As with KD-RRT
[25], random actions described by (4) are sampled, checking
for kinematic feasibility, and returning the closest new state
to the desired under a weighted Euclidean distance metric.
This extend function is effective at exploring challenging
terrain by allowing frequent flight phases.

The connect function handles large portions of less chal-
lenging terrain more rapidly than the extend function. This
is achieved by computing the unique closed form cubic
spline that connects two states with zero flight time and a
stance time that yields a nominal forward speed. Solving this
boundary problem yields the following accelerations:

q̈T D =−6(qT D−qTO)−2ts(2q̇T D + q̇TO)

t2
s

q̈TO =
6(qT D−qTO)−2ts(q̇T D +2q̇TO)

t2
s

. (14)

The resulting forces are checked with (12)–(13) and dis-
carded if dynamically infeasible, then checked for kinematic
feasibility. If these constraints are satisfied the states are
connected. If they are not satisfied, the algorithm considers
the feasible portion of the trajectory and inserts a state
into the tree corresponding to the midpoint of the feasible
portion (to ensure the tree is not trapped against a constraint).
No upper bound is placed on the distance of this connect
operation to allow it to traverse large areas of terrain. The
long “stance” phase produced by this operation can be
thought of not as one single stance phase but as a trajectory
induced by a collection of steps taken by the robot between
flight phases, during which the lower level controller can
easily find a valid whole-body motion.



Another benefit to such a connect function is the ability
to exactly connect two states, which is helpful for reducing
path length. We employ this ability in two separate ways
and compare performance. One common way to reduce path
length is to employ RRT*, which adds and removes connec-
tions through new states to reduce a cost function [27,30]. We
implement the re-wiring algorithm described in [22], using
the connect function to check for valid connections.

Though this method consistently reduces path length, re-
wiring the connections whenever a new state is added slows
the planner. A simpler short-cutting algorithm offers a faster
but sub-optimal method of reducing path length after the
completion of the planner [24]. This algorithm checks each
state in the path for connections to other states. If a valid
connection is found, those states are directly connected and
all intermediate states are removed from the path. This
process continues until the goal state is reached. Removing
extraneous states in this fashion results in simpler, smoother
paths without re-wiring throughout the planning process.

Path quality for this method is further improved by apply-
ing an anytime framework, wherein RRT-Connect is called
repeatedly and only higher quality paths are accepted [31].
This anytime framework also improves the speed of the
algorithm by restarting the planner if a solution is not quickly
found, thus avoiding the increased complexity of adding
more nodes to the planning trees.

IV. ALGORITHM ANALYSIS

To analyze the presented planner, the kinematic and dy-
namic model approximations are validated with a full-order
model trajectory optimization framework. We then generate
robot paths over several terrains, analyze the resulting per-
formance, and compare to other multi-contact kinodynamic
planning algorithms.

A. Trajectory Validation

Much of the efficiency of the presented algorithm stems
from approximations made to the kinematics and dynamics
of legged robot locomotion. These approximations must be
sufficiently expressive to capture the dynamic behaviors of
interest yet conservative enough for a short-horizon planner
to resolve. To test this formulation of the kinematic and
dynamic constraints we randomly generate one hundred
state-action pairs that meet the feasibility criteria described
above, employing kinematic and dynamic bounds shown in
Table I that approximate an MIT Cheetah 3 quadruped [32].
The resulting trajectories are then passed to a whole-body
hybrid trajectory optimization created in the FROST frame-
work [33]. This optimization produces motions that track the
planned trajectories over flat ground while satisfying full-
order dynamics and kinematics constraints, as well as a DC
motor model and friction cones. To avoid solving the contact-
implicit problem to validate these trajectories [13], which is
quite slow and prone to non-convergence, we specify the
contact sequence as all four feet starting on the ground,
lifting off simultaneously, then ending within reach of the
ground. This is slightly conservative as an ideal footstep

TABLE I
ALGORITHM SETTINGS USED IN SECTION IV. PARENTHETICAL VALUES

SHOW WHERE ANYMAL PARAMETERS (IV-C) DIFFERED FROM

CHEETAH 3 PARAMETERS (IV-A AND IV-B)

Parameter Symbol Value
Cheetah 3 (ANYmal)

Maximum velocity magnitude ||q̇|| 4.0 (2.5) m/s
Maximum pitch qp ± 1.0 rad

Maximum pitch acceleration τp/Jp ± 10 rad/s2

Maximum hip height hmax 0.6 m
Minimum ground clearance hmin 0.02 m

Robot mass m 43 (30) kg
Maximum GRF magnitude fmax 800 (500) N

Friction coefficient µ 1.0 (0.5)
Maximum stance duration ts 0.3 s
Maximum flight duration t f 0.5 s

Actions attempted per “extend” – 6
Nominal “connect” velocity – 1.5 m/s

Kinematic constraint resolution – 50 ms

planner would select the footstep sequence best suited to
a particular motion, but such a planner is outside the scope
of this work.

The optimization framework was able to find solutions for
98% of the tested state-action pairs, indicating that this plan-
ner’s heuristics closely approximate the full model. Those
that it could not find a solution for nearly converged but
could not overcome the conservative kinematic restrictions
of requiring contact at all four feet during stance, and in
each case it is likely that a full local footstep planner would
still succeed.

B. Algorithm Performance

To test the performance of the presented planner, we
created several environments that pose varying motion plan-
ning challenges. While their complexity does not span that
of all possible environments, they qualitatively demonstrate
performance in key terrains of interest. For each environment
we specify a start and goal pose, provide the planner with a
height map of the terrain, execute the anytime planner with
short-cutting 100 times, and collect statistics. The planner
finds a feasible path then executes the short-cutting algorithm
but does not re-plan to prioritize algorithm speed. All trials
are run in C++ on an Intel Core i7-8700K CPU at 3.7 GHz.

The “Rough Terrain” environment shown in Fig. 4 tests the
planner’s ability to overcome unstructured terrain including
uneven ground, obstacles, and a ledge requiring a flight
phase. The “Hallway” environment shown in Fig. 5 tests the
ability to generate long-horizon paths in the presence of local
minima. The “Slope” terrain shown in Fig. 6 tests the ability
to handle steep slopes. Finally, the “Staircase” environment
shown in Fig. 1 and 7 puts all these together, requiring a
long-horizon, highly dynamic path that navigates slopes and
local minima. The Staircase environment was tested with and
without an obstacle blocking the middle of the small stairs,
requiring the robot to navigate the larger stairs.

Table II shows the statistics averaged over each set of
trials on the environments including the amount of time
spent planning until a feasible path was found, the number



Fig. 4. The Rough Terrain environment includes a ledge requiring a flight
phase, in addition to uneven terrain and obstacles. In this and the following
figures, red lines indicate a stance phase, cyan indicates flight, the black box
indicates the robot starting pose, and the green circle indicates the goal.

Fig. 5. The Hallway environment replicates an indoor areas with long
stretches of flat terrain. The local minima presented by the large open portion
or the area that approaches but does not reach the goal require a planner
with a long enough horizon to avoid.

of states generated during the planning call, and the length
of the returned trajectory. Each environment figure shows an
example trajectory found on that terrain, and animations of
trajectories are shown in the video attachment.

The results shown in Table II demonstrate the effectiveness
of the presented planner in handling a wide variety of chal-
lenging legged robot planning tasks, as every planning call
was successfully completed. The length of each plan is on
the order of tens of body lengths, showcasing a horizon long
enough for global planning. Each plan – with the exception
of the Staircase with the obstacle – is computed on the order
of seconds and therefore fast enough for real-time deploy-
ment. The Hallway environment in Fig. 5 showcases the
connect function’s ability to rapidly traverse wide sections
of trivial terrain and return a straightforward path with little
erratic motion while avoiding local minima. Conversely, the
performance on the Rough Terrain environment demonstrates
the ability to navigate dynamically challenging terrain with
flight phases which are unresolvable by geometric planners.

These challenges are combined in the Staircase environ-
ment. The algorithm automatically discovers that the regular

Fig. 6. The Slope environment tests the planner’s ability to incorporate
friction cones and usage of orientation to find more feasible regions of the
state space.

TABLE II
ALGORITHM PERFORMANCE ON TEST ENVIRONMENTS. DATA REPORTED

AS MEAN ± STANDARD DEVIATION OVER 100 TRIALS.

Environment Plan Time States Plan Length
(s) Generated (m)

Rough Terrain 2.3±2.2 1100±1000 14±2.8
Hallway 1.8±1.4 640±420 25±2.8

Slope 0.15±0.2 150±31 13±2.1
Staircase 2.9±2.5 720±550 17±2.6

Staircase w/obstacle 26±20 4400±2700 21±3.8

stairs are more traversable than the large stairs and explores
that area rapidly. This behavior is desirable as favoring less
challenging motion improves the likelihood of resolution by
a lower level controller. When those stairs are obstructed,
the algorithm employs multiple flight phases to leap up the
large stairs towards the goal, although it takes much longer
to find such a path through the tightly constrained space.

The two methods of reducing path length – RRT*-Connect
and anytime RRT-Connect with short-cutting – are tested on
the Slope terrain environment in Fig. 6 and allowed to run
for five seconds before termination. Each planner is called
one hundred times and the results are averaged. The results
are shown in Fig. 8, along with the average path length for
regular RRT-Connect with short-cutting.

Figure 8 demonstrates a small advantage of anytime RRT-
Connect with short cutting over RRT*-Connect in quickly
reducing path length on the “Slope” environment, though
both perform well compared to the non-optimal planners.
The anytime framework is able to reduce cost by rapidly
growing multiple trees in succession rather than re-wiring a
single tree. Both of these methods outperform standard RRT-
Connect in less than one second, demonstrating the utility of
these cost-reducing strategies in yielding high quality paths.

C. Algorithm Benchmarking

We compare the presented algorithm directly against other
state-of-the-art methods on the “Plinth” environment, based



Fig. 7. The Staircase environment, top, based on the location from Fig. 1,
presents a long-horizon task with discrete changes in ground height. When
an obstacle is placed on the regular stairs, bottom, the planner must find a
dynamic path over the larger steps.

Fig. 8. Path length reduction for three variations of the presented planner.
RRT-Connect returns after 0.15 seconds on average but does not further
improve path quality. The solid lines indicate the mean and the shaded
regions indicate one standard deviation over 100 trials.

on [34], shown in Fig. 9. In particular we benchmark against
the root trajectory from the multi-contact RRT-Connect plan-
ner described in [23] and implemented in [34] as well as
the contact-implicit trajectory optimization method presented
in [6]. Each test is performed with model parameters that
approximate the ANYmal quadruped [35], Table I. The pre-
sented algorithm and the trajectory optimization are executed
on the CPU described above, and the statistic for the multi-
contact RRT-Connect planner is obtained directly from [34]
which utilized a similar CPU.

The results from the benchmarking are shown in Table III.
The presented algorithm constructs plans six times faster

Fig. 9. The algorithm benchmarking is performed on the Plinth envi-
ronment, which requires navigating height changes but does not explicitly
require a flight phase.

TABLE III
ALGORITHM COMPARISON ON PLINTH ENVIRONMENT. DATA REPORTED

AS MEAN ± STANDARD DEVIATION OVER 100 TRIALS.

Solver Dimension Plan Time (s)
Presented Algorithm 2D 0.20±0.21
Presented Algorithm 3D 1.0±0.91

Prior RRT-Connect [34] 2D 1.3± unreported
Traj Opt (w/contacts) [6] 3D 9.5±0.082

than the multi-contact RRT-Connect method when similarly
constrained to planar motion, and is still slightly faster when
allowed to explore the environment in three dimensions.
Plan lengths from each algorithm were comparable. This
algorithm is also around an order of magnitude faster than
the trajectory optimization method, although that method
computes footstep locations in addition to a pose trajectory.
This suggests that such a method could be an effective short-
horizon planner to determine contact locations a few steps
ahead once provided the global plan from the algorithm
presented here.

V. DISCUSSION AND CONCLUSION

The diversity of the environments tested showcases the
speed and ability to dynamically overcome obstacles of the
presented algorithm. The trajectory validation results and
optimality analysis indicate that the resulting paths are of
high quality and likely to be resolved by a low level planner.
These features together highlight the practicality of this
algorithm for deployment as a global planner for legged
robots.

By design, many of the assumptions and model ap-
proximations made in this planner are heuristic in nature
and thus offer no model-based guarantees. The strength of
this approach is rooted in the objective of the planner –
finding a basic path through an unstructured environment
that can serve as an initial seed for short horizon footstep
and whole-body planners. Relaxing hard constraints on full-
order feasibility allows for each constraint to be expressed
in a more computationally efficient way. This enables longer
planning horizons, ensuring that the footstep and whole-body
planners can focus on refining motion rather than trying to
escape local minima. In particular, reasoning about contact
via the net ground reaction force rather than through each



individual contact captures the hybrid nature of intermittent
contact but does not enforce particular contact locations.
This approach allows a shorter horizon footstep planner
with a more expressive contact model to dedicate increased
computation to selecting robust contact locations.

Nevertheless, some of these assumptions do require careful
treatment for certain classes of systems. For example, the
centroidal dynamics model is reasonably accurate for robots
with negligible leg inertia, but may necessitate compensation
for systems with high-inertia limbs such as those in many
bipeds. This framework also assumes that the GRF vector
always extends through the COM and that orientation can
be independently actuated. Lower-level controllers therefore
must carefully handle the coupling between leg and body
control, particularly for bipedal robots or other highly un-
deractuated systems.

It should be emphasized that the presented algorithm does
not solve the entirety of legged locomotion planning, but
rather provides the top level of a hierarchical framework
through which the robot can autonomously reason about
what path it should take though an unstructured environment.
The other components of this hierarchical architecture –
including a robust footstep planner, a high bandwidth whole-
body controller, and reliable state estimation – are critical for
the success of autonomous and dynamic legged robots, and
constitute active areas of research.
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