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Outline

e Web Mining as a basis for Interactive Marketing
e What is clickstream data?
e User Profiling
— What does ‘what you view’ say about ‘who you are?’
e Path Analysis
— What does ‘what you view’ say about ‘what you want'?

e Text Classification
— Using text processing algorithms to classify content




Interactive Marketing

The reason we are interested in web mining
is that we can use it for interactive marketing

Interactive Marketing Requires...

» Ability to identify end-users

« Ability to differentiate customers based on their value
and their needs

= Ability to interact with your customers

» Ability to customize your products and services based
on knowledge about your customers
Peppers, Rogers, and Dorf (1999)

Information is key!




Active Learning
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Making a user subscribe to
your web site

Linking browsing behavior to

offline purchasing (Frequent
Flier Accounts, Mailing Lists,

»

Passive Learning

How can we learn about a
user without asking
guestions?

Observe their actions and
choices

Marketing research tells us
that the most predictive
information is what
consumers have done in the
past




Learning

e The web is a rich environment for both active and
passive

» Most overlook passive because it requires higher
degree of sophistication, generally data mining tools

e But can be much more powerful and help fulfill all the
promises of interactive marketing

Defining Clickstream Data

The raw input for web mining




What is clickstream data?

e A record of an individual's movement through time at
a web site

e Contains information about:
— Time

URL content

User's machine

Previous URL viewed

Browser type

Sources of clickstream data

Web Servers

— Each hit is recorded in the web server log
Media Service Providers

— DoubleClick, Flycast

ISP/Hosting Services

— AOL, Juno, Bluelight.com

Marketing Research Companies
— ComScore Media Metrix and NetRatings
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User Profiling

What does ‘where you go’ say
about ‘who you are’?

W £ Tudeeries, mobedy dmocas v g, ™

New Yorker, 5 July 1993, p. 61




Is this user male or female?

User visits the
following five
sites in the
Doubleclick
network

95% probability that user is female 13

Bayesian updating formula

Test the hypothesis that a user is female by updating
the current guess using new information

New Old
informatiq /probability
New —_ _ p Q_A
probability * p? PP _

p2p? (12 p)A? p)

Female Male
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Probability user is female
Probability
Probability a visitor is
Female Visits Female given
the site visits to
Overall Internet 45% 45.0%
cbs.com 54% 49.0%
ivillage.com 66% 65.1%
libertynet.org 63% 76.0%
nick.com 57% 80.8%
onlinepsych.com 83% 95.4%
Best Guess
15

DoubleClick

Source: http://www.doubleclick.com/publishers/service/how_it_works.htm16




What can we learn?
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% of female visitors during one month (Media Metrix):

48% aol.com 63% libertynet.org
64% astronet.com 39% lycos.com

75% avon.com 27% netradio.net
52%  blue-planet.com 57%  nick.com

56% cartoonnetwork.com 59% onhealth.com
54% cbs.com 83% onlinepsych.com
76%  country-lane.com 44%  simplenetcom
47%  eplay.com 76%  thriveonline.com
41%  halcyon.com 59% valupage.com
70%  homearts.com 71% virtualgarden.com
66% ivillage.com 66% womenswire.com

99.97% probability that user is female 18




Key Points of User Profiling

We can identify ‘who you are’ from ‘where you go’

« What the user views on the web reveals their
interests and preferences

— We can personalize the web experience without explicitly requiring
customers to login and identify themselves

e Browsing and product choices can reveal key
information about interest and price sensitivity

e Requires marketers to be smarter in designing their
websites and analyzing their information. Big
profitability gains if this is done correctly.

19

Hitp:/Avww. moreinfo.com/au. cranlerma/fol 2htm
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Clickstream Example #1
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Clickstream Example #2

S —— & {Home}
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PP {Shop Cart}

{Account}
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Clickstream Example #3

W“

_‘;:'Eﬁi_.“ e e T {Home}
PP FREE {Information}
E E ey —— {Home}

i T —— "'! {Information}
| L= e e

B e e e

P - L T {Category}
".!-"‘ T |
R g Y e Y = {Category}

= —

30

15



Identifying Browsing Patterns

Categorizing Pages

Abbr [Category Description

H Home Home page

A Account User account pages

C Category Page with list of products

P Product Product information pages

| Information Shipping, order status, etc
S ShoppingCart |Pre-order pages

O Order Confirmation/purchase page
E Enter/Exit Non B&N pages

32
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Some Sample User Sessions

User Path
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Probability of Viewing a Page

Category Purchaser | Browser | Odd Ratio
Home 1% 9% 1/9
Account 13% 4% 3/1
Category 27% 35% .8/1
Product 17% 17% 1/1
Information 24% 33% .8/1
Shopping Cart 15% 2% 7/1
Purchase 3% 0% Inf

34
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Transition Matrix

Category of Current Viewing
o Exit/
% Category Home P+CH A+S+O Entry
-%’ Purchaser
»n Home .03 A3 .06 .78
3 P+CH .02 14 11 73
3 A+S+O 01 01 79 19
8 Exit 23 .08 69 0
1S Non-Purchaser
2 Home 32 23 02 43
> P+CH 10 02 70 18
T A+SHO 13 .05 02 .80
O ExivEntry 39 54 07 0

Purchase Conversion




Describing the Model

Switching:
Hidden Markov
Process

Category
Latent
Utilities

Page and User

Memory/Trends:
Characteristics

Autoregressive

37
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52.4%
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Key Points of Path Analysis

We can infer ‘what you want’ from ‘what you view’

The path a user takes reveals goals and interests
— We look at pages we are interested in
— Avoid those pages that are irrelevant

e Path Analysis indicates we can intervene before a
non-purchaser leaves the site

e Presenting promotional information to purchasers is
distracting, but increases conversion for surfers

e Show the right information at the right time

41

Text Classification

Categorizing Web Viewership Using Statistical
Models of Web Navigation and Text
Classification

21
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User Demographics
Sex: Male

Age: 22
Occupation: Student
Income: < $30,000
State: Pennsylvania
Country:  USA 43

Information Available

Clickstream Data

Panel of representative web
users collected by Jupiter
Media Metrix
Sample of 30 randomly
selected users who browsed
during April 2002

— 38k URLs viewings

— 13k unique URLs visited

— 1,550 domains
Average user

— Views 1300 URLs

— Active for 9 hours/month

Classification Information

Dmoz.org - Pages classified
by human experts

Page Content - Text
classification algorithms from
Comp. Sci./Inform. Retr.

44
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Dmoz.org
Categories
. 1 Arts
e Largest, most comprehensive human- 9 BUSINESs
edited directory of the web 3. Computers
e Constructed and maintained by 4 Games
volunteers (open-source), and original 5. Health
set donated by Netscape 6. Home
e Used by Netscape, AOL, Google, 7. News
Lycos, Hotbot, DirectHit, etc. 8. Recreation
» Over 3m+ sites classified, 438k 9. Reference
categories, 43k editors (Dec 2001) 10. Science
11 Shopping
12 Society
13.  Sports
14, Adult
45

Problem

e Web is very large and dynamic and only a fraction of
pages can be classified
— 147m hosts (Jan 2002, Internet Domain Survey, isc.org)
— 1b (?) web pages+

e Only a fraction of the web pages in our panel are
categorized

1.3% of web pages are exactly categorized

7.3% categorized within one level

10% categorized within two levels

74% of pages have no classification information

46
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Text Classification

Background

e |nformational Retrieval

— Overview (Baeza-Yates and Ribeiro-Neto 2000, Chakrabarti
2000)

— Naive Bayes (Joachims 1997)
— Support Vector Machines (Vapnik 1995 and Joachims 1998)

— Feature Selection (Mladenic and Grobelnik 1998, Yang
Pederson 1998)

— Latent Semantic Indexing
— Support Vector Machines
— Language Models (MacKey and Peto 1994)

48
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Result: Document Vector

ay
Ry home 2
SRR game 8
hit 4
runs 6
- = —, threw 2
s ejected 1
baseball | 5
major 2
league 2
/ bat 2
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Test Document

home 2

game 8

hit 4

runs 6

threw 2

ejected | 1

baseball | 5

major 2

league | 2

bat 2

v
A A

bush 58 game 97 sale 87
congress | 92 football 32 customer | 28
tax 48 hit 45 cart 24
cynic 16 goal 84 game 16
politician | 23 umpire 23 microsoft | 31
forest 9 won v buy 93
major 3 league 58 order 15
world 29 baseball | 39 pants 21
summit | 31 soccer | 21 nike 8
federal 64 runs 26 tax 19

{News Class} {Sports Class} {Shopping Class}
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Test Document

home 2
game 8
[ |hit 4
runs 6
threw 2
ejected |1
baseball 5 — ]
major 2
—— league 2
bat 2
bush 58 P game 97 sale 87
congress | 92 football 32 customer | 28
tax 48 ¥ hit 45 cart 24
cynic 16 goal 8 game 16 €
politician | 23 umpire 23 microsoft | 31
forest 9 won 12 buy 93
% major 3 — league 58 order 75
world 29 baseball |39 €« pants 21
summit 31 soccer 21 nike 8
federal 64 runs % €« tax 19
{News Class} {Sports Class} {Shopping Class}
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Test Document
home 2
game 8
hit 4
runs 6
threw 2
ejected | 1
baseball | 5
major 2
league | 2
bat 2
bush 58 game 97 sale 87
congress | 92 football 32 customer | 28
tax 48 hit 45 cart 24
cynic 16 goal 84 game 16
politician | 23 umpire 23 microsoft | 31
forest 9 won 12 buy 93
major 3 league 58 order 75
world 29 baseball | 39 pants 21
summit 31 soccer 21 nike 8
federal 64 runs 26 tax 19

{News Class} {Sports Class} {Shopping Class}
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Test Document

home
game

hit

runs
threw
ejected
baseball
major
league
bat

NN N O RN O AN

P({Sports} | Test Doc) = 0.91

game 97
football
hit

goal
umpire
won
league
baseball
soccer
runs

{Sports Class}

BRBB B RE R
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Classification Model

e A document is a vector of term frequency (TF)
values, each category has its own term distribution

= Words in a document are generated by a multinomial
model of the term distribution in a given class:

d, ~M{n,p2(pS, P, PS )}

- Classification: arg max{ P(c|d )}

c?C
!
arg max{ P(c)? P(w, [c)"}
c?C i71

|V| : vocabulary size
ne: #of times wordi appears in class c 54
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Results

e 25% correct classification
e Compare with random guessing of 7%

» More advanced techniques perform slightly better:
— Shrinkage of word term frequencies (McCallum et al 1998)
— n-gram models
— Support Vector Machines

55

User Browsing Model
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User Browsing Model

e Web browsing is “sticky” or persistent: users tend to
view a series of pages within the same category and
then switch to another topic

e Example:

57

Markov Switching Model

arts 83% 4% 5% 2% 1% 2% 6% 3% 2% 6% 2% 3% 4% 1%
business 3% 73% 5% 3% 2% 3% 6% 2% 3% 3% 3% 2% 3% 2%
computery 5% 11% 79% 3% 3% % 5% 3% 4% 4% 5% 5% 2% 2%
games 1% 3% 2%  90% 1% 1% 1% 1% 0% 1% 1% 1% 1% 0%
health 0% 0% 0% 0%  84% 1% 1% 0% 0% 1% 0% 1% 0% 0%
home 0% 1% 1% 0% 1%  80% 1% 1% 0% 1% 1% 1% 0% 0%
news 1% 1% 1% 0% 1% 0%  69% 0% 0% 1% 0% 1% 1% 0%
recreation 1% 1% 1% 0% 1% 1% 1%  86% 1% 1% 1% 1% 1% 0%
reference| 0% 1% 1% 0% 1% 0% 1% 0%  85% 2% 0% 1% 1% 0%
science 1% 0% 0% 0% 1% 1% 1% 0% 1%  75% 0% 1% 0% 0%
shopping 1% 3% 2% 1% 1% 2% 1% 1% 0% 1% 86% 1% 1% 0%
society 1% 1% 2% 0% 2% 1% 3% 1% 2% 2% 0%  82% 1% 1%
sports 2% 1% 1% 0% 0% 0% 3% 1% 1% 0% 0% 1% 85% 0%
adult 1% 1% 1% 0% 0% 0% 1% 0% 0% 0% 0% 1% 0%  93%

16% 10% 19% 11% 2% 3% 2% 6% 3% 2% 7% 6% 5% 7%

Pooled transition matrix, heterogeneity across users

58

29



Implications

e Suppose we have the following sequence:

{News} ? {News}

e L] T =] IS -
.aﬁ-g.iaum' — | e y
_______ =

e e =
: - =i —y = =] E : !
E = 5 =¥ < - = L]
ey ek e ERe-=m—
= T -_ﬂ = - e =

e Using Bayes Rule can determine that there is a 97%
probability of news, unconditional=2%, conditional
on last observation=69%

59

Results




Methodology

Bayesian setup to combine information from:
e Known categories based on exact matches
e Text classification

e Markov Model of User Browsing

— Introduce heterogeneity by assuming that conditional
transition probability vectors drawn from Dirichlet
distribution

« Similarity of other pages in the same domain

— Assume that category of each page within a domain follows
a Dirichlet distribution, so if we are at a “news” site then
pages more likely to be classified as “news”

61

Findings

Random guessing 7%

Text Classification 25%
+ Domain Model 41%

+ Browsing Model 78%

62
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Findings about Text
Classication

Key Points of Text Processing

Can turn text and qualitative data into quantitative data

e Each technique (text classification, browsing model,
or domain model) performs only fairly well (~25%
classification)

e Combining these techniques together results in very
good (—80%) classification rates

64

32



Applications

Newsgroups

— Gather information from newsgroups and determine whether
consumers are responding positively or negatively

E-mail

— Scan e-mail text for similarities to known problems/topics

Better Search engines

— Instead of experts classifying pages we can mine the
information collected by ISPs and classify it automatically

Adult filters

— US Appeals Court struck down Children’s Internet Protection
Act on the grounds that technology was inadequate

65

Session Conclusions




Conclusions

e Interactive Marketing provides a foundation
understanding how marketers may use data mining in
e-business

e Clickstream data provides a powerful raw input that
requires effort to turn it into useful knowledge

— User profiling predicts ‘who you are’ from ‘where you go’
— Path analysis predicts ‘what you want’ from ‘what you view’
— Text processing can turn qualitative data into quantitative data

What is your company doing with clickstream data?
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