Predicting Consumer Behavior using Clickstream Analysis

Alan Montgomery
Associate Professor
Carnegie Mellon University
Graduate School of Industrial Administration

e-mail: alan.montgomery@cmu.edu web: http://www.andrew.cmu.edu/user/alm3

WebShop 2003, Univ of Maryland 13 June 2003

© 2003 by Alan Montgomery, All rights reserved.

Outline

- What is clickstream data?
- User Profiling
 - What does 'what you view' say about 'who you are?'
- Path Analysis
 - What does 'what you view' say about 'what you want'?
- Analyzing Textual Information in Clickstream Data
- Conclusions

Defining Clickstream Data

The raw input for web mining

What is clickstream data?

- A record of an individual's movement through time at a web site
- Contains information about:
 - Time
 - URL content
 - User's machine
 - Previous URL viewed
 - Browser type

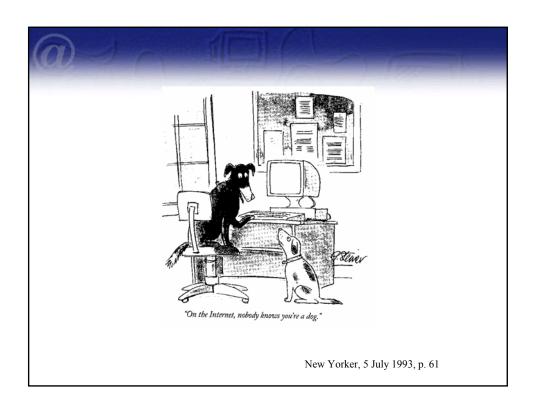
Sources of clickstream data

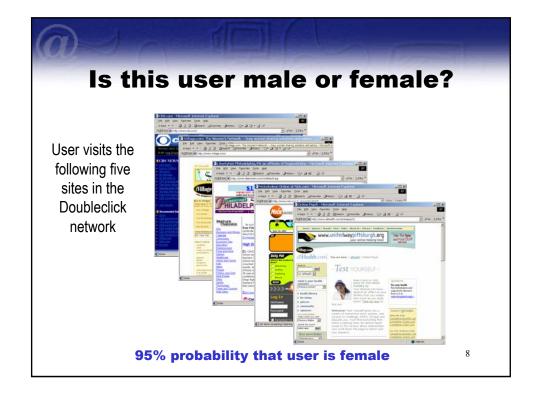
- Web Servers
 - Each hit is recorded in the web server log
- Media Service Providers
 - DoubleClick, Flycast
- ISP/Hosting Services
 - AOL, Juno, Bluelight.com
- Marketing Research Companies
 - ComScore Media Metrix and NetRatings

5

User Profiling

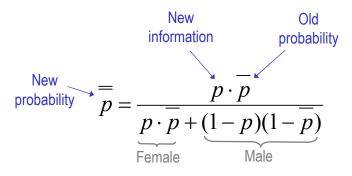
What does 'where you go' say about 'who you are'?





Bayesian updating formula

Test the hypothesis that a user is female by updating the current guess using new information



9

Probability user is female

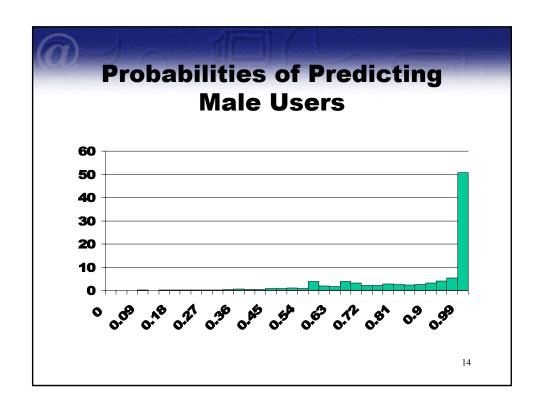
	Probability a Female Visits the site	Probability visitor is Female given visits to
Overall Internet	45%	45.0%
cbs.com	54%	49.0%
ivillage.com	66%	65.1%
libertynet.org	63%	76.0%
nick.com	57%	80.8%
onlinepsych.com	83%	95.4%

Best Guess

A Full Month of Browsing Example % of female visitors during one month (Media Metrix): 48% aol.com 63% libertynet.org 64% astronet.com 39% lycos.com 75% 27% netradio.net avon.com 52% blue-planet.com 57% nick.com 59% 56% cartoonnetwork.com onhealth.com 54% cbs.com 83% onlinepsych.com 76% country-lane.com 44% simplenet.com 47% eplay.com 76% thriveonline.com 41% halcyon.com 59% valupage.com 70% homearts.com 71% virtualgarden.com 66% ivillage.com 66% womenswire.com 12 99.97% probability that user is female

Results

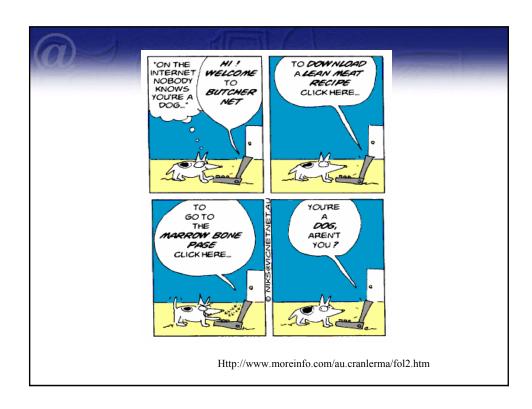
- Analysis shows that there is a >99% probability this user is female.
 - Using only DoubleClick sites the probability is 95%.
- Using all user data for one month:
 - 90% of men are predicted with >80% confidence (81% accuracy)
 - 25% of women are predicted with >80% confidence (96% accuracy)



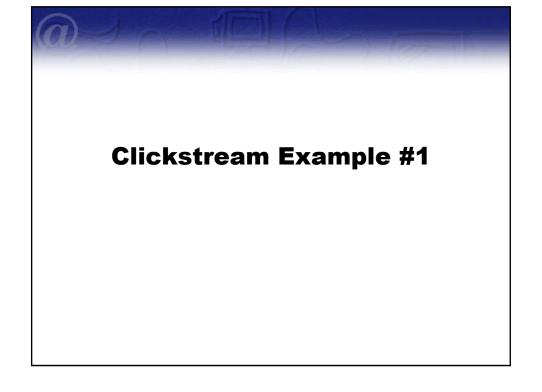
Key Points of User Profiling

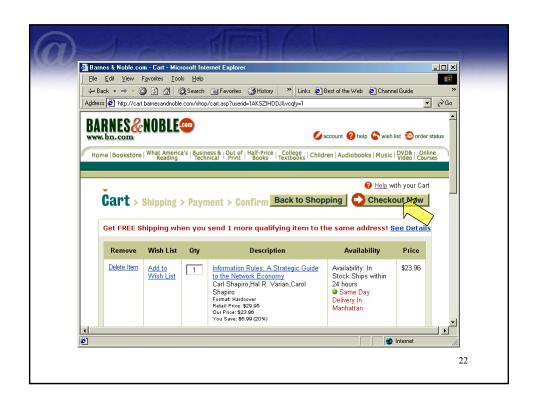
We can identify 'who you are' from 'where you go'

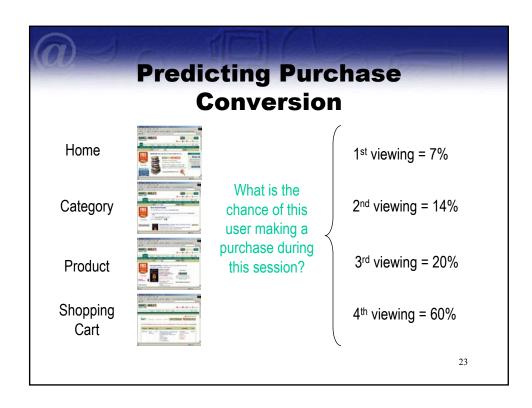
- What the user views on the web reveals their interests and preferences
 - We can personalize the web experience without explicitly requiring customers to login and identify themselves
- Browsing and product choices can reveal key information about interest and price sensitivity
- Requires marketers to be smarter in designing their websites and analyzing their information. Big profitability gains if this is done correctly.



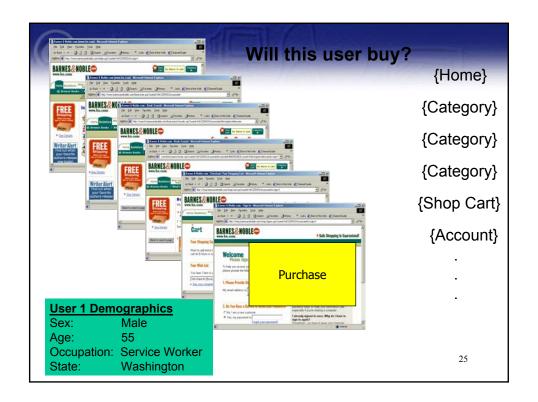
Path Analysis What does a user's web navigation path say about purchase conversion or a user's goals?

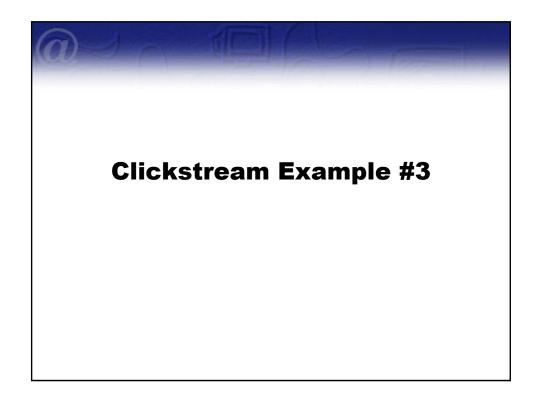


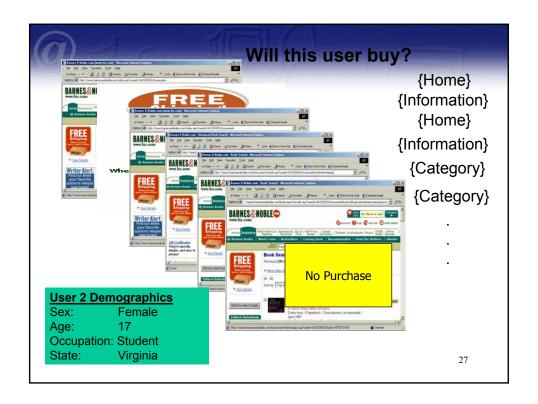


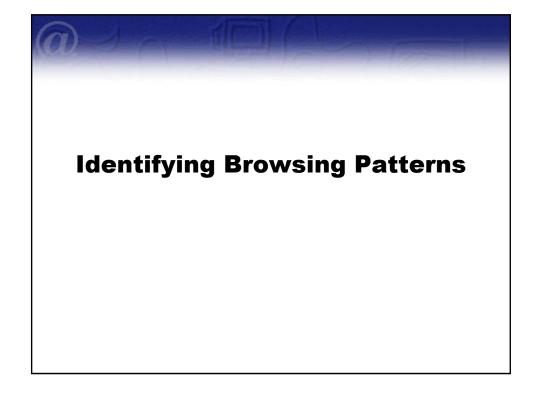


Clickstream Example #2









Categorizing Pages

Abbr	Category	Description
Н	Home	Home page
Α	Account	User account pages
С	Category	Page with list of products
Р	Product	Product information pages
I	Information	Shipping, order status, etc
S	ShoppingCart	Pre-order pages
0	Order	Confirmation/purchase page
E	Enter/Exit	Non B&N pages

29

Some Sample User Sessions

	User	Path
တ္ဟ	1	ICCCCCCCCPCCPCCCCCCCCCCCCCCCCCCCCCCCCCC
še	2	IHHE
owsers	3	IE
	4	IHICPPPCE
В	5	IHHIIICIIE
	6	HIAAAAIAIIIICIIICICCICCICICCIPPIPPIPPIPIICCSIIIPPPPPIPIPSISISISSSOIIIIIHE
SIS	7	HCCPPPCCPCCCCCCCCPSCSCSPCCPCPCCCCCCSAAAAAAAA
Buyer	8	IIICICPCPPPCPCICICPCCCPCPPPIPSIIAASSSIIIIOIIE
В	9	IISIASSSIOIE
	10	IPPPPSASSSSOIAAAHCCPCCCCCE

Probability of Viewing a Page

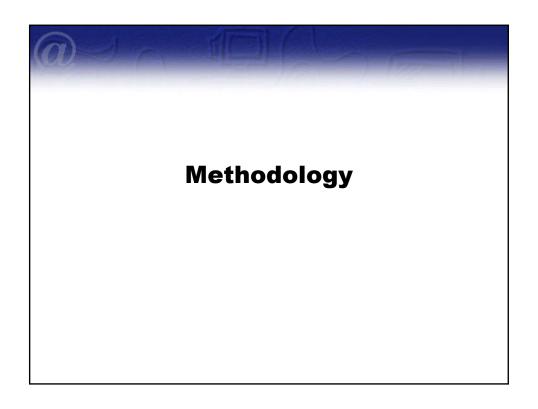
Category	Purchaser	Browser	Odd Ratio
Home	1%	9%	1/9
Account	13%	4%	3/1
Category	27%	35%	.8/1
Product	17%	17%	1/1
Information	24%	33%	.8/1
Shopping Cart	15%	2%	7/1
Purchase	3%	0%	Inf

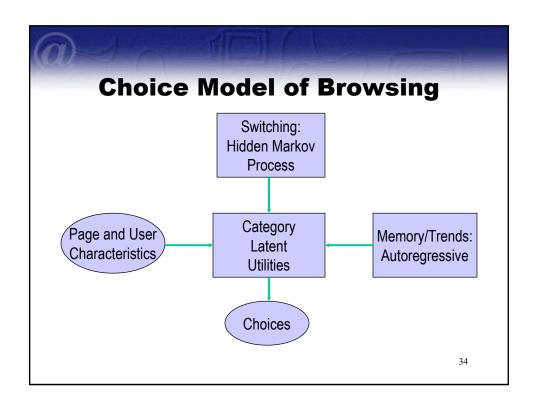
31

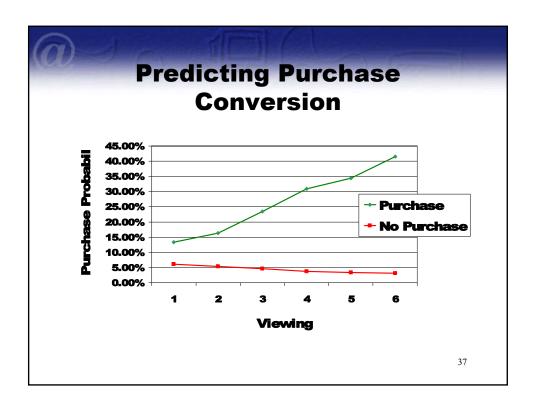
Transition Matrix

	Category of Previous Viewing									
	Category	Home	Account	Category	Product	Inform.	ShopCart	Order	Exit	
nt	Home	.23	.01	.01	.01	.10	.02	0	.16	
irre	Account	.01	.69	.01	.01	.02	.15	0	.01	
Category of Current Viewing	Category	.17	.02	.60	.31	.15	.05	0	.16	
ory of Cu Viewing	Product	.01	0	.20	.43	.10	.05	0	.05	
Ory Vie	Information	.25	.06	.08	.12	.46	.15	.87	.61	
te g	Shop. Cart	.01	.16	.01	.03	.02	.45	.13	.01	
೮	Order	0	0	0	0	0	.10	0	0	
	Exit	.32	.06	.09	.09	.14	.02	0	0	
	Marginal	.06	.05	.32	.17	.23	.05	.01	.11	
	Initial Prob.	.16	.02	.16	.06	.60	.01	0	0	

Table 6. Sample transition matrix for categories of viewings. (Notice that the columns sum to one, and there are a total of 14,512 observations.)







Key Points of Path Analysis

We can infer 'what you want' from 'what you view'

- The path a user takes reveals goals and interests
 - We look at pages we are interested in
 - Avoid those pages that are irrelevant
- Path Analysis indicates we can intervene before a non-purchaser leaves the site
- Presenting promotional information to purchasers is distracting, but increases conversion for surfers
- Show the right information at the right time

Text Classification

Categorizing Web Viewership Using Statistical Models of Web Navigation and Text Classification

Information Available

Clickstream Data

- Panel of representative web users collected by Jupiter Media Metrix
- Sample of 30 randomly selected users who browsed during April 2002
 - 38k URLs viewings
 - 13k unique URLs visited
 - 1,550 domains
- Average user
 - Views 1300 URLs
 - Active for 9 hours/month

Classification Information

- Dmoz.org Pages classified by human experts
- Page Content Text classification algorithms from Comp. Sci./Inform. Retr.

41

Dmoz.org

- Largest, most comprehensive humanedited directory of the web
- Constructed and maintained by volunteers (open-source), and original set donated by Netscape
- Used by Netscape, AOL, Google, Lycos, Hotbot, DirectHit, etc.
- Over 3m+ sites classified, 438k categories, 43k editors (Dec 2001)

Categories

- . Arts
- 2. Business
- 3. Computers
- 4. Games
- 5. Health
- 6. Home
- 7. News
- 8. Recreation
- 9. Reference
- 10. Science
- 11. Shopping
- 12. Society
- 13. Sports
- 14. Adult

Problem

- Web is very large and dynamic and only a fraction of pages can be classified
 - 147m hosts (Jan 2002, Internet Domain Survey, isc.org)
 - 1b (?) web pages+
- Only a fraction of the web pages in our panel are categorized
 - 1.3% of web pages are exactly categorized
 - 7.3% categorized within one level
 - 10% categorized within two levels
 - 74% of pages have no classification information

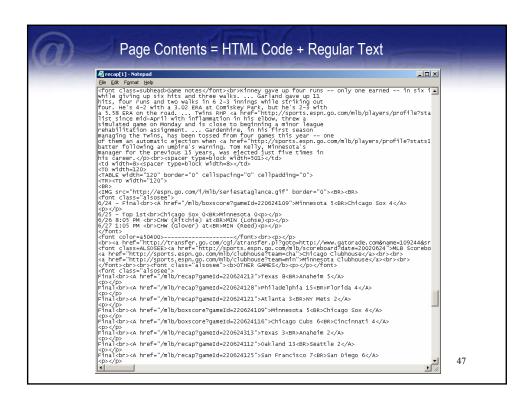
43

Text Classification

Background

- Informational Retrieval
 - Overview (Baeza-Yates and Ribeiro-Neto 2000, Chakrabarti 2000)
 - Naïve Bayes (Joachims 1997)
 - Support Vector Machines (Vapnik 1995 and Joachims 1998)
 - Feature Selection (Mladenic and Grobelnik 1998, Yang Pederson 1998)
 - Latent Semantic Indexing
 - Support Vector Machines
 - Language Models (MacKey and Peto 1994)

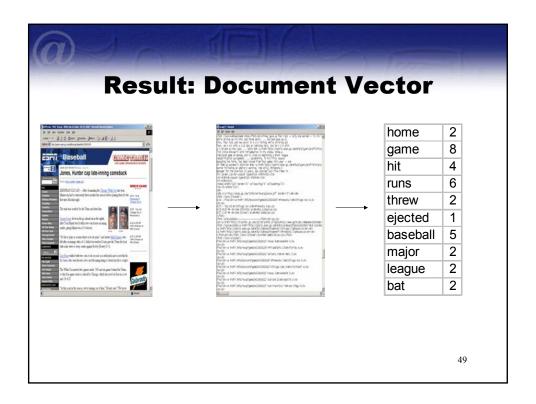
45

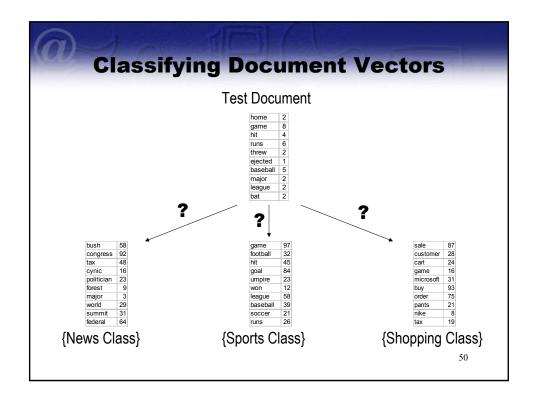


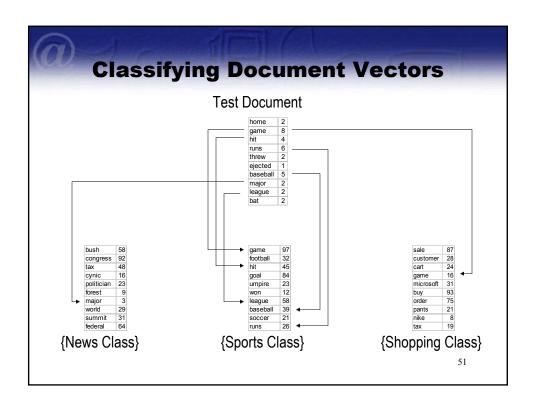
Tokenization & Lexical Parsing

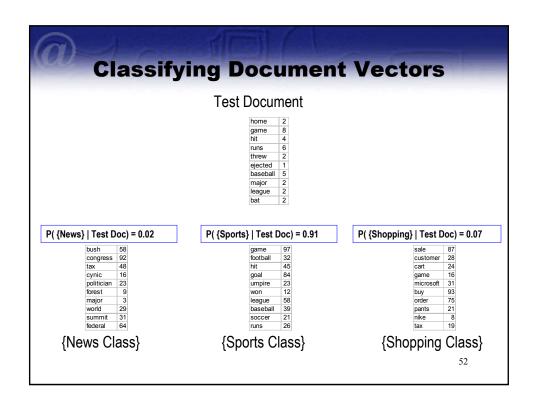
- HTML code is removed
- Punctuation is removed
- All words are converted to lowercase
- Stopwords are removed
 - Common, non-informative words such as 'the', 'and', 'with', 'an', etc...

Determine the term frequency (TF) of each remaining unique word









Classifying Document Vectors

Test Document

2
8
4
6
2
1
5
2
2
2

game	97
football	32
hit	45
goal	84
umpire	23
won	12
league	58
baseball	39
soccer	21
runs	26

53

Classification Model

- A document is a vector of term frequency (TF) values, each category has its own term distribution
- Words in a document are generated by a multinomial model of the term distribution in a given class:

$$d_c \sim M\{n, \vec{p} = (p_1^c, p_2^c, ..., p_{|\nu|}^c)\}$$

• Classification: $\underset{c \in C}{arg max} \{ P(c | d) \}$

$$\underset{c \in C}{\operatorname{arg\,max}} \left\{ P(c) \prod_{i=1}^{|V|} P(w_i \mid c)^{n_i^c} \right\}$$

|V|: vocabulary size

 n_i^c : # of times word *i* appears in class *c*

Results

- 25% correct classification
- Compare with random guessing of 7%
- More advanced techniques perform slightly better:
 - Shrinkage of word term frequencies (McCallum et al 1998)
 - n-gram models
 - Support Vector Machines

55

User Browsing Model

User Browsing Model

- Web browsing is "sticky" or persistent: users tend to view a series of pages within the same category and then switch to another topic
- Example:

57

Markov Switching Model

	arts	usiness	mputers	games	health	home	news	creation	ference	science	hopping	society	sports	adult
arts	83%	4%	5%	2%	1%	2%	6%	3%	2%	6%	2%	3%	4%	1%
business	3%	73%	5%	3%	2%	3%	6%	2%	3%	3%	3%	2%	3%	2%
computers	5%	11%	79%	3%	3%	7%	5%	3%	4%	4%	5%	5%	2%	2%
games	1%	3%	2%	90%	1%	1%	1%	1%	0%	1%	1%	1%	1%	0%
health	0%	0%	0%	0%	84%	1%	1%	0%	0%	1%	0%	1%	0%	0%
home	0%	1%	1%	0%	1%	80%	1%	1%	0%	1%	1%	1%	0%	0%
news	1%	1%	1%	0%	1%	0%	69%	0%	0%	1%	0%	1%	1%	0%
recreation	1%	1%	1%	0%	1%	1%	1%	86%	1%	1%	1%	1%	1%	0%
reference	0%	1%	1%	0%	1%	0%	1%	0%	85%	2%	0%	1%	1%	0%
science	1%	0%	0%	0%	1%	1%	1%	0%	1%	75%	0%	1%	0%	0%
shopping	1%	3%	2%	1%	1%	2%	1%	1%	0%	1%	86%	1%	1%	0%
society	1%	1%	2%	0%	2%	1%	3%	1%	2%	2%	0%	82%	1%	1%
sports	2%	1%	1%	0%	0%	0%	3%	1%	1%	0%	0%	1%	85%	0%
adult	1%	1%	1%	0%	0%	0%	1%	0%	0%	0%	0%	1%	0%	93%
	16%	10%	19%	11%	2%	3%	2%	6%	3%	2%	7%	6%	5%	7%

Pooled transition matrix, heterogeneity across users

Implications

• Suppose we have the following sequence:

Using Bayes Rule can determine that there is a 97% probability of news, unconditional=2%, conditional on last observation=69%

59

Results

Methodology

Bayesian setup to combine information from:

- Known categories based on exact matches
- Text classification
- Markov Model of User Browsing
 - Introduce heterogeneity by assuming that conditional transition probability vectors drawn from Dirichlet distribution
- Similarity of other pages in the same domain
 - Assume that category of each page within a domain follows a Dirichlet distribution, so if we are at a "news" site then pages more likely to be classified as "news"

61

Findings

Random guessing 7%

Text Classification 25%

+ Domain Model 41%

+ Browsing Model 78%

Findings about Text Classication

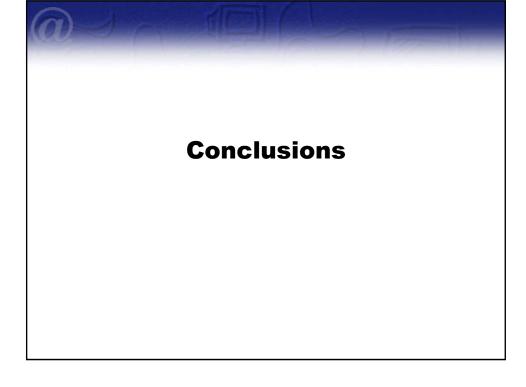
Key Points of Text Processing

Can turn text and qualitative data into quantitative data

- Each technique (text classification, browsing model, or domain model) performs only fairly well (~25% classification)
- Combining these techniques together results in very good (~80%) classification rates

Applications

- Newsgroups
 - Gather information from newsgroups and determine whether consumers are responding positively or negatively
- E-mail
 - Scan e-mail text for similarities to known problems/topics
- Better Search engines
 - Instead of experts classifying pages we can mine the information collected by ISPs and classify it automatically
- Adult filters
 - US Appeals Court struck down Children's Internet Protection Act on the grounds that technology was inadequate



Lessons about Behavior

- We reveal a wealth of information about ourselves through clicking, which can then be used to accurately predict about who we are and our interests.
- This works because we tend for information that is compatible with our interests and goals.