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Should Music Labels Pay for Radio Airplay?
Investigating the Relationship Between

Album Sales and Radio Airplay

Abstract:

Managers in the music industry closely monitor both radio airplay of an album as well as the album's
sales.  Their interest in radio airplay is due to the belief that airplay can increase an album’s sales.  Therefore it
is natural for managers to attempt to influence radio airplay so as to subsequently impact  album sales and
ultimately profits.  Over the past several years the concept of “pay-for-play” has resurfaced.  If direct
payments for radio airplay are to be made, then a precise understanding of the dynamic relationship between
sales and airplay is needed.  Typically radio airplay and album sales both show an exponential declining
pattern.  It is natural to ask whether both series are evolving concurrently–but independently–or is there
some type of dependence?  If there is a causal relationship, what is the direction of causality, or is there be a
feedback relationship where both series influence each other?  The purpose of this paper is to address these
modeling questions using vector autoregressive models (VARMA), and show how these models can be used
to answer the substantive question of whether the music industry should pay for airplay.

Keywords:  Music Sales; Vector Autoregressive-Moving Average Models; Estimation; Model Specification;
Forecasting; Time Series Outliers and Innovations
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1 Introduction

Managers in the music industry closely monitor both radio airplay of an album as well as the album's

sales.  Their interest in radio airplay is due to the belief that airplay can increase an album’s sales.  Therefore it

is natural for managers to attempt to influence radio airplay so as to subsequently impact album sales and

ultimately profits.  Over the past several years the concept of “pay-for-play” has resurfaced (Billboard 1999, WSJ

1998).  During the 1950 and 1960's it was common for music labels (or record companies) to offer side payments

to radio station employees to play songs on the air, which was often referred to as “payola”.  However, this

practice died down due to federal legislation.

The new “pay-for-play” proposals are not covert payments but the direct purchase of radio airplay by

music labels similar to television infomercials.  For example, one proposal is that a music label, say Capitol

Records, pay $1 million to buy an hour of prime time programming to schedule as they wish.  Federal regulators

are willing to let these types of arrangements proceed as long as the listener hears a disclaimer such as “presented

by Capitol Records”.  Additionally, there is a growing practice of music labels paying for access to radio

programmers or independent promoters that may indirectly influence radio airplay (WSJ 2002).   Although some

music industry representatives object that these new “pay-for-play” schemes amount to “payola” (NYT 2002).

Many music labels are now worried that it is becoming too expensive to promote albums (WSJ 2002) and the

issue of “payola” is being hotly debated by industry participants (Billboard 2002).

At the heart of an informed debate over payment of radio airplay is the need for a precise understanding

of the dynamic relationship between music album sales and radio airplay.  This is the focus of our research.

Music album sales and radio airplay can be characterized as a bivariate time series which we propose to model

using a vector autoregressive moving average (VARMA) model.  This model allows us to answer the question

of the value of radio airplay in terms of increased album sales, as well as to understand the effect of album sales

on radio airplay.  In our research we do not advocate  “pay-for-play” for the radio industry, but instead answer

the more pragmatic question of if it is permitted what is its value?  Our findings also should enlighten the debate

within the music industry about the efficacy of radio airplay as a promotional vehicle.



- 2 -

Typically radio airplay and album sales both show an exponential declining pattern.  It is natural to ask

whether both series are evolving concurrently–but independently–or is there some type of dependence?  If there

is a causal relationship, what is the direction of causality, or is there be a feedback relationship where both series

influence each other?

There are many reasons to expect a dynamic relationship exists between album sales and radio airplay

and that direct payment of radio airplay might be profitable for music labels.  The most obvious reason to believe

that airplay positively affects sales is that airplay may be perceived as a form of advertising.  Alternatively, the role

of radio airplay in the purchase process may be more akin to an news report from a mass media outlet than a

simple advertisement.  Repeated playing of an album can positively impact the public’s perception of what type

of music is enjoyable, just as a news report may lead listeners to believe an announcement is important.  Certainly

radio stations have a big impact on what is heard, since stations filter through more than 500 new releases each

week and choose just three or four to introduce to the listening public.  These types of effects are known in the

communications literature as an agenda-setting effect (Funkhauser 1973, Iyengar and Kinder 1987, McCombs

and Shaw 1972) and would predict more radio airplay results in increased album sales.

Not only is a radio station able to influence the public, but the public can also affect what is aired on the

radio.  Increased album sales may lead radio stations to play an album more.  In the music business, this feedback

relationship of album sales on radio airplay has been institutionalized in the industry via the Billboard Charts

which ranks songs and albums on a weekly basis according to sales.  Many stations play only songs that rank in

the top 40 of these charts, while other stations use them as a guide to select songs to air that reflect their

audience's preferences.  Since the Billboard Charts are published on a weekly basis, these rankings can take time

to alter a radio's programming, indicating lagged relationships between sales and airplay.  For a study of the

movement of songs on the Billboard Charts see Bradlow and Fader (2001).

A possible negative impact of increased radio airplay is that it may be a substitute for owning an album,

hence a consumer may not purchase an album as long as it is being played frequently on the radio.  Additionally,

if an album is aired too much, then the public may tire of it quickly.  Therefore, the positive aspects of radio
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airplay will not go unchecked.

This discussion suggests that we cannot a priori determine the potential relationship between radio

airplay and music album sales and need a general and flexible empirical approach to studying this multivariate

time series.  We choose the class of vector autoregressive moving average models (VARMA) after appropriately

transforming the underlying series logarithmically and introducing holiday intervention effects.  VARMA models

can account for independence, contemporaneous dependence, and lagged dependence in a parsimonious manner.

A primary advantage of VARMA models is that they do not require the analyst to know the dynamic structure

beforehand, but can identify it from the data itself.  Additionally, distributed lag, transfer function, univariate time

series, and multivariate regression models are all nested within the class of VARMA models.  Furthermore we

derive conditions under which the forecasts of a VARMA model will be similar to those of the Moe and Fader’s

(2002) adaptation of a multivariate version of the Fourt and Woodlock (1960) diffusion model.  The Fourt and

Woodlock (1960) diffusion model is a special case of the popular Bass model (1969).

While there are a plethora of techniques to forecast sales either using past observations or marketing mix

inputs, VARMA models have received limited attention in the marketing literature.  (No applications of VARMA

models have appeared within the Journal of Marketing Research or Marketing Science.)  Although a subclass of

VARMA models known as vector autoregressive (VAR) models have been used quite successfully to study the

persistence of marketing variables, see work by Dekimpe and Hanssens (1995a, 1995b, 1999), Dekimpe,

Hanssens, and Silva-Risso (1999), and Dekimpe et al (1997).  In the statistical literature VARMA models have

been well studied (Tiao and Box 1981, Reinsel 1995).  (For an example of VARMA models applied to forecasting

the unemployment rate see Montgomery et al. 1998.)  An advantage of VARMA models over VAR models is

that they can more parsimoniously capture longer memory effects.

Another problem that requires the analyst to exercise some caution is that it is possible that album sales

and radio airplay are derived from independent diffusion processes.  If both series diffuse independently of one

another, but at the same time, a regression of one on the other may identify a spurious relationship between the

two (Granger and Newbold (1986), §6.4).  Bass and Srinivasan (2002) have also noted the that some forms of
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the Bass model are quite susceptible to spurious regression when the covariates are smoothly trending.  In this

paper we illustrate the problems that spurious correlations can cause using the multivariate diffusion model

employed by Moe and Fader (2001).  We demonstrate that estimates of this model are biased when album sales

and radio airplay follow independent, but similar, diffusion processes.  This bias may lead a researcher to

incorrectly conclude that additional airplay would increase album sales, when in fact there is no gain from

additional airplay.  We note that the objective of their study was to segment albums based on sales patterns and

not to understand the relationship between airplay and sales.

§2 discusses how VARMA models can be employed to measure the dynamic relationship between album

sales and radio airplay. In §3 we relate VARMA models to diffusion models, specifically we show under certain

circumstances that diffusion models are a special case of ARMA models.  We discuss the advantages of VARMA

modeling when the structure of the interdependency of the series is not known beforehand.  We then continue

the analysis of §2 and derive the implications of the VARMA model on the valuation of radio airplay in terms

of sales for a single album in §4.  §5 discusses these results for thirteen different albums released by Capitol

Records between 1993 and 1995.  We find that the relationships between airplay and sales can vary widely.  Some

albums have sales that show a distinct feedback relationship with radio airplay, while other show only weak

contemporaneous relationships.  We show that the diversity of relationships that exist, result in much different

valuations for radio airplay, some show no additional profits from radio airplay, while for others the profitability

depends upon the lagged relationships.  §6 concludes with a summary and discussion of these results.  In

summary, we find that while radio airplay can be profitable, the profitability depends heavily upon dynamic and

lagged relationships.

2 Modeling the Relationship between Album Sales and Radio Airplay

To answer the question that has motivated this research, “Should music labels pay for radio airplay?”,

we need to determine the value of radio airplay in terms of profitability of increased album sales.  There are a

couple of industry practices that help simplify this problem.  First, the costs of producing an album are large and
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fixed, while the incremental cost of physically creating an additional album are small and relatively constant.

Second, the price of music albums is typically held constant1.  These practices mean that incremental profits are

proportional to incremental sales.  However, we need to be concerned with not only the effect of additional radio

airplay on the current period of album sales, but also the discounted stream of incremental album sales associated

with any additional radio airplay in the current period.

Formally, we calculate the value of radio airplay on music album sales by computing the discounted

stream of incremental expected album sales due to increased airplay at time T.  The stream of expected sales is

used, since changes in airplay in one time period may affect future sales.  Formally, this measure is:

(1)

where st and at are album sales and radio airplay at time t, st'=(s1, s2, ..., st), at'=(a1, a2, ..., at), aT
* the incremental

radio airplay purchased at time T, 4 is a t x 1 vector of zeros with the Tth element equal to one, and r is the

discount rate of money.  The key element of this calculation is the computation of the conditional expectation

of album sales given past sales and radio airplay.  This approach can be easily generalized to changed radio airplay

schedules in multiple periods..

In the remainder of this section, we consider the calculation of this conditional expectation using a time

series framework and illustrate this methodology with an empirical application to Bonnie Raitt’s Longing in Their

Hearts.  The sales data is collected weekly by Soundscan, Inc.  Soundscan pays for the exclusive rights to the point

of purchase data obtained from over 14,000 retail stores representing more than 85% of all over the counter

album sales in the United States.  One weakness of the data is that small music stores are under-represented in

the sample, which is of some concern since this is where some newly introduced artists first begin to sell.

Information about weekly radio airplay for each album is collected by Broadcast Data System (BDS).  BDS

identifies and tracks the airplay of songs by electronically monitoring over 560 radio station signals across the

United States.  The computer system can recognize over 110,000 different songs by each song*s unique patterns
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that are present in its digitized broadcast signal and records.  BDS records the song played, the date and time of

the broadcast, the radio station that played the song, and the estimated size of the audience reached in a measure

similar to GRPs.

2.1 Modeling Album Sales with Univariate ARIMA Models

Since VARMA models are not common in the marketing literature, we begin by considering univariate

ARIMA models of sales which is a special case of VARMA models.  A commonly used statistical model in linear

time series analysis is the univariate ARIMA model (Box, Jenkins and Reinsel 1994).  We say yt follows an

ARIMA(p,d,q) model if,

(2)

where p, d, and q are non-negative integers, c, Ni, 2j, and $$$$ are parameters, B is the backshift operator such that

Byt = yt-1, {xt} is an M x 1 vector of explanatory variables, and {,t} is a sequence of independently and identically

distributed normal variables with mean zero and variance F2.  We consider N(B) = 1-N1B-...-NpBp and 2(B)=1-21B-

...-2qBq as polynomials, and assume that the two polynomials have no common factors and have all of their zeros

outside the unit circle.  The addition of the moving average error structure to the autoregressive process permits

parsimonious representations of time series with long-term memory effects.

There are several approaches available in the literature for building ARIMA models.  For an excellent

introduction to ARIMA modeling for marketing problems, we refer the reader to Hanssens et al (1990).  In this

paper, we adopt a three-stage iterative approach (see Box, Jenkins and Reinsel 1994) consisting of model

specification, estimation, and diagnostic checking.  In model specification, we use the sample autocorrelation

functions, the sample partial autocorrelation functions, and the extended sample autocorrelation functions of

Tsay and Tiao (1984) to identify the values of p and q.  Once the order (p,q) is given, we employ the exact

maximum likelihood method to estimate the unknown parameters under the normality assumption (see Ansley

1979, Hillmer and Tiao 1979).  For diagnostic checking, we perform various residual analyses including examining
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Figure 1.  Weekly album sales and radio airplay for Bonnie Raitt’s Longing in Their Hearts.
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Figure 2.  Natural Logarithm of weekly album sales and radio airplay for Bonnie Raitt’s
Longing in Their Hearts.
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residual serial correlations by using the Ljung and Box (1978) statistics.

Empirical result:  To illustrate the ARIMA model consider the album sales of Bonnie Raitt’s Longing in

Their Hearts.  Figure 1 plots the weekly sales and airplay support for the album.  There is a clear, declining

exponential trend in the sales pattern of this album—which is typical of other albums in our dataset.  To

represent this series in a linear model, we employ a natural log transformation and plot the transformed series

in Figure 2.

Additionally, there is a Christmas effect on album sales.  Specifically, sales gradually build up before the

actual week of Christmas, reach a peak Christmas week, and then return to its usual pattern.  To capture the

Christmas sales effect we create three intervention variables: a dummy indicator variable for the week of

Christmas (x1t), a buildup effect that grows exponentially in the weeks prior to Christmas (x2t), and a decay

variable that declines exponentially in the weeks following Christmas (x3t).  The variables are defined as:

(3)

These variables are variants of outlier specifications, such as the temporary change (Tsay 1988), and follow a

customary practice in intervention analysis by fixing * to .5.

After examination of the PACF, ACF, and EACF we estimate2 an ARIMA(1,0,1) model with additional

intervention terms to account for Christmas effects:

(4)

The standard errors of the parameter estimates are given in parentheses below the estimate.  The Ljung-Box

statistics for this fitted model yields Q(12) = 7.5.  This statistic is asymptotically distributed as chi-square with

six degrees of freedom and indicates that the residual serial correlations are small and that this model specification
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is adequate.  All parameter estimates in this model are statistically significant at the 5% level.

Our objective as stated in equation (1) is to derive the conditional expectations for this model.

Forecasting with ARIMA models has been well studied.  The general ARMAX(1,1) model as used in (4) is: ln(st)

= N0 + N1 ln(st-1) + $$$$'xt + ,t ! 2 ,t-1, and its forecasts are:

(5)

These forecasts are unbiased, normally distributed, and var(ln(s$t+1))=F2 and var(ln(s$t+l))=(1+22)F2 for l$2.  The

conditional expectation of sales at time l in its natural units can be found by taking the exponential of the

forecasts and adjusting for the mean of the log-normal distribution (i.e., if ln(y)~N(:,F2) then E[y]=exp{:+½F2

}; also see Arino and Franses 2000).  The solution is:

(6)

To better understand the behavior of this expectation suppose that l is large and that |N1|<1 (i.e., Nl60)

and employing a geometric series as an approximation to N0(1+N1+N1
2+þ+N1

l), we can show that (6) is

approximately:

(7)

Equation (7) implies that the series will eventually settle down to the mean of the process (N0/(1-N1)).

The assumption that |N1|<1 may be in doubt since the estimate of this autoregressive coefficient in (4)

suggests that the process may be integrated, i.e., N1=1.  In other words the process has a long-term memory such

that shocks which occur in earlier periods persist permanently and shift the expectation of sales in subsequent

periods.  To test this hypothesis we perform an augmented Dickey-Fuller test (1979), for a marketing application

of this test see Dekimpe and Hanssens (1995b).  The asymptotic p-value for the test that the logarithm of sales
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follows a random-walk with drift is .03, i.e., H0: N1=1 versus HA: N1…1, which tends to support the random-walk

hypothesis.  Under the assumption that N1=1 then the conditional expectation from (6) can be simplified as:

(8)

Again if we ignore the contribution of the seasonal factors, we can show that this expectation will be decreasing

as long as N0 is sufficiently negative, i.e., N0<-½(1-2)2F2.  This relation shows that both the first and second

moments of the log transformed process are important when forecasting sales, and the contribution of the

variance of the process should not be ignored when forecasting sales.

The implications of unit-roots have been thoroughly researched in the time series literature (Dickey and

Fuller 1976) and their impact on marketing research has also been recognized (Dekimpe and Hanssens 1995a).

The most critical impact of the assumption that |N1|<1 is that the long term forecasts of the process will be

positive.  Using the approximation given in (8) we would expect sales to average around 2,480 units in the long

term, while under model (9) sales would be driven to zero.  For near-term forecasts there is little difference

between an autoregressive model with and without the assumption that N1=1.  The existence of a unit-root in

a bivariate VARMA model will have special significance and we will return to this later in the next section.

2.2 Modeling Album Sales and Radio Airplay Jointly with VARMA Models

A multivariate generalization of the univariate ARIMA model given in (2) is the vector autoregressive

moving-average (VARMA) model.  A vector of time series yt=[y1t þ ykt]N is said to follow a VARMA model if,

(9)

where c is a constant vector, Mi and 1j are k x k matrices, I is the k x k identity matrix, xt is a matrix of

explanatory variables—which in our case are seasonal effects, and { t} = {[,1t þ ,kt]N} is a sequence of

independently and identically distributed random vectors with mean zero and positive-definite covariance matrix

E.
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Notice that in the VARMA representation, vectors take the place of scalars in the ARIMA model, and

parameters become matrices.  We assume that the two matrix polynomials M(B) and 1(B), defined in a similar

way as those of (2), are left-coprime3 and that all of the zeros of the determinants *M(B)* and *1(B)* are on or

outside the unit circle.  For further identifiability properties of this model, see Hannan and Deistler (1988) and

Tiao and Tsay (1989).

The VARMA models in (10) have not been widely employed in practice.  However, VARMA models

are very flexible and encompass many familiar models in the literature.  The vector autoregressive (VAR) model

which is commonly used in the econometric literature is a special case.  For a marketing study using VAR models

see Dekimpe and Hanssens (1995b).    Another common example is the transfer function or dynamic regression

model.  For example, consider the case of k=2.  If all the lower off-diagonal elements of Mi and 1j are zero, then

the model reduces to a transfer function model, e.g., regression model with lagged inputs, with y2t and y1t as its

input and output variables, respectively.  For a further discussion of VARMA models see Tiao and Box (1981).

The flexibility of VARMA methods allows us to identify and model very different relationships without

having to first specify a causal structure between variables.  Independent, contemporaneous, or lagged

relationships are all special cases of this model.  For our bivariate time series, album sales and radio airplay, if

these series are unrelated, then M, 1, and E are diagonal.  Hence, each series can be represented by an

independent ARIMA model.  A contemporaneous relationship exists when E is non-diagonal.  If M and 1 are

upper triangular, then previous radio airplay impacts album sales but there is no feedback relationship of previous

sales on airplay.  Alternatively, if M and 1 are lower triangular, then album sales affects airplay.  Finally, if M, 1,

and E are fully populated, we have a contemporaneous and dynamic relationship between the two series.  In

summary, VARMA presents a flexible and complete model for studying the inter-relationships between these

two series and can easily be extended beyond the bivariate case to capture higher-order multivariate relationships.

Empirical result:  We build the following VARMA model for the album sales and radio airplay of Bonnie
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Raitt’s Longing in their Hearts used in the previous section.  Here we let yt = [ln(st) ln(at)]N where st and at denote

sales and radio airplay in GRPs respectively.  The model we estimate4 is:

(10)
where

The standard errors of the parameter estimates are given in parentheses below the estimate.  The “*” superscript

denotes the associated parameter as statistically insignificant at the 5% level based on its asymptotic distribution.

As expected, the seasonal variables have a significant effect on sales.  Additional analyses of the radio airplay

reveals that it is not effected by the Christmas season.  Therefore, seasonal effects on airplay were not included

in the model.

Upon further inspection of the parameters we can assess the dynamic relationship between sales and

airplay.  The main diagonal along the M matrix indicates that both the sales and the airplay series have significant

autoregressive components.  This means that observations for each of the two series do indeed depend on their

past observations.  The off-diagonal also reflects a feedback relationship between sales and airplay.  That is, past

sales increases airplay, and in turn, past airplay increases sales.  Looking at the off-diagonals of the M matrix,

airplay seems to have a stronger effect on sales in terms of magnitude than sales on airplay for this particular

album.  Compare these results with those from the univariate ARIMA model.  The moving-average (MA) term

for sales was significant when sales was analyzed as a univariate series but failed to be significant when a VARMA
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model was applied.  The simplification of the structure of st is due to the inclusion of airplay, which illustrates

that when the multivariate nature of the data is exploited, relationships can be simplified.  However, the marginal

univariate  representation implied by the VARMA model for the log of sales is still an ARMA(1,1) model.

The error structure also provides information about the contemporaneous relationship between sales

and airplay.  The  correlation coefficient computed from the error covariance matrix is .022.  Statistical tests

indicate that the errors from the sales and airplay models are uncorrelated.  This implies– that although–there

may be a lagged relationship between sales and airplay, the contemporaneous relationship is negligible.

A final point that the VARMA model clarifies about the dependence between sales and airplay is the

existence of a joint trend.  Notice that one of the eigenvalues of M is close to 1.  In the econometric literature

this is known as cointegration (Engle and Granger 1987), for an marketing application refer to Frances (1994).

Cointegration means that album sales and radio airplay share a common trend that influences both series, in other

words they are evolving together and not independently of each other.  The common trend can be constructed

by rewriting (11) in terms of the following transformations of zt=P-1yt, c*=P-1c,  1*=P-11P,  ,t
*=P-1,t,  E*=P-1EP-

1N, #*=P-1#, and P is defined using the Jordan decomposition of M=P7P-1:

(11)
where

Notice that the first element (z1t) is stationary, while the second (z2t) follows a random walk.  Alternately we can

think of the original series as a composition of these two unobserved components.  The model for album sales

is a linear combination of a random walk (z2t) and a stationary ARMA process (z1t).  Similarly radio airplay can

also be expressed as a different linear combination of the same processes.  In summary, although both album
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sales and radio airplay follow trends, an appropriate bivariate model does not yield two separate trends as one

might attempt if separate univariate models were constructed separately, but a single, common trend.

Forecasting the VARMA is similar to the ARIMA model.  The forecasts for the VARMAX(1,1) model

as used in (10) are:

(12)

These forecasts are unbiased, normally distributed, and var(y$$$$ t+1)=E and var(y$$$$ t+1)=E+1E1N for l$2.  The

conditional expectation of sales at time l in its natural units can be found by taking the exponential of the

forecasts and adjusting for the mean of the log-normal distribution as before.  The solution is:

(13)

where 4444N=[1 0], F11=4444N E4444, and (11=4444N(E+1E1N)4444.  In equation (13) we assume that we must forecast radio airplay

along with album sales, if radio airplay is known than we can treat it as an exogenous variable and forecast the

problem as an ARIMAX model as done in (6).

3 Comparison of Time Series and Diffusion Modeling

Diffusion models have proved to be very popular in the marketing literature for forecasting sales (Bass

1969).  Given the prevalence of diffusion models (Mahajan, Muller, and Bass 1990) and the lack of experience

with VARMA models in the marketing literature, we compare these two types of models.  We show that under

certain circumstances VARMA models can well approximate the predictions of diffusion models, but do not

suffer from some of the shortcomings as multivariate diffusion models with trending covariates (Bass and

Srinivasan 2002).

The diffusion pattern observed for music album sales and radio airplay is different, although not

unrelated, from those observed for new durables (Bass 1969).  Usually, the sales peak occurs at introduction and
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then slowly declines through time, instead of a bell-shaped sales curve.  This pattern is similar to those observed

with other experiential products such as books and movies (Sawhney and Eliashberg 1996).  The exponential

decline over time for sales implies that a good one is the Fourt and Woodlock (1960) model:

(14)

where F(t) denotes the cumulative probability of trial for an individual at time t, 8 is the rate of trial, and 8>0.

Notice that this is a special case of the Bass (1969) model when his innovation of diffusion parameter equals zero.

Empirical estimates of the innovation of diffusion model using the Bass model for the data set employed in this

paper indicate that q is indeed close to 0.  The predicted sales from the Fourt and Woodlock model during any

period can be computed as follows:

(15)

where m is the market size.

The t-step ahead forecast of sales from the logarithm of sales that follows a random walk with a negative

trend, such as the ARIMA(0,1,0) model given in (2), is:

(16)

This derivation makes use of the mean of the log-normal distribution, E[exp{,}]=exp{½F2}.

Notice that upon making the following substitutions s0=m(exp{l}-8) and 8=c+½F2 that (15) and (16)

are identical.  This means that the expectation of the ARIMA(0,1,0) model under these circumstances (e.g., log

transformation and random walk model with negative trend) is the same as the Fourt and Woodlock (1960)

model.  To the best of our knowledge this is the first time this relationship between ARIMA and diffusion

models has been pointed out.

A generalization of the Fourt and Woodlock model that incorporates covariates can be written as follows

(see Kalbgleisch and Prentice 1980, Lawless 1982, Radas and Shugan 1998, Moe and Fader 2001).
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(17)

If we specify $ and xi as follows, 

(18)

then the sales predicted by (17) is

(19)

The multivariate generalization of the ARIMA model, the VARMA model, can also be used to

approximate the multivariate version of the Fourt and Woodlock model in (19).  Consider the following VARMA

model:

(20)

and the forecasts generated by such a model:

(21)

If we assume that  and m = s0, then 

(22)

This shows that under certain conditions the Fourt and Woodlock and the VARMA models can provide similar

forecasts.

The flexibility of VARMA models help avoid problems that may develop when using diffusion models

of multivariate processes.  One problem that can arise when using Fourt and Woodlock models on multivariate

processes is that they can identify spurious relationships between the two independent processes.  For example,
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suppose we have two diffusion processes that evolve independently of one another, say album sales and radio

airplay.  Let the model for album sales be as in (13) with m=1,500,000 and 8=.06, and let m=1,000,000 and 8=.04

for radio airplay.  If we simulate each of these models with 104 observations, the MLE estimates of the

parameters for the sales series are 8=.0618 (.0005) and M=1,502,000 (1,200).  Now suppose we did not know

a priori that sales and airplay were independent, but instead estimated a multivariate Fourt and Woodlock model

of album sales with radio airplay as a covariate as in (16).  The MLE estimates from this sales model are 8=.0567

(.0012), M=1,503,000 (1,100), and $=.0321 (.0007).  Notice that in this multivariate Fourt and Woodlock model

we would find that airplay has a significant effect on sales (i.e., $=/0)—a spurious relationship.  This spurious

relationship exists because we have modeled the levels of two series with similar trends.  This could lead to

serious managerial problems, since the multivariate Fourt and Woodlock model may lead to music publishers

investing substantial amount of money in radio airplay to increase album sales, when in truth no such relationship

exists.  This could present a potentially costly error.

Problems of spurious relationships are well documented in the regression literature, for a good

discussion see Granger and Newbold (1986, pp. 205-215).  The motivation for these spurious relationships is

that simple regressions of a trended series upon another trended series will lead to seemingly significant

regression coefficients.  The problem is that these types of regressions violate the underlying assumptions of our

model.  A possible way of correcting this problem is to relate the changes in the series (i.e., the first order

differences).  Since models on the differenced data are a special case of a VARMA model created from the raw

data, the VARMA models are much less susceptible to these problems of spurious relationships than multivariate

forms of diffusion models without requiring the analyst to difference the data before modeling the data.  We

point out this shortcoming of multivariate diffusion models since past researchers have suggested these types

of multivariate models without verifying whether their results are due to spurious correlations, and they

demonstrate an important advantage of VARMA models with diffusion type data when we are relating variables

with trends without a priori knowledge of the feedback relationship.



5.  Even though the contemporaneous terms do not occur in a VARMA model, contemporaneous
effects are captured through correlated error structures.  It needs to be remembered that VARMA models are
in reduced form.  Consider the VARMA model: yt=M yt-1+g, g~N(0,E), where yt={y1t,y2t}, and the
transformation P where E=P7PN.  After multiplication of this model by P, Pyt=M*yt-1+u, u~N(0,7), we can
directly observe that p11 y1t+p12y2t=N11

*y1,t-1+N12
*y2,t-1+u1t, or in structural form there is a direct relationship

between y1t and y2t induced through the correlation in the errors.
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4 Valuation of Radio Airplay in terms of Album Sales

In this section we use the VARMA model and forecasting techniques presented in §2 to answer the

question: How valuable is increased radio airplay in terms of increased album sales of Bonnie Raitt’s Longing in

their Hearts?  We refer the reader to the VARMA estimates in equation (10) for the estimates associated with the

model for this series.  These  estimates do not indicate a contemporaneous relationship between radio airplay

and album sales since the error covariance matrix is diagonal5 (i.e., an increase in radio airplay at time t does not

increase album sales at time t).  However, the estimates of M do show a feedback relationship between the two

series (i.e., an increase in radio airplay at time t will increase album sales in subsequent periods).  The logarithmic

scale means that we can approximately interpret the coefficients as percentage changes.  The .08 estimate of the

(1,2)th position in M can be directly interpreted as a 1% increase in radio airplay will result in a 8% increase in

expected album sales in the following period, the .05 estimate of the (2,1)th position implies a 1% increase in

album sales will result in a 5% increase in expected radio airplay in the following period.  Both of these effects

are statistically significant at the 5% level and illustrate the dynamic relationship between the two series.  These

effect give only the effects for the first period following the change, the autoregressive nature of the model means

that these shocks will persist through the system, although they will diminish through time.  Although the moving

average parameter of radio airplay, which corresponds with the (2,2)th position of 1, illustrates that random

shocks to radio airplay are more persistent than album sales.

To better illustrate the results on album sales of an increase in radio airplay for a single week, we plot

the expected contribution radio airplay on incremental album sales through each of the subsequent weeks in the

second panel of Figure 3 for a increase of 2 million GRPs of radio airplay, see the line denoted as innovative airplay

in the first panel.  Innovative forecasts are generated by adding 2 million GRPs to the observed radio airplay



6.  These figures are based on a survey of radio stations in the Philadelphia market.
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Figure 3. Increase in expected radio airplay (first panel) and album sales (second panel) from
an increase of 2 million GRPs of radio airplay in week 1 for Bonnie Raitt’s Longing in their
Hearts.

series in the first week and treating this as the realized value when forecasting.  (We should not that these are the

projections from the model, and this experiment was not conducted in practice.)  Notice there would be no

expected increase in sales during the week with the additional airplay, but in the week immediately following sales

would increase by 280 units and in the following week by 1,685 additional units.  The autoregressive and feedback

relationship between the two series will result in album sales gradually diminishing.  In total this additional 2

million GRPs in the first week results in additional album sales of more than 24,900 units during the following

twenty weeks.  During low season these additional GRPs would cost $4,800, while during high season this may

cost $8,8006.  The retail price of a CD is $18, so these additional sales would result in additional retail revenues

of almost $449,000.  The wholesale price of a CD is around $9 although the incremental cost of producing an

album is less than $1, hence the incremental income from an additional album sale is $8.  So the increased radio

airplay from these additional 2 million GRPs would generate $199,400 in additional profit less the cost of the



- 20 -

airplay.  Clearly this increased radio airplay could be very profitable.

The reason that it appears that increased radio airplay would be so profitable is that the autoregressive

relationships of model (10) magnify the initial increase in airplay.   In other words the radio stations continue to

increase radio airplay of the album even after the purchase radio airplay is completed.   The first panel of Figure

3 shows the expected radio airplay.  Notice the expected increase in radio airplay and the slowly decaying pattern.

Our model assumes that the additional radio airplay that is purchased will be incorporated into the series just as

traditional programmed radio airplay.  We can think of this incremental radio airplay as an intervention or outlier

(Tsay 1988).  In the time series literature these effects would be called innovative outlier (IO) since it becomes

interleaved into the usual dynamic effects.  However, we would argue that radio stations will make a distinction

between the radio airplay that they program versus the radio airplay that is sponsored.  It is more likely that the

effects of the purchased airplay will not become dynamically interleaved in future radio airplay periods, but simply

result in a one-period increase such as with an additive outlier (AO).  An additive outlier assumes that the

incremental airplay will not be directly incorporated into the time series process of airplay, although there could

still be some feedback relationship from higher album sales.

We recalculate the effect of an additional 2 million GRPs of radio airplay assuming that this purchased

airplay will be treated as an AO and forecast the results on expected airplay and album sales in Figure 3, see the

lines denoted as additive airplay.  Forecasts with the AO are generated by adding 2 million GRPs to the realized

radio airplay series for the first week, but when generating forecasts from this point ignoring these additional

GRPs.  Notice that under this scenario the incremental effects of the additional radio airplay would result in 4,950

additional album sold, for a total increase in expected profits of $39,600 less the cost of the additional radio

airplay.  We still find that additional radio airplay would be quite profitable to the music label.  Notice that the

incremental effect on radio airplay is quite dramatic from this assumption (see the first panel of Figure 3),

effectively limiting the effect of the increased airplay to the first week. 

Regardless of whether additional radio airplay is treated as either an AO or IO, we find that additional

airplay is quite profitable.  However, the only way to determine how radio stations will actually respond to
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Figure 4.  Expected incremental sales from 2 million GRPs of additional radio airplay
purchased at the corresponding week.

sponsored radio airplay is through experimentation, which may occur naturally if sponsorship is adopted or

through artificial experiments.  To the best of our knowledge these experiments have not been carried out.  In

the remainder of the paper we assume that any purchased radio airplay will behave as an AO since we would

expect that radio stations will make a distinction between sponsored airplay and airplay that is chosen by their

program directors.  Our treatment of sponsored radio airplay as an AO will also yield a more conservative

estimate to the profitability of sponsored radio airplay.

Another point that we wish to make is that since sales follow an exponential model where airplay and

sales are expected to diminish through time, we can expect that the contribution of additional radio airplay will

also decrease through time.  Effectively this means that increased radio airplay in week 2 will be less effective than

in week 1.  To illustrate this effect in Figure 4 we plot the incremental sales that would accrue for 20 weeks if

airplay were increased by 2 million GRPs in the corresponding week, but only in that week.  In the previous
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Figure 5. Incremental album sales and profits from sponsored radio airplay at week 1.

discussion we found that increasing radio airplay in week one would result in 4,950 additional album sales.  If this

increased radio airplay was purchased in week 2, then there would expect only 4,050 additional album sales.  By

the 21st week the same 2 million GRPs would only generate an additional 70 album sales.  Although increased

radio airplay can retard the natural sales rate, it would be prohibitively expensive to attempt to totally overcome

it.

A final question that we consider is what is the optimal amount of radio airplay?  To answer this question

we compute the expected profits sales associated with 10 million through 200 million additional GRPs and plot

the results in Figure 5.   We translate increased album sales into profits by assuming that one million GRPs cost

$4,400 and the marginal profit from each album is $8 as before.  We find that greatest increase in profits is

associated with an additional 130,000 GRPs which we would expect to increase album sales by 136,700 units for

an increase in profits of $521,400.  We note that this represents more than a four-fold increase  over the 29,810
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units that Bonnie Raitt’s Longing in Their Hearts album actually received.  Again we remind the reader that these

projections occur out of range of our dataset, hence some caution needs to be exercised in determining whether

this dramatic an increase will change the behavior of the observed series.

5 Application to a Portfolio of Albums

To further illustrate these techniques we apply them to a set of thirteen albums released by Capitol

Records between 1993 and 1995.  These albums are listed in Table 1 along with some descriptive information.

The albums fall predominantly in the popular genre, but represent a fairly wide good sample of main-stream and

groups that appeal to narrow audiences.  Additionally, we have series for both new and existing artists.  Notice

the wide disparity in album sales in the launch week, which falls anywhere between a few hundred albums to a

couple hundred thousand, and radio airplay. 

Group Album Genre

Number of
previous
releases

Album
Release

Date

Sales in
Launch

Week

Airplay in
Launch

Week

1 Beastie Boys Ill Communication Rap 5 6/5/1994 220,052 5,795 

2 Richard Marx Paid Vacation Pop 4 2/13/1994 27,221 3,564 

3 Everclear Sparkle & Fade Pop 1 5/28/1995 2,061 4,349 

4 Bob Seger It's a Mystery Pop 10 10/29/1995 33,302 3,746 

5 Adam Ant Wonderful Pop 7 3/12/1995 6,640 4,188 

6 Blind Melon Soup Pop 1 8/20/1995 33,409 15,068 

7 Charles & Eddie Chocolate Milk R&B 1 9/03/1995 261 376 

8 Dink Dink Pop 0 11/20/1994 1,375 1,550 

9 John Hiatt Walk On Pop 14 10/29/1995 21,493 3,109 

10 Radiohead The Bends Pop 1 4/9/1995 5,250 1,710 

11 Bonnie Raitt Longing In Their Hearts Pop 12 3/27/1994 148,337 29,810 

12 Bonnie Raitt Road Tested Pop 13 11/12/1995 25,841 9,185 

13 Smoking Popes Born to Quit Pop 1 7/9/1995 3,107 4,003 

Table 1  Description of albums from Capitol Record in dataset.
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We apply the VARMA model with explanatory variables (VARMAX) specified in equation (5) to these

other twelve albums.  Usual time series identification techniques led to the specification of the VARMA(1,1)

model for all albums.  It is generally recognized that the ARMA(1,1) model is a good approximation to many

observed time series.  In other applications higher order models may be necessary, but residual diagnostics show

that the VARMA(1,1) in our dataset is satisfactory.  Table 2 displays the parameter estimates for these models.

Album c MMMM 1111 $$$$1 $$$$2 $$$$3 EEEE

Adam Ant:
Wonderful

-.62  
 .96  

.90     .15  

.23     .68  
-.00     -.00  
-.00     -.00  

.95 .90 -.39 .018   .005
.005   .018

Beastie Boys:
  Ill Communication

.41  

.69  
.93     .02  
.09     .80  

.00      .00  

.00      .01  
1.21 .73 -.63 .014   .000

.000   .031
Blind Melon:
  Soup

1.09  
-1.04  

.63     .23  

.33     .76  
.00      .00  

-.00     -.00  
0.61 1.21 .33 .020   .011

.011   .023
Charles & Eddie: 
Chocolate Milk

.64  
-.24  

.69     .20  

.17     .79  
.42     .30  
.77     .59  

-.05 .65 .13 .049   .025
.025   .137

Dink:
  Dink

.09  
-.73  

.96     .03  

.23     .83  
.22     .02  

-.40     .34  
.56 .44 -.04 .026   .005

.005   .926
Everclear:
  Sparkle & Fade

-.10  
.02  

.91     .11  
-.01   1.01  

.01    -.17  

.03    -.37  
.73 .59 -.21 .013   .002

.002   .024
John Hiatt:
  Walk On

.42  

.43  
.74     .23  
.11     .81  

.00    -.00  
-.00    -.01  

1.68 .72 -1.01 .012   .007
.007   .030

Richard Marx:
 Paid Vacation

.09  

.11  
1.00    -.02  

.10     .88  
.19    -.10  
.18     .58  

1.18 .60 -.46 .012   .005
.005   .063

Radiohead:
  The Bends

.69  
2.31  

.87     .06  
-.31   1.04  

-.00    -.05  
-.01    -.22  

1.13 .34 -.54 .011   .001
.001   .121

Bonnie Raitt:
  Longing In Their Hearts

-.08  
.21  

.92     .09  

.05     .92  
.04     .14  
.07     .27  

2.19 1.00 -1.51 .018   .000
.000   .010

Bonnie Raitt:
  Road Tested

1.53  
.28  

.75     .10  
-.08   1.04  

.01     .03  

.35     .98  
2.19 1.13 -1.36 .012   .004

.004   .039
Bob Seger:
  It's a Mystery

-.57  
.85  

.92     .15  

.01     .88  
.00    -.00  

-.00    -.00  
2.04 .91 -1.33 .015   .006

.006   .014
Smoking Popes:
  Born to Quit

2.36  
.48  

.14     .54  
-.15   1.06  

.09    .47  

.17    .87  
-.44 .16 1.21 .013   -.007

-.007   .312
Table 2.  Parameter estimates from VARMA(1,1) for all albums in the dataset.  Italicized figures denote estimates
than are not statistically different from zero at a .05 confidence level. $1, $2, and $3 denote parameters associated
with the Christmas week, Christmas build-up, and Christmas decay effects, respectively.

A cursory look at the results of Table 2 reveals that strong autoregressive relationships between sales

and airplay and their past values, but beyond that there is a great deal of diversity amongst the relationships

between sales and airplay.  Most albums show a dynamic feedback relationship between sales and airplay, i.e., the

models have significant parameter estimates in the off-diagonals of the M and 1 matrices.  Bonnie Raitt’s Longing

in Their Hearts is one example of an album with feedback effects that was discussed in the previous section.  All

but two albums (Beastie Boys’s Ill Communication and Richard Marx’s Paid Vacation) show airplay has a significant
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effect on subsequent sales.  Similarly, all but three albums show that sales can alter future airplay (Everclear’s

Sparkle & Fade, Bob Seger’s It’s a Mystery, and Smoking Popes’ Born to Quit).  However, the off-diagonal elements

of the M and 1 matrices represent lagged effects.  The correlation coefficient reveal contemporaneous

relationships between radio airplay and album sales.  Only three albums show significant contemporaneous

relationships (Adam Ant’s Wonderful, Blind Mellon’s Soup, and Richard Marx’s Paid Vacation).  It would appear

that for most albums radio airplay does not induce consumers to go directly to a retail store, but instead takes

at least a week before we can measure any impact.

A closer examination of the autoregressive parameters shows that in most cases, album sales and radio

airplay follow a common trend, i.e., the series are cointegrated.  Cointegration involves the question of whether

there are one or two trends in our bivariate process.  For example, do sales exhibit a diminishing trend because

airplay has a downward trend?  Or do airplay and sales each follow their own diffusion process which evolve

separately and independently.  A cointegrated relationship can be determined from the M and 1 parameters.  Past

research of cointegrated series has focused primarily upon vector autoregressive (VAR) models.  We can

determine whether the series of a VAR(1) model are cointegrated by testing whether the eigenvalues of the AR

matrix are one.  A recently developed procedure by Lutkepohl and Claessen (1997) for analysis of cointegrated

VARMA processes suggest inverting the MA component and approximating the model with a finite VAR model.

The largest eigenvalue from Adam Ant, Blind Melon, Dink, Everclear, Richard Marx, and both of

Bonnie Raitt’s albums are one, indicating cointegration.  The estimate the remaining eigenvalue from each of the

remaining series are all in the range of .94 to .96, which again results in behavior similar to cointegration.  The

remaining eigenvalue from each of these models are not statistically close to one, indicating that there is one

common trend, and not two separate trends for album sales and radio airplay.  Therefore a consistent finding

from these models is that the downward trend in  sales seems and airplay are influenced by a common underlying

factor, and diffusion models need to reflect the fact that the apparent diffusion of one series is not occurring

independently of the others diffusion process.

This analysis demonstrates that VARMA models have shown that they provide a flexible framework
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through which to model complex and dynamic relationships between multiples series without having to possess

any knowledge of the  relationships that may be observed beforehand.  In our dataset, the VARMA models

indicate dynamic relationships between sales and airplay are common, although the  intensity of these

relationships can vary a great deal.  As demonstrated with Bonnie Raitt’s Longing in Their Hearts album in §4 we

can use these models to answer the question: Should music labels pay for radio airplay?  Obviously, the answer

will differ for each type of relationship observed.  If airplay does not impact sales response, either lagged or

contemporaneously, it would be inefficient to allot resources to radio station promotions.

Album
2 million additional GRPs 2 million fewer GRPs
Expected
Sales Gain

Incremental
Profit

Expected Sales
Loss

Incremental
Profit

Adam Ant:  Wonderful 3,239    17,110   (4,530)   (45,042)   
Beastie Boys:  Ill Communication             5,055    31,639   (7,168)   (66,145)   
Blind Melon:  Soup 5,004    31,228   (5,393)   (51,945)   
Charles & Eddie:  Chocolate Milk           829    (2,172)   NA   NA   
Dink:  Dink 383    (5,734)   NA   NA   
Everclear:  Sparkle & Fade 2,834    13,870   (4,419)   (44,156)  
John Hiatt:  Walk On 11,533    83,467   (19,530)   (165,038)  
Richard Marx: Paid Vacation 949    (1,209)   (1,000)   16,800  
Radiohead:  The Bends 1,973    6,985   NA   NA  
Bonnie Raitt:  Longing In Their Hearts 4,946    30,766   (5,261)   (50,885)  
Bonnie Raitt:  Road Tested 2,976    15,012   (3,625)   (37,799)  
Bob Seger:  It's a Mystery 13,288    97,508   (14,383)   (123,861)  
Smoking Popes:  Born to Quit 753    (2,779)   (984)   (16,673)  
   Average 4,135    24,284   (6,629)   (61,834)  

Table 3.  Expected incremental gain in album sales over a 20 week period from an additional 2,000,000 GRPs
during the album’s launch week.  The three albums with results listed as not available (NA) have fewer than 2
million GRPs already allocated to them.

To quantify the sales impact of the current airplay schedule we compute the expected incremental album

sales over the next 20 weeks from an additional two million GRPs during the first week.  The results from these

incremental sales are given in Table 3.  We assume that the marginal income generated from selling an additional

album is $8 as in our analysis from §4 of Bonnie Raitt’s Longing in Their Hearts and the cost of the additional two

million GRPs is $8,800.  Notice that on average this would be a profitable proposition for this portfolio.  This

finding goes directly to answering the question: Should music labels pay for radio airplay?  If this sample portfolio
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is representative of the music label’s entire portfolio the answer is clearly yes.

Even though it is profitable to increase the radio airplay for the total portfolio, this does not mean that

it is profitable for every album.  In fact, for four out of thirteen of the albums it would not be profitable to buy

the additional radio airplay.  Clearly the more profitable proposition is to pay for radio airplay only for those

albums that would generate positive incremental income.  Moreover, given that radio airplay is in fixed supply

what is probably more relevant is to consider how to reallocate radio airplay across these albums.  For example,

an increase in the radio airplay of one album will require the decrease in the air time of another.  If we assume

that this is the complete set of albums competing for radio airplay and they were all released at the same time,

profitability can be increased by adding two million GRPs of additional airplay to John Hiatt and Bob Seger and

reducing it by two million for Richard Marx and Smoking Popes.  This would have the net effect of increasing

profits by $147,500.  Notice that the expected gains of increasing the other albums would not offset the expected

losses of the others.  Hence, not only is increased airplay important, but perhaps just as critical is control over

how airplay is allocated.

6 Conclusions

We can summarize the findings of our research with three basic findings:

1. We find that it could potentially be very profitable if music labels could pay to increase radio airplay.

For the thirteen albums studied in this paper we found that 2 million additional GRPs could increase the average

album by 4,135 units (see Table 3).  If each album has a gross profit margin of $8 and 2 million GRPs sell for

$8,800 then these incremental sales could increase profits by $315,700 (=$24,300 average profit per album x 13

albums), which would be a handsome return.  At the same time we understand that radio airplay is a limited

resource.  Increasing airplay for one album will necessarily decrease the airplay that is available for other albums.

Our results also indicate there is an asymmetric response to radio airplay.  A decrease in airplay of 2 million GRPs

could similarly reduce profits by $803,800 (=$61,800 average profit per album x 13 albums).  Perhaps a better

approach is to focus on reallocating radio airplay amongst the set of 13 albums, which would increase profits by
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$147,500.  The heterogeneity in sales response among music albums to radio airplay indicates that it is important

to select which albums should receive increased promotional effort in the form of higher radio airplay.   A related

question is how should these profits be allocated amongst the channel members, we have assumed that radio

stations would sell airtime at a price similar to commercial airtime.  However, there is no reason to expect that

this would be true.  Our results indicate that there is a potential channel coordination problem between music

labels and radio stations due to legal constraints over sponsored radio programming.

2. Methodologically we have shown how VARMA models can be used to answer the substantive question

of whether music labels should pay for radio airplay.  Although we have just focused upon a bivariate model,

VARMA models can easily be generalized to higher dimensions to include other variates such as word-of-mouth

or distribution measures. Using VARMA models we were able to differentiate autoregressive effects on sales

(airplay) from the effects of airplay on sales (and/or sales on airplay). VARMA methods also allow us to assess

the feedback relationships that have been posited.  We have found that most of the series in our sample exhibit

some sort of feedback relationship.  Across a portfolio of albums, there is significant heterogeneity among the

albums in terms of the dynamics between sales and airplay.  VARMA models are able to distinguish these

relationships from those with only a unidirectional causal relationship, i.e., either sales affects airplay or airplay

affects sales but not both.  In the feedback cases, both sales and airplay are autoregressive in nature and have a

significant impact on each other.  This interaction is overlooked by univariate analyses which do not recognize

and cannot allow for any feedback relationships.

The multivariate analysis also results in a different interpretation of the airplay impact on sales.  Any

univariate model with airplay affecting sales as an explanatory variable would only allow for a one period effect.

That is, radio support in a given week would boost sales for that week and have no lingering effects.  However,

a feedback model which simultaneously estimates a system of airplay and sales equations would let airplay have

an effect on sales that would perpetuate beyond just the one period, and likewise for sales.  The feedback model

would acknowledge a cyclical process in which additional radio support would increase sales which would

reinvigorate airplay in later periods.  This implies that one additional minute of radio exposure at time t would
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boost sales for that week, increasing airtime in the following weeks, and thereby impacting sales in those future

weeks as well.  The single decision to play a song one more time has sales effects that would linger beyond that

week.  This process is recognized by the feedback model but cannot be accommodated by any univariate analyses.

Our analysis in §4 and §5 demonstrates that radio airplay exposure adds value in terms of incremental sales.

From this analysis, music labels can quantify how much they should pay for radio airplay exposure.

3. Our modeling approach points out a limitation of multivariate diffusion models when those diffusion

processes share a common trend as apparently is the case with music albums.   The Fourt and Woodlock model

(Moe and Fader 2001) is quite susceptible to spurious regression problems.   Bass and Srinivasan (2002) have

also noted that some forms of the Bass model are quite susceptible to spurious regression when the covariates

are smoothly trending.  We have shown that the VARMA modeling approach can easily overcome this problem,

even when it is not known a priori whether there is a common trend or independent trends.  It also has the

advantage of avoiding overdifferencing to stabilize the process.  Furthermore, we have shown that under certain

circumstances the forecasts of our proposed VARMA model with logarithmic transformations and diffusion

models are the same.

There are also several limitations that are inherent in our study.  First, we make no claims that our sample

is representative of music albums.  Hence, a larger dataset is necessary to more definitely answer the question

of the value of radio airplay at an industry level.  Although our approach could be readily implemented.

Another caveat we offer about stochastically modeling radio airplay is that currently, radio airplay is not

under the control of music labels.  If music labels begin to purchase time on radio stations, radio airplay may

become deterministic instead of stochastic.  In that case, our present model of radio airplay may be substantially

altered and may no longer be valid.  The processes and the fundamental structure of the industry may change.

Currently, consumers value the gatekeeping role of radio stations and  may respond to the radio exposure of an

album.  If music labels begin to control radio content, consumers may not respond to radio exposure in the same

way.  Airplay becomes more similar to advertising, and consumers have learned to critically evaluate

advertisements as opposed to taking the message at face value.
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A further complicating issue related to the pay-for-play radio airplay is how will radio stations modify

their current radio airplay schedules.  If an advertiser begins to purchase radio airplay, will radio’s reduce the

amount of airtime that they give to the albums being played in the pay-for-play airtime slots?  This could seriously

diminish the effectiveness of the pay-for-play programming.  Again our dataset does not allow to answer these

questions, and these answers to these questions may not be known until pay-for-play is put into practice.  This

also points out the symbiotic relationship that has developed between radio stations and music labels.  Not only

do music labels benefit from the free exposure from radio airplay, but radio stations benefit from the promotions

that music labels spend upon their artists and the low royalty fees that radio stations are charged for playing

albums.  If pay-for-play begins to dominate airplay schedules, then music labels may substantially increase the

royalty fees that radio stations must play to air music, and the structure of the radio industry may be dramatically

altered.  Unfortunately these questions can only be addressed with experimental evidence.

A potential empirical limitation of our technique is that we have used all data points available when

estimating the relationship between radio airplay and music album sales.  Hence, our ability to assess which

albums would gain from additional airplay is post hoc.  Many music managers may wish to make pre-launch sales

forecasts (Lee, Boatwright, and Kamakura 2002, Moe and Fader 2002).  Both Lee et al. (2002) and Moe and

Fader (2002) recommend hierarchical Bayesian procedures to make prelaunch predictions about parameters.  We

agree that a hierarchical Bayesian or random coefficients framework would be beneficial.  Such an approach could

readily be applied to our model.  However, our small dataset limits our ability to adequately illustrate this

methodology.  For example, with 13 series the likelihood would be improper for the covariance matrix meaning

that any specification would be highly dependent upon the prior.

Not only is there a desire to predict the relationship between sales and airplay before the album launch,

but managers may also want to manipulate radio airplay early in the life of the album to better estimate the

relationship between sales and airplay.  For example, music labels may design a pulsing strategy for radio airplay

to induce artificial variation in the process.  This may increase the statistical information in the process and result

in more precise parameter estimates.  We believe experimentation may be an interesting area for future research.
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