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Optimizing Bank Overdraft Fees with Big Data 
 

Abstract 

In 2012, consumers paid $32 billion in overdraft fees, representing the single largest source of revenue for 

banks from demand deposit accounts during this period. Owing to consumer attrition caused by overdraft 

fees and potential government regulations to reform these fees, financial institutions have become motivated 

to investigate their overdraft fee structures. Banks need to balance the revenue generated from overdraft fees 

with consumer dissatisfaction and potential churn caused by these fees. However, no empirical research has 

been conducted to explain consumer responses to overdraft fees or to evaluate alternative pricing and 

product strategies associated with these fees. In this research, we propose a dynamic structural model with 

consumer monitoring costs and dissatisfaction associated with overdraft fees. We find that consumers heavily 

discount the future and potentially overdraw because of impulsive spending. However, we also find that high 

monitoring costs hinder consumers’ effort to track their balance accurately; consequently, consumers may 

overdraw because of rational inattention. We apply the model to an enterprise-level dataset of more than 

500,000 accounts with a history of 450 days, providing a total of 200 million transactions. This large dataset is 

necessary because of the infrequent nature of overdrafts; however, it also engenders computational challenges, 

which we address by using parallel computing techniques. Our policy simulations show that alternative 

pricing strategies may increase bank revenue and improve consumer welfare. 

 

Keywords: Banking, Overdraft Fees, Dynamic Programming, Big Data. 
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1 Introduction 

An overdraft occurs when a consumer spends or withdraws an amount of funds from his or her 

checking account that exceeds the account’s available funds. US banks allow consumers to overdraw their 

account (subject to some restrictions at the bank’s discretion) but charge an overdraft fee. Overdraft fees 

have been a major source of bank revenue since the early 1980s1, when banks started to offer free checking 

accounts to attract consumers. According to Moebs Services, the total amount of overdraft fees in the US 

reached $32 billion in 2012. This is equivalent to an average of $178 for each checking account annually2. 

According to the Center for Responsible Lending, US households spent more on overdraft fees than on fresh 

vegetables, postage or books in 20103. 

Overdraft fees have provoked a storm of consumer outrage and can induce many consumers who 

experience these fees to close their account4. The US government has taken actions to regulate overdraft fees 

through the Consumer Financial Protection Agency5, and it may take more drastic steps in the future6. From 

the banks’ perspective, consumer defaults on overdrafted accounts can result in billions in charge offs. 

Therefore, there are pressures throughout the industry for banks to reexamine their overdraft fee practices. 

From a strategic perspective, banks need to be able to find alternative sources of revenue to be able to 

profitably provide basic financial services such as checking accounts instead of being highly reliant on 

unpopular overdraft fees. 

A potential solution for both consumers and banks is to leverage financial transaction data to manage 

overdrafting and offer new services using these financial transaction data. Financial institutions store massive 

                                                      
1  Topper, S. The History and Evolution of the Free Checking Account. [Web log comment]. Retrieved from 
http://freecheckinginformation.com/financial-writers/the-history-and-evolution-of-the-free-checking-account/ 
2 According to Evans, Litan, and Schmalensee (2011), there are 180 million checking accounts in the US. 
3  Burns, R. (2010). Managing Credit: 3 Ways Overdraft Fees Will Still Haunt You. Retrieved from 
http://www.blackenterprise.com/money/managing-credit-3-ways-overdraft-fees-will-still-haunt-you/ 
4 Examples can be found at http://consumersunion.org/2013/06/rep-carolyn-maloney-pursues-consumer-protections-
on-overdraft-fees/ and http://america.aljazeera.com/watch/shows/real-money-with-alivelshi/Real-Money-
Blog/2014/1/21/overdraft-fee-abuse.html. 
5 Consumers and Congress Tackle Big Bank Fees. Retrieved from http://banking-law.lawyers.com/consumer-banking/consumers-
and-congress-tackle-big-bank-fees.html 
6  Consumer Financial Protection Bureau. (2013). CFPB Study of Overdraft Programs. Retrieved from 
http://files.consumerfinance.gov/f/201306_cfpb_whitepaper_overdraft-practices.pdf 
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amounts of information about consumers, commonly referred to as Big Data, as a byproduct of their 

transactions. In this research, we show how this information can be harnessed with structural economic 

theories to predict consumers’ overdrafting behavior. The large-scale of our financial transaction panel data 

allows us to detect rare events of overdrafts, identify rich consumer heterogeneity and minimize sampling bias 

to avoid potential financial losses. Consequently, we propose personalized strategies that can increase both 

consumer welfare and bank revenue. Our goal is to show that the knowledge about consumers contained 

within their financial transaction data can form the basis for improving customer welfare and increasing 

profitability for the bank by tapping into this underutilized resource for marketing purposes. 

In this paper, we have two substantive goals. First, we wish to show how financial institutions can 

leverage the rich data on consumer spending and balance checking to understand the decision process 

underlying consumers’ overdrafting behavior. We address the following research questions: Why do 

consumers overdraw? How do consumers react to overdraft fees? Second, we investigate alternative pricing 

strategies that optimize overdraft fees. Specifically, we tackle the following questions: Is the current overdraft 

fee structure optimal? How will bank revenue and consumer welfare change under alternative pricing 

strategies? 

In answering these questions, we make two key methodological contributions. First, we construct a 

dynamic structural model that incorporates inattention and dissatisfaction into the life-time consumption 

model. Structural models have the merit of producing policy-invariant parameters that allow us to conduct 

counterfactual analyses. However, the inherent computational burden prevents them from being widely 

adopted by the industry.  This leads to our second key contribution, whereby we show how to estimate a 

structural model applied to Big Data with the help of parallel computing techniques. Our proposed algorithm 

takes advantage of state-of-the-art parallel computing techniques and estimation methods to lessen the 

computational burden and reduce the curse of dimensionality to the point where near-real-time results are 

possible.  We estimate our dynamic structural model using anonymized data from a large US bank. The data 

include over 500,000 accounts with a history of up to 450 days, amounting to 200 million relevant 

observations.  This enterprise-level dataset is much larger than those reported in other research studies.  
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Substantively, we find that some consumers are inattentive in monitoring their balance because of the 

associated high monitoring costs. In contrast, attentive consumers primarily overdraw because they heavily 

discount future utilities and are subject to impulsive spending. Consumers who are dissatisfied may then leave 

their bank after being charged high overdraft fees. In our counterfactual analysis, we show that a percentage 

fee or a quantity premium fee strategy can achieve higher bank revenue than the current flat per-transaction 

fee strategy. Consumers also benefit from the lowered overdraft fees by improving their capabilities to 

smooth out consumption over time and save monitoring costs. 

The rest of the paper is organized as follows. In §2, we review related research. We report an 

exploratory data analysis in §3 to motivate our model setup. §4 describes our structural model.  Details about 

the identification and estimation procedures are given in §5. §6 and §7 discuss our estimation results and 

counterfactual analysis.  §8 concludes with a discussion of our findings and the limitations of our research. 

2 Literature Review 

An economic approach to explaining overdrafting would assume that consumers are rational and 

forward-looking with an objective to maximize their total discounted utility by making optimal choices 

(Modigliani and Brumberg 1954, Hall 1978).  Consistent with the rational argument for overdrafting is that 

consumers heavily discount the future and are willing to pay future overdraft fees in to allow consumption 

today.  While we are sympathetic to full-information rational models of consumer behavior, we do not want 

to overlook potential behavioral explanations of overdrafting behavior.  Specifically, we consider two novel 

arguments that offer behavioral explanations concerning overdrafting: inattention and dissatisfaction. 

 The inattention argument is present in a large body of literature in psychology and economics, which 

has found that consumers pay limited attention to relevant information. In their review paper, DellaVigna 

(2009) summarize findings indicating that consumers pay limited attention to 1) shipping costs, 2) tax (Chetty 

et. al. 2009) and 3) rankings (Pope 2009). Gabaix and Laibson (2006) find that consumers do not pay enough 

attention to add-on pricing, and Grubb (2014) shows that consumers are inattentive to their cell-phone 

minute balances. Many papers in finance and accounting have documented that investors and financial 
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analysts are inattentive to various types of financial information (e.g., Hirshleifer and Teoh 2003, Peng and 

Xiong 2006). 

 Stango and Zinman (2014) consider limited attention as an explanation of overdrafting. They define 

inattention as incomplete consideration of account balances (realized balance and available balance net of 

upcoming bills) that would inform choices. Although Stango and Zinman (2014) use a dataset similar to ours, 

their aim is to show that reminding participants about overdraft fees can reduce the likelihood of overdrafts. 

We adopt this definition of inattention, but we introduce inattention through a structural parameter, the 

monitoring cost (Reis 2006), which represents the time and effort required for a consumer to know the exact 

amount of money in his or her checking account. 

A second behavioral argument related to overdrafting is that it may cause consumer dissatisfaction. 

The implied interest rate for an overdraft originated by a small transaction amount implies usurious rates that 

are much higher than the socially accepted interest rate (Matzler, Wurtele and Renzl 2006), leading to price 

dissatisfaction. This is because under current banking practices, consumers pay flat per-transaction fees 

regardless of the transaction amount. Overdrafting fees may cause consumer dissatisfaction, which is one of 

the main causes of customer switching behavior (Keaveney 1995, Bolton 1998). We conjecture that 

consumers are likely to close their account after they pay an overdraft fee and/or if the ratio of the overdraft 

fee to the overdraft transaction amount is high.  Before posing a formal economic model, we begin with the 

data and an exploratory data analysis to validate whether there is evidence for high discounting, inattention 

and dissatisfaction. 

3 Data 

We obtain anonymized data from a large US bank.  Our data comprise bank transaction data for a 

sample of more than 500,000 accounts7 with more than 200 million transactions over a fifteen-month period 

(June 2012 to Aug 2013).  These data are a by-product of consumers’ financial transactions.  For each 

                                                      
7 For the sake of confidentiality, we cannot disclose the exact number, but it is a representative sample from the banks’ customers and 
is within the range of 500,000 to 1,000,000 accounts. 
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transaction, we know the account number, associated customer information, date, channel, amount, and type. 

Table 1 provides a simulated example of the raw information for a consumer.  In this example, the consumer 

makes an ATM withdrawal and starts with a positive balance.  On the next day, a check is paid by the bank 

even though the consumer has insufficient funds, which triggers an overdraft and the corresponding fee.  A 

direct deposit from salary income is received, which brings the consumer’s balance to a positive amount.  

Subsequently, the consumer does a balance check and makes a purchase at the supermarket on the next day. 

The description in this example is given for illustrative purposes and is not provided in our dataset.  Each 

transaction is classified into one of five categories: bills, fees assessed by the bank, income (from deposits and 

transfers), spending, and balance inquiries. 

Date Description Channel Type +/- Amount Balance

11/14/12 ATM withdrawal ATM Spending - $80.00 $63.15

11/15/12 Check cashed for electric payment ACH Bill - $130.41 -$67.26

11/15/12 Overdraft item fee Fee - $31.00 -$98.26

11/16/12 Salary from direct deposit ACH Income + $287.42 $189.16

11/17/12 Check balance ATM Balance Inquiry o  $189.16

11/17/12 Debit card purchase at supermarket Debit Spending - $97.84 $91.32

Table 1. Example of Simulated Transaction Data for an Individual. 

The bank in the dataset provides a comprehensive set of services for consumers to avoid overdrafts, 

such as automatic transfers, but despite these offerings, a significant number of consumers still overdraw. 

(For a good review of general overdraft practices in the US, refer to Stango and Zinman (2014).  Appendix 

A1 tabulates the current fee settings of the top US banks.) If a consumer overdraws his or her account with 

the standard overdraft service, then the bank might cover the transaction and charge a $318 Overdraft Fee 

(OD) or decline the transaction and charge a $31 Non-Sufficient-Fund Fee (NSF). The bank can accept or 

decline the transaction at its discretion. The OD/NSF is applied at a per-item level: if a consumer performs 

several transactions when his or her account is already overdrawn, each transaction item will incur a fee of 

$31. However, within a day, a maximum of four per-item fees can be charged. If the account remains 

                                                      
8 All dollar values in the paper have been rescaled by a number between .85 and 1.15 to help obfuscate the exact amounts and 
preserve the anonymity of the customers, but this factor does not change the substantive implications. Using our rescaled values the 
bank sets the first-time overdraft fee for each consumer at $22, and all subsequent overdraft fees are set at $31. 
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overdrawn for five or more consecutive calendar days, a Continuous Overdraft Fee of $6 is assessed up to a 

maximum of $84. The bank also provides an Overdraft Protection Service where a checking account can be 

linked to another checking account, a credit card or a line of credit. In this case, when the focal account is 

overdrawn, funds can be transferred to cover the negative balance. The Overdraft Transfer Balance Fee is $9 

for each transfer. In summary, the overdraft fee structure for the bank, as for most others, is quite 

complicated. In our empirical analysis, we do not distinguish among different types of overdraft fees, and we 

assume that consumers care only about the total amount of overdraft fees rather than the underlying pricing 

structure. 

The bank also provides balance checking services through its branches, automated teller machines 

(ATMs), call centers and online/mobile banking service. Consumers can inquire about their available balances 

and recent activities. There is also a notification service, so-called “alerts”, that notifies consumers via emails 

or text messages when certain events take place, such as overdrafts, incidents of insufficient funds, transfers, 

and deposits. Unfortunately, our dataset includes only balance checking data, not alert data. We discuss this 

limitation in §8. 

In 2009, the Federal Reserve Board made an amendment to Regulation E (subsequently recodified by 

the Consumer Financial Protection Bureau (CFPB)), which requires account holders to provide affirmative 

consent (opt-in) for overdraft coverage of ATM and nonrecurring point-of-sale (POS) debit card transactions 

before banks can charge consumers for paying such transactions9. Regulation E was intended to protect 

consumers from heavy overdraft fees. The change became effective for new accounts on July 1, 2010, and for 

existing accounts on August 15, 2010. Our data contain both opt-in and opt-out accounts. However, we do 

not know which accounts have opted-in unless we observe an ATM/POS-initiated overdraft incident. We 

discuss this data limitation in §8. 

                                                      
9  Electronic Fund Transfer Act. Retrieved from http://www.federalreserve.gov/bankinforeg/caletters/Attachment_CA_13-
17_Reg_E_Examination_Procedures.pdf  
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3.1 Descriptive Statistics 

In our dataset, overdraft fees accounted for 47% of the revenue from deposit account service 

charges and 9.8% of the operating revenue. In all, 15.8% of accounts had at least one overdraft incident. The 

proportion of accounts with overdrafts is lower than the 27% (across all banks and credit unions) reported by 

the CFPB in 201210.  Table 2 shows that consumers who paid overdraft fees overdrew nearly 10 times and 

paid $245 on average during the 15-month sample period. This is consistent with the finding from the CFPB 

that the average overdraft- and NSF-related fees paid by all accounts with one or more overdraft transactions 

in 2011 totaled $225 11 . There is significant heterogeneity in consumers’ overdraft frequency, and the 

distribution of overdraft frequency is quite skewed. The median overdraft frequency is three, and more than 

25% of consumers overdrew only once. In contrast, the top 0.15% of the heaviest overdrafters overdrew 

more than 100 times. A similar skewed pattern is observed for the distribution of overdraft fees. While the 

median overdraft fee is $77, the top 0.15% of heaviest overdrafters paid more than $2,730 in fees. 

The majority of overdrafters have overdrawn less than 40 times. The first panel in Figure 1 depicts 

the distribution of the overdraft frequency and fees conditional upon the accountholder overdrafting at least 

once during the sample period. Notice that most consumers (> 50%) overdraft only once or twice. The 

second panel shows the distribution censored at $300 for the overdraft fees paid for each accountholder who 

has overdrawn. Consistent with the fee structure where the standard per-item overdraft fee is $22 or $31, we 

see spikes at these two numbers and their multiples. 

 Mean Std Dev Median Min 99.85 Percentile 

OD Frequency 9.84 18.74 3 1 >100 

OD Amount $245.46 $523.04 $77 $10 >$2,730 

Table 2. Overdraft Frequency and Fee distribution for Consumers Who Overdraft. 
 

                                                      
10  Consumer Financial Protection Bureau. (2013). CFPB Study of Overdraft Programs. Retrieved from 
http://files.consumerfinance.gov/f/201306_cfpb_whitepaper_overdraft-practices.pdf 
11 See the citation from footnote 9. 
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Figure 1. Overdraft Frequency and Fee Distribution. 

 

To better understand what types of transactions trigger an overdraft, we construct a table of the 

transaction channel that triggers overdrafts. We find (in Table 3) that nearly 50% of overdrafts are caused by 

debit card purchases with mean transaction amounts of approximately $30. On the other hand, ACH 

(Automated Clearing House) and Check transactions account for 13.77% and 11.68% of overdraft incidents, 

and these transactions are generally for larger amounts, $294.57 and $417.78, respectively. ATM withdrawals 

lead to another 3.51% of the overdraft transactions, with an average amount of approximately $90. 
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Type  Frequency Percentage Amount 

Debit Card Purchase 946,049 48.65% $29.50 

ACH Transaction 267,854 13.77% $294.57 

Check 227,128 11.68% $417.78 

ATM Withdrawal 68,328 3.51% $89.77 

Table 3. Types of Transactions That Cause Overdraft 
 

3.2 Exploratory Data Analysis 

This section presents some patterns in the data that suggest the causes and effects of overdrafts. We 

show that heavy discounting and inattention may drive consumers’ overdrafting behavior and that consumers 

are dissatisfied because of overdraft fees. The model-free evidence also highlights the variation in the data 

that will allow for the identification of the discount factor, monitoring cost and dissatisfaction sensitivity.  

3.2.1 Heavy Discounting 

First, we conjecture that a consumer may overdraw because of a much greater preference for current 

consumption than future consumption, i.e., the consumer heavily discounts future consumption utility. At the 

point of sale, such a consumer sharply discounts the future cost of the overdraft fee to satisfy his or her 

immediate gratification 12 . In such a case, we should observe a steep downward sloping trend in the 

consumer’s spending pattern within a pay period. That is, the consumer will increase spending right after he 

or she receives a pay check and will then reduce spending over the course of the month. However, because of 

his or her overspending at the beginning of the month, the consumer will run out of funds at the end of the 

pay period and have to overdraw. 

We test this hypothesis with the following model of spending for consumer ݅ at time ݐ: 

௜௧݃݊݅݀݊݁݌ܵ ൌ ߚ ∗ ௜௧݁݉݋ܿ݊ܫݎ݁ݐ݂ܣ݁݉݅ܶ݀݁ݏ݌ܽܮ ൅ ௜ߤ ൅ ௧ݒ ൅ ߳௜௧ 

                                                      
12 We also considered hyperbolic discounting with two discount factors, a short-term present bias parameter and a long-term discount 
factor. With more than three periods of data within a pay period, hyperbolic discount factors can be identified (Fang and Silverman 
2009). However, our estimation results show that the present bias parameter is not significantly different from 1. Therefore, we keep 
only one discount factor in the current model. Estimation results with hyperbolic discount factors are available upon request. 
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where ݁݉݋ܿ݊ܫݎ݁ݐ݂ܣ݁݉݅ܶ݀݁ݏ݌ܽܮ௜௧ is the number of days after the consumer received income (salary), ߤ௜ is 

the individual fixed effect and ݒ௧  is the time (day) fixed effect. To control for the effect that consumers 

usually pay for their bills (utilities, phone bills, credit card bills, etc.) after receiving their paycheck, we exclude 

checks and ACH transactions, which are the common choices for bill payments from daily spending and keep 

only debit card purchases, ATM withdrawals and person-to-person transfers.  

We run this OLS regression separately for heavy overdrafters (whose overdraft frequencies are in the 

top 20 percentile of all overdrafters), light overdrafters (whose overdraft frequencies are not in the top 20 

percentile) and non-overdrafters (who do not overdraw during the 15-month sample period)13. The results are 

reported in columns (1), (2) and (3) of Table 4. 

 (1) (2) (3)

 
Heavy 

Overdrafters
Light 

Overdrafters
Non- 

Overdrafters
Lapsed Time after Income (ࢼ) -6.8374*** -0.07815 -0.02195
 (0.06923) (0.06540) (0.02328)
Fixed Effect Yes Yes Yes
Number of Observations 17,810,276 53,845,039 242,598,851
R2 0.207 0.275 0.280
Note: *p<0.01;**p<0.001;***p<0.0001 

Table 4. Spending Decreases with Time in a Pay Cycle 
 

We find that the coefficient of ݁݉݋ܿ݊ܫݎ݁ݐ݂ܣ݁݉݅ܶ݀݁ݏ݌ܽܮ௜௧ is negative and significant for heavy 

overdrafters but not light overdrafters or non-overdrafters. This suggests that heavy overdrafters have a steep 

downward sloping spending pattern during a pay period, while light overdrafters or non-overdrafters have a 

relatively stable spending stream. The heavy overdrafters are likely to overdraw because of their heavy 

discounting of future consumption. 

3.2.2 Inattention 

Next, we consider why light overdrafters may overdraft due to inattention. The idea is that 

consumers might not always monitor their account balance and may be uncertain about the exact balance 

                                                      
13 We separate the analyses for heavy/light/non-overdrafters because each segment shows distinct behavioral patterns. 
The segment is defined by the number of overdraft occurrences in the sample period. It is also interesting to investigate 
the demographic variables that characterize these three segments of consumers. The results are presented in Appendix 
A5. 
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amount. Sometimes, the perceived balance can be higher than the true balance, and this might cause an 

overdraft. We first present a representative example of consumer inattention. The example is based on our 

data, but to protect the privacy of the consumer and the merchants, the amounts have been changed. 

However, the example remains representative of the underlying data. 

 
Figure 2. Overdraft due to a Balance Perception Error 
 

As shown in Figure 2, the consumer first received his or her bi-weekly salary on August 17th. After a 

series of expenses, the consumer is left with $21.16 on August 20th. The consumer did not check his or her 

balance but continued spending and overdrew the account for several small purchases, including a $25 

restaurant bill, a $17.12 beauty purchase, a $6.31 game and a $4.95 coffee purchase. These four transactions 

totaled only $53.38 but caused the consumer to pay four overdraft item fees for total fees of $124. We 

speculate that this consumer was careless in monitoring his or her account and overestimated his or her 

balance. 
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Beyond this example, we find more evidence of inattention in the data. To start off, Table 3 suggests 

that debit card purchases cause the most overdraft incidences, perhaps because it is more difficult to check 

balances when using a debit card than using an ATM or ACH.   

Moreover, intuitively, as direct support of our hypothesis regarding inattention, the less frequently a 

consumer checks his or her balance, the more overdraft fees the consumer will likely incur. To test this 

hypothesis, we estimate the following specification: 

௜௧ݐ݉ܲܦܱݐ݋ܶ ൌ ଴ߚ ൅ ௜௧ݍ݁ݎܨܥܤଵߚ ൅ ௜ߤ ൅ ௧ݒ ൅ ߳௜௧ 

where ܶݐ݉ܲܦܱݐ݋௜௧  is the total overdraft payment and ݍ݁ݎܨܥܤ௜௧  is the balance checking frequency for 

consumer ݅ at time ݐ (month). 

We estimate this model on light overdrafters (whose overdraft frequency is not in the top 20 

percentile) and heavy overdrafters (whose overdraft frequency is in the top 20 percentile) separately and 

report the result in columns (1) and (2) in Table 5. 

 (1) (2) (3)

 
Light 

Overdrafters
Heavy 

Overdrafters 
All 

Overdrafters
Balance Checking Frequency (ࢼ ,ࢗࢋ࢘ࡲ࡯࡮૚ ) -0.5001*** -0.1389  -0.6823***
 0.0391 0.0894  0.0882 
Overdraft Frequency (ࢼ ,ࢗࢋ࢘ࡲࡰࡻ૛ )  16.0294*** 
  0.2819 
ࢗࢋ࢘ࡲ࡯࡮ ∗ ***0.278136  ( ૜ࢼ) ࢗࢋ࢘ࡲࡰࡻ	
  0.0607
Number of Observations 1,794,835 593,676 2,388,511
 ૛  0.1417 0.1563 0.6742ࡾ
Note: Fixed effects at the individual and day level; robust standard errors clustered at the individual level. 
*p<0.01;**p<0.001;***p<0.0001  

Table 5. Frequent Balance Checking Reduces Overdrafts for Light Overdrafters 
 

The result suggests that a higher frequency of balance checking decreases the overdraft payment for 

light overdrafters but not for heavy overdrafters. We further test this effect by including the overdraft 

frequency (ܱݍ݁ݎܨܦ௜௧ ) and an interaction term for balance checking frequency and overdraft frequency 

௜௧ݍ݁ݎܨܥܤ ∗  ௜௧ in the equation below. The idea is that if the coefficient for this interaction term isݍ݁ݎܨܦܱ	

positive while the coefficient for balance checking frequency (ݍ݁ݎܨܥܤ௜௧) is negative, then it implies that a 
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high frequency of balance checking decreases overdraft fees only for consumers who overdraw infrequently, 

not for those who overdraw frequently. 

௜௧ݐ݉ܲܦܱݐ݋ܶ ൌ ଴ߚ ൅ ௜௧ݍ݁ݎܨܥܤଵߚ ൅ ௜ݍ݁ݎܨܦଶܱߚ ൅ ௜௧ݍ݁ݎܨܥܤଷߚ ∗ ௜ݍ݁ݎܨܦܱ	 ൅ ௧ݒ ൅ ߳௜௧	

The results in column (3) of Table 5 confirm our hypothesis14.  

Interestingly, we find that consumers’ balance perception error accumulates over time in the sense 

that the greater the time elapsed without checking their balance, the more likely they are to overdraw and 

consequently pay higher amounts in overdraft fees. Figure 3 below exhibits the overdraft probability across 

the number of days elapsed since the last time a consumer checked his or her balance for light overdrafters 

(whose overdraft frequency is not in the top 20 percentile). As the figure shows, the overdraft probability 

increases moderately with the number of days elapsed since the last balance check. 

 
Figure 3. Overdraft Likelihood Increases with Time Elapsed Since the Last Balance Check 
 

We confirm this relationship with the following two specifications. We assume that the overdraft 

incidence ܫሺܱܦሻ௜௧  (where ܫሺܱܦሻ௜௧ ൌ 1  denotes overdraft and ܫሺܱܦሻ௜௧ ൌ 0  denotes no overdraft) and 

overdraft fee payment amount ܱ݁݁ܨܦ௜௧ for consumer ݅ at time ݐ can be modeled as: 

ሻ௜௧ܦሺܱܫ ൌ Φሺߩ଴ ൅ ௜௧݄݇ܿ݁ܥ݈݁ܿ݊ܽܽܤݐݏܽܮ݁ܿ݊݅ܵݏݕܽܦଵߩ ൅ ௜௧݈ܽܤ݊݅݃݁ܤଶߩ ൅ ௜ߤ ൅ 	௧ሻݒ

                                                      
14 We also find that light overdrafters are more likely to check balances after overdraft fees are charged than 
heavy overdrafters. This also provides evidence for inattention. Furthermore, we find that light overdrafters 
fail to learn from past experiences. Specifically, we find a positive correlation between the time elapsed since 
overdraft and the time gap between two balance checking times. This suggests that immediately after 
overdrafting, consumers might start monitoring their checking accounts. As time goes by, however, they 
become inattentive again. 
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௜௧݁݁ܨܦܱ ൌ ଴ߩ ൅ ௜௧݄݇ܿ݁ܥ݈݁ܿ݊ܽܽܤݐݏܽܮ݁ܿ݊݅ܵݏݕܽܦଵߩ ൅ ௜௧݈ܽܤ݊݅݃݁ܤଶߩ ൅ ௜ߤ ൅ ௧ݒ ൅ ߳௜௧		

where Φ  is the cumulative distribution function for a standard normal distribution. The term 

 ௜௧ denotes the number of days that consumer ݅ has not checked his or her݄݇ܿ݁ܥ݈݁ܿ݊ܽܽܤݐݏܽܮ݁ܿ݊݅ܵݏݕܽܦ

balance until time ݐ and ݈ܽܤ݊݅݃݁ܤ௜௧ is the beginning balance at time ݐ. We control for the beginning balance 

because it may be negatively correlated with the days elapsed since last balance check because consumers tend 

to check their balance when it is low, and a lower balance often leads to an overdraft. Table 6 reports the 

estimation results, which support our hypothesis that the greater the time elapsed after a balance check, the 

more likely the consumer is to overdraw and incur higher overdraft fees. 

 I (OD) ODFee
Days Since Last Balance Check (࣋૚) 0.0415*** 0.0003***
 (0.0027) (0.0001)
Beginning Balance (࣋૛) -0.7265*** -0.0439***
 (0.0066) (0.0038)
Individual Fixed Effect Yes Yes
Time Fixed Effect Yes Yes
Number of Observations 53,845,039 53,845,039
R2 0.5971 0.6448
Note: The estimation sample includes only overdrafters. Marginal effects for the Probit model; Fixed effects at the 
individual and day level; robust standard errors clustered at the individual level.*p<0.01;**p<0.001;***p<0.0001. 

Table 6. Reduced-Form Evidence of the Existence of Monitoring Costs 
 

If balance checking can help prevent overdrafts, why do consumers not check their balance more 

frequently and avoid overdraft fees? We argue that monitoring their account balance is costly in terms of time, 

effort and mental resources, which reduces the number of balance checks. We expect that if there were a way 

for consumers to save their time, effort or mental resources, then they would check their balance more 

frequently. We find support for this expectation with consumers who use online banking. Specifically, for 

consumer ݅, we estimate the following specification: 

௜ݍ݁ݎܨ݈ܽܤ݄݇ܿ݁ܥ ൌ ଴ߚ ൅	ߚଵܱ݈݊݅݊݁݃݊݅݇݊ܽܤ௜ ൅ ௜݁݉݋ܿ݊ܫݓ݋ܮଶߚ ൅ ௜݁݃ܣଷߚ ൅ ߳௜		

where ݍ݁ݎܨ݈ܽܤ݄݇ܿ݁ܥ௜ is the balance checking frequency, ܱ݈݊݅݊݁݃݊݅݇݊ܽܤ௜ is online banking ownership (1 

denotes that the consumer has online banking, while 0 denotes otherwise), ݁݉݋ܿ݊ܫݓ݋ܮ௜  is whether the 

consumer belongs to the low-income group (1 denotes yes and 0 denotes no), and ݁݃ܣ௜ is age (in years). 

Table 7 shows that after controlling for income and age, consumers with online banking accounts check their 
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balance more frequently than those without online banking accounts, which suggests that monitoring costs 

exist and that consumers monitor their account more frequently when these costs are reduced. 

Dependent variable  Check Balance Frequency
Online Banking (ࢼ૚) 58.4245***
 0.5709
Low Income (ࢼ૛) 3.3812***
 0.4178
Age (ࢼ૜) 0.6474***
 0.0899
Number of Observations 602,481
R2 0.6448
*p<0.01;**p<0.001;***p<0.0001. 

Table 7. Reduced-Form Evidence of Existence of Monitoring Cost 

3.2.3 Dissatisfaction 

We find that overdrafts might cause consumers to close their account (Table 8). Among non-

overdrafters, 7.87% closed their account during the sample period. This ratio is much higher for overdrafters. 

Specifically, 23.36% of heavy overdrafters (whose overdraft frequency is in the top 20 percentile) closed their 

account, while 10.56% of light overdrafters (whose overdraft frequency is not in the top 20 percentile) closed 

their account. 

Total %  Closed
Heavy Overdrafters 23.36%
Light Overdrafters 10.56%
Non-Overdrafters 7.87%

Table 8. Account Closure Frequency for Overdrafters vs Non-Overdrafters 
 

From the description field associated with each account, we can distinguish the cause of account 

closure: forced closure by the bank because the consumer is unable or unwilling to pay back the overdrawn 

balance and fees (in which case the bank executes a charge-off) versus voluntary closure. Among heavy 

overdrafters, 13.66% closed their account voluntarily, and the remaining 86.34% were forced by the bank to 

close their account (Table 9). In contrast, 47.42% of the light overdrafters closed their account voluntarily. 

We conjecture that the higher voluntary closures among light overdrafters may be due to customer 

dissatisfaction with the bank, as the evidence below shows. 
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Overdraft Forced 

Closure
Overdraft Voluntary 

Closure
No Overdraft

Voluntary Closure
Heavy Overdrafters 86.34% 13.66% -
Light Overdrafters 52.58% 47.42% -
Non-Overdrafters - - 100.00%

Table 9. Closure Reasons15 
 

 
Figure 4. Days to Closure After Last Overdraft 
 

First, we find that overdrafters who voluntarily closed their account were very likely to close soon 

after the last overdraft. In Figure 4, we plot the histogram of the number of days it took the account to close 

after the last overdraft incident. As the figure shows, more than 60% of accounts closed within 30 days after 

the last overdraft incident. 

 
Figure 5. Percentage of Accounts Closed Increases with Fee/Transaction Amount Ratio 
 

Second, light overdrafters are also more likely to close their account when the ratio of the overdraft 

fee to the transaction amount that caused the overdraft fee is higher. In other words, the higher the ratio of 
                                                      
15 Non-overdrafters might voluntarily close for reasons such as dwelling location change and account consolidation. Due 
to a lack of data, we cannot explain why non-overdrafters are more likely to voluntarily close than light overdrafters. 
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the overdraft amount, the more likely a consumer will be to close his or her account. We show this pattern in 

the left panel of Figure 5. However, this effect does not seem to be present for heavy overdrafters (right 

panel of Figure 5). 

4 Model 

Our exploratory data analysis indicates that heavy discounting and inattention can help explain 

consumers’ overdrafting behavior and that consumers’ dissatisfaction due to overdraft fees contributes to 

their attrition. Ultimately, our goal is to predict the overdraft incidence for each consumer on a daily basis. To 

do so, we develop a structural model that incorporates discounting, inattention and dissatisfaction. This is a 

dynamic model in which consumers make daily decisions about how to spend their funds, whether to check 

their balance, and whether to close their account. We assume that consumers are rational and forward 

looking16, with an objective to maximize their total discounted utility by making optimal choices. As by-

products of this model, we make a prediction about the likelihood of an overdraft on any given day for each 

consumer as well as the consumer’s tenure and profitability with the bank. 

The timing of the events for our model is illustrated in Figure 6. On each day for every consumer, 

the model has seven steps. First, the consumer receives income (if any). Second, the consumer’s bills arrive (if 

any). Third, the consumer decides whether to check his or her balance. If the consumer inquiries about his or 

her balance, then the beginning balance and bills for the day are known with complete certainty; otherwise, 

the consumer forms an estimate of both the beginning balance and the bill amount. Fourth, the consumer 

makes discretionary spending decisions and spends or consumes this amount. At this stage, the consumer 

chooses consumption (C) to maximize the total discounted utility (V) if the consumer chooses not to check 

the balance or chooses it to maximize the expected discounted utility (E[V]) if the balance was not checked. 

Fifth, an overdraft fee is assessed by the bank if the ending balance is below zero. Sixth, the consumer decides 

whether to close the account (after paying any overdraft fees). If the consumer closes his or her account, then 

                                                      
16 We also test this assumption by estimating a myopic model and a bounded forward-looking model. The results can be 
found in Appendix A6. 
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an outside option is received, and the model ends. Otherwise, in the seventh step, the balance is updated, and 

the cycle of events is repeated daily.17 

 
Figure 6. Timing of Events within Our Model for Each Day 
 
 To fully implement this multi-stage model, we have to specify a number of components concerning 

utility.  To make it easier for the reader to follow the specification of the model, we do not start with its full 

specification but instead build up the model starting with the utility from consumption in §4.1. We then 

incorporate adjustments to utility of not knowing the balance with certainty, which incorporates monitoring 

costs that capture inattention in §4.2. Finally, we introduce dissatisfaction with overdraft fees into utility in 

§4.3 so that we can predict not only when overdrafts occur but also when consumers will close their accounts.  

The full dynamic programming problem that considers the net present value of utility for an individual 

consumer is presented in §4.4 and §4.5.  Finally, we consider how heterogeneity across consumers can be 

                                                      
17 Our focal bank practices “Nightly Batch Processing”, a process of posting transactions (credits and debits) to the 
account after the close of business each day, following the industry standard. However, the posting order is based on the 
exact transaction time (to an accuracy of each second). Preauthorized transactions, like income deposit (direct deposit) 
or bill payment, are always posted before non-preauthorized transactions. Our model timing is consistent with this 
posting order. Moreover, our model assumes that balance checking happens before spending. In the scenario when the 
consumer spends before checking the balance (our data will show that the debit transaction occurs before balance 
checking), we assume that the consumer does not know the initial balance of that day. 
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specified in §4.6 to complete the full specification of the model.  The estimation of the model is discussed in 

the following section §5. 

4.1 Consumption Model 

At the core of our model is the need to predict consumers’ daily decisions about how much to 

consume today versus in the future. Following the lifetime consumption literature (Modigliani and Brumberg 

1954, Hall 1978), we assume that consumer ݅’s per-period consumption utility at time	 t is determined by a 

constant relative risk averse (CRRA) utility function (Arrow 1963): 

 
௜௧ሻܥ஼ሺݑ ൌ

௜௧ܥ
ଵିఏ೔೟

1 െ ௜௧ߠ
(1)

where ܥ௜௧18 is consumer ݅’s consumption at period ݐ and ߠ௜௧	is the coefficient of relative risk aversion. We 

choose the CRRA utility function because it has the merits of empirical support (Friend and Blume 1975), 

analytical convenience (Merton 1992), and is commonly used in the economics literature. The coefficient of 

relative risk aversion is always positive, and its inverse 
ଵ

ఏ೔೟
 is the inter-temporal substitution elasticity between 

consumption in any two adjacent periods. Higher values for ߠ௜௧ imply greater utility from each marginal unit 

of consumption and a lower willingness to substitute today’s consumption for future consumption. 

 Given that consumers might incur emergency expenses, e.g., medical bills, car repairs, or expensive 

group dinners, we allow ߠ௜௧  to vary each period according to a random shock term ߝ௜௧  to capture these 

unexpected needs for consumption. Large positive values of ߝ௜௧ would result in increased marginal utilities of 

consumption, representing days when urgent expenses are due. Specifically, we allow ߠ௜௧  to follow a log-

normal distribution with a time-invariant location ߠ௜ and a random shock ߝ௜௧. The shock ߝ௜௧ follows a normal 

distribution with mean zero and variance ߫௜
ଶ (Yao et. al. 2012).  

 

௜௧ߠ ൌ expሺߠ௜ ൅ 	௜௧ሻߝ
                                                      
18 Consumption ܥ௜௧ must be nonnegative. When applied to the data, there are days when consumers just receive income 
(e.g., deposit money) without any consumption (spending). In this case, we set ܥ௜௧ ൌ 0 but update the budget equation 
with the “negative spending” discussed in §4.5. 
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,௜௧~ܰሺ0ߝ ߫௜
ଶሻ 

The consumption plan captured by ܥ௜௧  depends on the consumer’s budget constraint, which is a 

function of the consumer’s current balance ܤ௜௧ , income ௜ܻ௧ , and bills Ψ௜௧ . Bills represent preauthorized 

spending that relates to medium- or long-run consumption expenditures such as loan, rent or utility payments. 

We model bills separately19 from consumption because preauthorized spending is difficult to change on a 

daily basis after it is authorized, whereas consumption is more likely to be the result of consumers’ day-to-day 

decisions. Consumers’ budget constraints are as follows: 

௜௧ାଵܤ  ൌ ௜௧ܤ െ ௜௧ܥ െ ௜௧ܦܱ ∗ ௜௧ܤሺܫ െ ௜௧ܥ ൏ 0ሻ ൅ ௜ܻ௧ାଵ െ ߰௜௧ାଵ	 (2)

The next day’s available balance ܤ௜௧ାଵ is equal to the current balance ܤ௜௧ minus current consumption ܥ௜௧ and 

overdraft fees ܱܦ௜௧	(if the balance becomes negative, denoted as ሺܤ௜௧ െ ௜௧ܥ ൏ 0ሻ ) plus the next day’s net 

income after bills, given by the difference of ௜ܻ௧ାଵ  ߰௜௧ାଵ. Note that because we model consumers’ spending 

decisions at the daily level rather than the transaction level, we aggregate all overdraft fees paid and assume 

that consumers know the per-item fee structure20 stated in §3 when deciding their daily consumption. That is, 

 .௜௧ is not the per-item overdraft fee ($31 for our focal bank) but the daily sum of all per-item overdraft feesܦܱ

Thus, ܱܦ௜௧ can take values such as $62, $93, or $124.  

Because our focus is overdrafting behavior, we make a number of assumptions to render our 

problem tractable.  First, consumption is not observed in our data; therefore, we make the assumption that 

spending is equivalent to consumption in terms of generating utility. Hereafter, we use consumption and 

spending interchangeably. Second, we abstract away from the complexity associated with our data and assume 

that the consumer’s income and bills are exogenously determined. In our dataset, we are able to distinguish 

bills from spending using their transaction channels, as illustrated in Table 1.  For example, bills are associated 

with checks, ACH and bill payments, while spending is associated with debit cards and cash withdrawals. 

                                                      
19 We discuss how we differentiate bills and consumption in the data in the last paragraph of section 4.1. 
20 This assumption is realistic in our setting because we distinguish between inattentive and attentive consumers. The 
argument that a consumer might not be fully aware of the per-item fee is indirectly captured by the balance perception 
error (which we explain in the next subsection) in the sense that the uncertain overdraft fee is equivalent to the uncertain 
balance because both of these tighten the consumer’s budget constraint. As for attentive consumers who overdraw 
because of heavy discounting, such a consumer would be fully aware of the potential costs of overdrafting. Thus, in both 
cases, we argue that the assumption of a known total overdraft fee is reasonable. 
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Note that although credit card spending is discretionary, we treat it as a bill because it affects the checking 

account balance only when the consumer pays the bill rather than when the consumer swipes the credit card 

each time. Thus, credit card spending does not cause any immediate overdrafts, while debit card purchases 

may. It is for this reason that we treat credit card and debit card spending differently. The main focus of our 

paper is to examine overdrafts. Thus, the transactions are modeled according to the extent that they affect 

overdrafts. Third, we assume that bills are not within consumers’ daily discretion but that spending (or, more 

precisely, non-preauthorized spending) can be adjusted daily. In summary, we model consumers’ 

consumption decisions, where consumption is non-preauthorized spending21 from their checking accounts.  

4.2 Inattention and Monitoring Costs 

Our reduced-form evidence in Section 3.2.2 suggests that due to monitoring costs, consumers are 

inattentive to their financial well-being. This is consistent with the theory of rational inattention (Sims 1998, 

2003) that individuals have many things to think about and limited time, and they can devote only limited 

intellectual resources to these tasks of data gathering and analysis. Because monitoring an account balance 

takes time and effort, consumers may not check their balance frequently enough to avoid overdrafts. To 

capture this effect, we assume that consumers are rational inattentive22 in the sense that they are aware of 

their own inattention and may choose to be inattentive if monitoring costs are high (Grubb 2014). Specifically, 

we model consumers’ balance-checking behavior as a binary choice: ܳ௜௧ ∈ ሼ1,0ሽ , where 1 denotes the 

decision to check the balance and 0 denotes the decision not to check. 	

The balance checking activity affects the consumer’s balance perception ܤప௧෪ . On the one hand, if a 

consumer checks his or her balance by incurring a monitoring cost (to be explained later), then the balance 

 ௜௧ will be known with certainty. On the other hand, if the consumer does not check the balance, he or sheܤ

will recall a perceived balance, which gives a noisy measure of true balance.  That is, 

                                                      
21 Alternatively, we could describe this non-preauthorized spending as immediate or discretionary spending. We avoid 
the term discretionary spending to avoid confusion with the usual economic definition.  Economists traditionally use the 
term discretionary as the amount of income left after spending on necessities such as food, clothing and housing, 
whereas in our problem, we are thinking about immediate spending that could have been delayed.  
22 Consumers can also be naively inattentive, but we do not allow for this here. See the discussion in Grubb (2014). 
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ప௧෪ܤ  ൌ ௜௧ܤ ݂݅ ܳ௜௧ ൌ 1
ప௧෪ܤ 	~ܰሺܤ௜௧ ൅ ,௜௧߱௜௧ߟ ߱௜௧

ଶ ሻ ݂݅ ܳ௜௧ ൌ 0
 (4)

Following Mehta, Rajiv and Srinivasan (2003), we allow the perceived balance ܤప௧෪  when the balance is not 

checked to be a normally distributed random variable. The mean of ܤప௧෪  is the sum of the true balance ܤ௜௧ and 

a perception error: ߟ௜௧߱௜௧  . The first component of the perception error ߟ௜௧  is a random draw from the 

standard normal distribution23, and the second component is the standard deviation of the perception error, 

߱௜௧.  The variance of ܤప௧෪  is ߱௧
ଶ, which measures the extent of uncertainty. 

 For notational convenience, we introduce a variable that measures the time (number of days) elapsed 

since the consumer last checked the balance Γ௜௧ . By definition, Γ௜௧ାଵ ൌ ሺ1 ൅ Γ௜௧ሻሺ1 െ ܳ௜௧ሻ. That is, if a 

consumer checks the balance (ܳ௜௧ ൌ 1), then the time lapsed since last balance check is 0, but if the 

consumer does not check the balance (ܳ௜௧ ൌ 0), the time elapsed increases by one day. Based on the 

evidence from our exploratory data analysis, we allow this extent of uncertainty to accumulate over time, 

which implies that the longer a consumer goes without checking his or her balance, the more inaccurate the 

perceived balance will be. We formulate this statement as 

 ߱௜௧
ଶ ൌ ௜Γ௜௧ߩ (5)

where Γ௧  denotes the time elapsed since the consumer last checked his or her balance and ߩ denotes the 

sensitivity to the time elapsed since the last balance check, as shown in equation (5) above24. 

Recall that a consumer incurs the monitoring cost to check the balance. The monitoring cost is an 

opportunity cost, not an explicit cost charged by the bank. Formally, we calculate the consumption utility 

based on this monitoring cost: 

,௜௧ܥ௧തതത൫ݑ  ܳ௜௧, ప௧෪൯ܤ ൌ ,௜௧ܥ஼൫ݑ ప௧෪൯ܤ െ ܳ௜௧ߦ௜ ൅ ߯௜௧ொ೔೟ (3)

                                                      
23 The mean balance perception error ̅ߟ cannot be separately identified from the variance parameters ߩ because the identification 
sources both come from consumers’ overdraft fee payments. Specifically, a high overdraft payment for a consumer can be explained 
by either a positive balance perception error or a large perception error variance caused by a large ߩ. Thus, we fix ̅ߟ at zero, i.e., the 
perception error is assumed to be unbiased. 
24 We considered other specifications for the relationship between the perception error variance and the time elapsed since the last 
balance check. The results remain qualitatively unchanged. 
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where ߦ௜  is the consumer’s monitoring cost and ߯௜௧ொ௜௧  is the idiosyncratic shock that affects his or her 

monitoring cost. The shock ߯௜௧ொ೔೟  can capture idiosyncratic events such as vacations, during which it is 

difficult for consumers to monitor their balance, or it could capture increased awareness about consumers’ 

financial state from other events such as online bill payments, which automatically report their balance. The 

equation implies that if a consumer checks his or her balance, then the utility decreases by a monetary 

equivalence of |ሺ1 െ |௜ߦሻ	௜௧ߠ
భ

భషഇ೔೟ . We assume that ߯௜௧ொ೔೟  are i.i.d. and follow a type I extreme value 

distribution. 

Consumers do not know the balance perception error (ߟ௜௧ and ܤప௧෪ ), so they form an expected utility 

based on their knowledge about the distribution of their perception error. The optimal spending will 

maximize their expected utility, which is calculated by integrating over the balance perception error: 

 
௜௧ݑ ൌ ඵݑ௧തതതሺܥ௜௧, ܳ௜௧, ప௧෪ሻ (6)ܤሺܨ௜௧ሻ݀ߟሺܨప௧෪ሻ݀ܤ

The expected utility ݑ௜௧	is decreasing with the variance in the perception error ߱௜௧
ଶ   (through ܤప௧෪ ; see equation 

4). This relationship arises because greater variance in the perception error decreases the accuracy of 

consumers’ estimate of their true balance and thus increases the likelihood that they will mistakenly overdraw 

their account, which lowers their utility. The derivation is shown in a Technical Report available from the 

authors. 

4.3 Dissatisfaction and Account Closing 

The exploratory analysis in section 3.2.3 suggests that overdrafts trigger consumer dissatisfaction and 

attrition. We model attrition as consumers choosing an outside option of closing their account and switching 

to a competing bank or becoming unbanked25. Based on the data pattern in Figure 5, we make an assumption 

                                                      
25 We only consider voluntary closure, because forced closure is not a decision made by the consumer. We also do not model 
consumer defaults, for two reasons. First, in the data, we observe that some accounts are forced by the bank to close, but we are 
unsure whether these consumers defaulted or the bank felt it was too risky to keep these accounts open (The Federal Deposit 
Insurance Corporation urges banks to close accounts that are linked to “high-risk activities”. See https://oversight.house.gov/wp-
content/uploads/2014/12/Staff-Report-FDIC-and-Operation-Choke-Point-12-8-2014.pdf for more details). Thus, we cannot 
explicitly model default. In the estimation, we do not exclude consumers whose accounts were closed by the bank. Rather, we use 
these consumers’ spending and balance checking activities but not their account closing activities to calculate the likelihoods. Second, 
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that consumers are sensitive to the ratio of the overdraft fee to the overdraft transaction amount, and we use 

Ξ௜௧ to denote this ratio as a state variable. We assume that a larger ratio indicates a higher likelihood that the 

consumer will be dissatisfied, because the ratio is essentially the implicit price of overdrafts, and prior 

research (Keaveney 1995, Bolton 1998) has documented that a high price may cause consumer dissatisfaction. 

Forward-looking consumers anticipate the accumulation of dissatisfaction (as well as lost consumption utility 

due to overdrafts) in the future and will become more likely to close their account. Furthermore, we assume 

that consumers formulate their belief of the ratio for a future period based on the highest ratio they have 

personally incurred26. That is, if we use Δ௜௧ to denote the per-period ratio, then 

Δ௜௧ ൌ
௜௧ܦܱ

௜௧ܤ| െ |௜௧ܥ
 

and  

ሾΞ௜௧ାଵ|Ξ௜௧ሿܧ  ൌ ,ሺΞ௜௧ݔܽ݉ Δ௜௧ሻ (7)

This assumption is made based on the findings from Tversky and Kahneman 1973, Nwokoye 1975, Monroe 

1990, and Fiske and Taylor 1991 that extremely high prices are comparatively distinct, more salient and easier 

to retrieve from memory, so that they are more likely to be used as anchors in memory-based tasks. This 

assumption also reflects consumers’ learning behavior over time. Consider a consumer who experiences many 

overdrafts; our model captures the idea that his or her dissatisfaction grows with each overdraft. 

 To introduce dissatisfaction from overdrafts into the model, we calculate the per-period utility: 

௜ܷ௧ ൌ ௜௧ݑ െ Υ୧ ∗ Δ௜௧ ∗ ௜௧ܤሾܫ െ ௜௧ܥ ൏ 0ሿ	

In the above equation, ݑ௜௧ is defined as in equation (6), and Υ୧ is the dissatisfaction sensitivity, i.e., the impact 

of charging an overdraft fee on a consumer’s decision to close the account. 

We assume that the decision to close the account is a terminal decision. Once a consumer chooses to 

close his or her account, their value function (or total discounted utility function) equals an outside option 

                                                                                                                                                                           
we believe that defaults will only cause an underestimate of the bank revenue in the counterfactuals. In other words, modeling defaults 
will not undermine our counterfactual results but strengthen them. Please see further discussions in section 7. 
26 We also consider another model with dissatisfaction modeled as the sum of past ratios Δ௜௧ ൌ

ை஽೔೟
|஻೔೟ି஼೔೟|

	. However, both the log 

marginal density and the hit rate of this model are worse than our proposed model. 
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with a mean value of ߙ௜ , normalized to be the same across states for identification purposes.27  If the 

consumer keeps the account open, continuation values from future per-period utility functions would 

continue to be received. More specifically, let ௜ܹ 	 denote a consumer’s choice to close his or her account, 

where ௜ܹ ൌ 1 denotes the decision to close the account before the period starts and ௜ܹ ൌ 0 denotes the 

decision to keep the account open for this period. Then, the value function for the consumer becomes 

௜ܸ௧ ൌ ൜ ௜ܷ௧ ൅ ߸௜௧଴ ൅ ሾܧ	௜ߚ ௜ܸ௧ାଵ	| ௜ܵ௧ሿ, ௜ܹ௧ ൌ 0
݅ߙ ൅ ߸௜௧ଵ, ௜ܹ௧ ൌ 1	

where ߸௜௧଴  and ߸௜௧ଵ  are the idiosyncratic shocks that determine a consumer’s account-closing decision. 

Sources of shocks may include events such as when the consumer moves out of town or when a competing 

bank enters the market.  We assume that these shocks follow a type I extreme value distribution.  

4.4 State Variables 

In this subsection, we formalize the statistical properties associated with the state variables so that we 

can complete the specification by stating consumers’ expectations about their future state.  

Income. Consumer accounts tend to have regular spikes in deposits that correspond with monthly, 

weekly or biweekly periods.  Specifically, we assume that the distribution for income is 

௜ܻ௧ ൌ ௜ܻ ∗ ௜௧ܮܦሺܫ ൌ 	௜ሻܥܲ

 where ௜ܻ is the stable periodic (monthly/weekly/biweekly) income, ܮܦ௜௧ is the number of days left until the 

next payday, and ܲܥ௜ is the length of the pay cycle. The transition process of ܮܦ௜ is deterministic ܮܦ௜௧ାଵ 	ൌ

௜௧ܮܦ െ 1 ൅ ௜ܥܲ ∗ ௜௧ܮܦሺܫ ൌ 1ሻ, decreasing by one for each period ahead and returning to the full length 

when one pay cycle ends.  

 Overdraft fee. The state variable ܱܦ௜௧  is assumed to be i.i.d. over time28 and to follow a discrete 

distribution with the support vector and probability vector ሼ ௜ܺ ,  ௜ሽ.  The support vector contains multiples of݌

the per-item overdraft fee. 

                                                      
27 Please find a discussion of the normalization in Appendix A7. 
28 The correlation between the overdraft fee and the overdraft amount is actually very small (0.02), so we assume that the 
overdraft fee is not an increasing function of the overdraft amount but i.i.d. over time. 
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Bills. Bills are assumed to be i.i.d. draws from a compound Poisson distribution with arrival rate ߶௜ 

and with a jump size distribution ܩ௜ : 	Ψ௜௧~	ܲܥሺ߶௜,  ௜ሻ. This distribution can capture the pattern of billsܩ

arriving randomly according to a Poisson process, and bill sizes are sums of fixed components (each separate 

bill)29.  

Dissatisfaction. The ratio of the overdraft fee to the overdraft transaction amount evolves by keeping 

the maximum amount over time (see Equation (7)). 

Open status. The account status is denoted by ܱ ௜ܲ௧ . If ܱ ௜ܲ௧ ൌ 1, then the account is open. If ܱ ௜ܲ௧ ൌ

0, then the account is closed. The transition of this state variable is deterministic: 

݂ሺܱ ௜ܲ௧ାଵ|ܱ ௜ܲ௧, ௜ܹ௧ሻ ൌ ቐ
0, ݂݅	ܱ ௜ܲ௧ ൌ 0
1, ݂݅	 ௜ܹ௧ ൌ 0	ܽ݊݀	ܱ ௜ܲ௧ ൌ 1
0, ݂݅	 ௜ܹ௧ ൌ 1	ܽ݊݀	ܱ ௜ܲ௧ ൌ 1

 

Random errors. The shocks ߝ௜௧, ߯௜௧ and ߸௜௧ are all assumed to be i.i.d. over time. 

In summary, the whole state space for consumers is 

௜ܵ௧ ൌ ሼܤప௧෪ 30, Ψ௜௧, ௜ܻ௧, ,௜௧ܮܦ ,௜௧ܦܱ Γ௜௧, Ξ௜௧, OP୧୲, ,௜௧ߝ ߯௜௧, ߸௜௧ሽ . In our dataset, we observe 

పܵ௧෢ ൌ ሼܤ௜௧, ߰௜௧, ௜ܻ௧, ,௜௧ܮܦ ,௜௧ܦܱ Γ௜௧, Ξ௜௧, OP୧୲ሽ , and our unobservable state variables are 

పܵ௧෪ ൌ ሼܤప௧෪ , ,௜௧ߟ ,௜௧ߝ ߯௜௧, ߸௜௧ሽ. ௜ܵ௧ ൌ పܵ௧෢ ∪ పܵ௧෪\ሼ	ܤ௜௧, ߰௜௧ሽ . Notice here that consumers also have unobserved 

states ܤ௜௧ and ߰௜௧ due to inattention.  If a consumer checks his or her balance, then the true balance (ܤ௜௧ ) 

and bill amount (߰௜௧ ) are known; otherwise, a perceived balance (ܤప௧෪  ) and expected bill (Ψ௜௧ ) are known. 

                                                      
29 A compound Poisson distribution is the probability distribution of the sum of a number of independent identically 
distributed random variables, where the number of terms to be added is itself a Poisson-distributed variable. In our 
model, each independent bill, for example, a mortgage loan interest or credit card payment is a random variable. Because 
the total number of bills that arrive each day is Poisson-distributed, the sum of the bills becomes a compound Poisson 
distribution. We use G to characterize the discrete distribution of the size of each individual bill. G is an empirical 
distribution. Suppose in the entire sample, that one consumer has 3 utility bills with amounts $30, $50 and $80 as well as 

one cellphone bill of the amount $30. Then G is ܩሺxሻ ൌ ቐ
ݔ	݂݅					0.5 ൌ 30
ݔ	݂݅			0.25 ൌ 50
ݔ	݂݅			0.25 ൌ 80

. The arrival rate parameter ߶ in the Poisson 

distribution is estimated using the maximum likelihood method. We estimate both ܩ  and ߶  from the data 
heterogeneously for each individual before estimating the structural model. They are used as inputs in the structural 
estimation. 
30 The transition process for the perceived balance ܤప௧෪  is jointly determined by equations (2) and (4). 
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4.5 The Dynamic Optimization Problem and Intertemporal Tradeoff 

We can now state the complete optimization problem facing each consumer.  Each consumer 

chooses an infinite sequence of decision rules ሼܥ௜௧, ܳ௜௧, ௜ܹ௧ሽ௧ୀଵ
ஶ  in order to maximize the expected total 

discounted utility: 

max
ሼ஼೔೟,ொ೔೟,ௐ೔೟ሽ೟సబ

ಮ
ሼௌ೔೟ሽ೟సబಮܧ ൝෍ߚ௜

௧
௧ܷሺܥ௜௧, ܳ௜௧, ௜ܹ௧, ௜ܵ௧ሻ

ஶ

௧ୀ଴

,௜଴ܥ| ܳ௜଴, ௜ܹ଴, ௜ܵ଴ൡ		

 where 	 ௧ܷሺܥ௜௧, ܳ௜௧, ௜ܹ௧, ௜ܵ௧ሻ ൌ ቊቈ∬ቆ
஼೔೟
భషഇ೔೟

ଵିఏ೔೟	
െ ܳ௜௧ߦ௜ ൅ ߯௜௧ொ೔೟ቇ ప௧෪൯ܤ൫ܨ௜௧ሻ݀ߟሺܨ݀ െ Υ୧ ∗

ை஽೔೟
|஻೔೟ି஼೔೟|

∗

௜௧ܤሾܫ െ ௜௧ܥ ൏ 0ሿ ൅ ߸௜௧଴቉ ሺ1 െ ௜ܹ௧ሻ ൅ ሺ݅ߙ ൅ ߸௜௧ଵሻ ௜ܹ௧ቋ ܱ ௜ܲ௧. 

Let ܸሺ ௜ܵ௧ሻ denote the value function: 

 
ܸሺ ௜ܵ௧ሻ ൌ max

ሼ஼೔ഓ,ொ೔ഓ,ௐ೔ഓሽഓస೟
ಮ
ሼௌ೔ഓሽഓస೟శభಮܧ ൝ ௧ܷሺܥ௜௧, ܳ௜௧, ௜ܹ௧, ௜ܵ௧ሻ

൅ ෍ ௜ߚ
ఛି௧

ఛܷሺܥ௜ఛ, ܳ௜ఛ, ௜ܹఛ, ௜ܵఛሻ
ஶ

ఛୀ௧ାଵ

,௜௧ܥ| ܳ௜௧, ௜ܹ௧, ௜ܵ௧ൡ  

(4)

This infinite period dynamic optimization problem can be solved through the Bellman Equation (Bellman 

1957): 

 ܸሺ ௜ܵ௧ሻ ൌ max
஼೔,ொ೔,ௐ೔

,௜ܥܷሺ	ௌ೔೟శభሼܧ ܳ௜, ௜ܹ , ௜ܵ௧ሻ ൅ ሺܸߚ ௜ܵ௧ାଵሻ|ܥ௜, ܳ௜, ௜ܹ , ௜ܵ௧ሽ	 (5)

In the infinite horizon dynamic programming problem, the policy function does not depend on time. 

We can thus eliminate the time subscript. Consequently, we have the following choice-specific value 

function31: 

                                                      
31 For the sake of simplicity, we have omitted the subscript ݅. 
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,ܥ൫ݒ ܳ,ܹ, ෨ܤ ,Ψ, ܻ, ,ܮܦ ,Γ,Ξ,ܦܱ ܱܲ, ,ߝ ߯,߸൯

ൌ

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ۓ ሻܥ஼ሺݑ െ ߦ ൅ ߯ଵ െΥ ∗

ܦܱ ∗ ܤሾܫ െ ܥ ൏ 0ሿ
ܤ| െ |ܥ

൅ ߸଴

൅ߚ	ܧௌశభሾܸቀܤ෨ାଵ,Ψାଵ
, ାܻଵ, ,ାଵܮܦ ,ାଵܦܱ 1,Ξାଵ

, 1, ,ାଵߝ ߯ାଵ,߸ାଵቁ|ܥ, ܳ,ܹ, ෨ܤ ,Ψ, ܻ, ,ܮܦ ,Γ,Ξ,ܦܱ 1, ,ߝ ߯, ߸ሿ, ݂݅ܳ ൌ 1	ܽ݊݀	ܹ ൌ 0

ඵሺݑ஼ሺܥሻ ൅ ߯଴ሻ݀ܨሺߟሻ݀ܨ൫ܤ෨൯ െΥ ∗
ܦܱ ∗ ܤሾܫ െ ܥ ൏ 0ሿ

ܤ| െ |ܥ
൅ ߸଴

൅ߚ	ܧௌశభሾܸቀܤ෨ାଵ,Ψାଵ
, ାܻଵ, ,ାଵܮܦ ାଵ,Γ൅ܦܱ 1,Ξ

ାଵ
, 1, ,ାଵߝ ߯ାଵ,߸ାଵቁ|ܥ, ܳ,ܹ, ෨ܤ , Ψ, ܻ, ,ܮܦ ,ܦܱ Γ, Ξ, 1, ,ߝ ߯, ߸ሿ					݂݅	ܳ ൌ 0	ܽ݊݀	ܹ ൌ 0	

ߙ ൅ ߸ଵ, ݂݅	ܹ ൌ 1

	

where subscript “+1” denotes the next time period.  Therefore, the optimal policy is: 

ሼܥ௜
∗, ܳ௜

∗, ௜ܹ
∗ሽ ൌ ,௜ܥ൫ݒ	ݔܽ݉݃ݎܽ ܳ௜, ௜ܹ , ప෩ܤ ,Ψ୧, ௜ܻ , ,௜ܮܦ ,௜ܦܱ Γ୧, Ξ୧, ܱ ௜ܲ, ,௜ߝ ߯௜, ߸௜൯ 

 We note that a distinction exists between this dynamic programming problem and traditional ones. 

Because of the perception error, a consumer observes ܤ෨௜௧ ൌ ௜௧ܤ ൅  ௜௧ . Theߟ ௜௧ orܤ ௜௧߱௜௧ but does not knowߟ

consumer only knows the distribution ሺܤ௜௧ ൅ ,௜௧߱௜௧ߟ ߱௜௧
ଶ ሻ  and makes a decision ܥ௜

∗ሺܤ෨௜௧ሻ  based on the 

perceived balance ܤ෨௜௧  .  However, we—as analysts—do not know the realized perception error ߟ௜௧  . We 

observe the true balance ܤ௜௧  and the consumer’s spending ܥ௜
∗ሺܤ෨௜௧ሻ . Therefore, we can assume only that 

௜ܥ
∗ሺܤ෨௜௧ሻ maximizes the “expected ex-ante value function”. Later, we look for parameters that make the 

likelihood of ܥ௜
∗ሺܤ෨௜௧ሻ, which maximizes the expected ex-ante value function, reach its maximum. Following 

Rust (1987), we obtain the ex-ante value function that integrates out the cost shocks, preference shocks, 

account-closing shocks and unobserved mean balance error: 

,௜ܤሺܸܧ ψ୧, ௜ܻ , ,௜ܮܦ ,௜ܦܱ Γ୧, Ξ୧, ܱ ௜ܲሻ

ൌ නනනනݒ൫ܥ௜
∗, ܳ௜

∗, ௜ܹ
∗, ప෩ܤ ,Ψ୧, ௜ܻ , ,௜ܮܦ ,௜ܦܱ Γ୧, Ξ୧, ܱ ௜ܲ, ,௜ߝ ߯௜, ߸௜൯  ௜݀߯௜݀߸௜ߝ௜݀ߟ݀

In summary, consumers’ inter-temporal tradeoffs are associated with three dynamic decisions. First, 

given the budget constraint, a consumer will evaluate the utility of spending (or consuming) today versus 

tomorrow. Higher spending today implies lower spending in the future. Therefore, spending is a dynamic 

decision, and the optimal choice for the consumer is to smooth out his or her consumption over time. 

Second, when deciding when to check his or her balance, the consumer compares the monitoring cost with 

the expected gain from avoiding an overdraft fee. The consumer checks his or her balance only when the 
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expected overdraft fee is higher than the monitoring cost. Because the consumer’s balance perception error 

might accumulate over time, the consumer’s overdraft probability also increases as more time elapses since 

the last balance check. As a result, the consumer waits until the overdraft probability reaches a certain 

threshold (when the expected overdraft fee equals the monitoring cost) before checking the balance. Finally, 

the decision to close the account is an optimal stopping problem. The consumer will compare the total 

discounted utility of keeping the account with the utility from the outside option to close the account. When 

the consumer expects to incur many overdraft fees and the accompanying dissatisfaction, the consumer finds 

it more attractive to take the outside option and close his or her account. 

4.6 Heterogeneity 

In our data, consumers exhibit different responses to their state conditions. For example, some 

consumers have never checked their balance and frequently overdraw, while other consumers frequently 

check their balance and rarely overdraw. We hypothesize that these differences result from their 

heterogeneous discount factors and monitoring costs. Therefore, our model needs to account for unobserved 

heterogeneity. We follow a hierarchical Bayesian framework (Rossi, McCulloch and Allenby 2005) and 

incorporate heterogeneity into the model by assuming that all parameters, namely, ߠ௜  (mean relative risk 

averse coefficient), ߚ௜  (discount factor), ߫௜  (standard deviation of the coefficient of risk aversion), ߦ௜ 

(monitoring cost), ߩ௜ (sensitivity of the error variance to the time elapsed since the last balance check), Υ௜ 

(dissatisfaction sensitivity) and ߙ௜ (mean value of the outside option), have a random coefficient specification. 

The subscript i denotes the consumer, and the previous models are understood to be defined by the customer. 

For each of these parameters ߠ ∈ ሼߠ௜, ,௜ߚ ߫௜, ,௜ߦ ,௜ߩ Υ௜, α୧ሽ, the prior distribution is defined as ߠ ∼ 	ܰሺߤణ, ణߪ
ଶሻ . 

The hyper-prior distribution is assumed to be diffuse. 
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5 Identification and Estimation 

5.1 Identification 

The unknown structural parameters in the model include ሼߠ௜, ,௜ߚ ߫௜, ,௜ߦ ,௜ߩ Υ୧, α୧ሽ, where ߠ௜  is the 

logarithm of the mean of the coefficient of risk aversion, ߚ௜ is the discount factor, ߫௜ is the standard deviation 

of the coefficient of risk aversion, ߦ௜ is the monitoring cost, ߩ௜ is the sensitivity of the balance error variance 

to the time elapsed since the last balance check, Υ୧ is the dissatisfaction sensitivity and ߙ௜ is the mean value of 

the outside option. We provide the rationale for the identification of each parameter. 

We know from Rust (1987) that the discount factor ߚ௜ cannot be separately identified from the static 

utility parameter, which is the risk aversion coefficient in our case. The reason is that lowering ߠ௜ tends to 

increase consumption/spending, an effect that can also be achieved by lowering ߚ௜ . Because we are more 

interested in consumers’ time preference than their risk preference, we fix the risk aversion coefficient, which 

allows us to identify the discount factor32. This practice is also used in Gopalakrishnan et al. (2014). Following 

the latest research by Andersen et al. (2008), who jointly elicit risk and time preferences, we choose ߠ௜ ൌ ߠ ൌ

0.74 for the coefficient of risk aversion33. After we fix ߠ௜  can be well identified by the sequences of	௜ߚ ,

consumption (spending) within a pay period. A large discount factor (close to 1) implies a stable consumption 

stream, while a small discount factor implies a downward-sloping consumption stream. Because a discount 

factor is constrained above by 1, we take a logit transformation, namely, ߚ௜ ൌ
ଵ

ଵାୣ୶୮	ሺఒ೔	ሻ
, and estimate the 

transformed parameter ߣ௜ instead. 

The standard deviation of the coefficient risk aversion ߫௜  is identified by the variation of 

consumptions on the same day of the pay period but across different pay periods.  Moreover, according to 

the intertemporal tradeoff, the longer the consumer goes without checking his or her balance, the more likely 

                                                      
32 We also tried to fix the discount factor (at 0.9997) and estimate the coefficients of risk aversion. The posterior mean of the 
estimated coefficient of relative risk aversion is 0.72. Other structural parameter estimates are not significantly affected under this 
specification. Our results confirm that the coefficient of risk aversion and the discount factor are mathematically substitutes 
(Andersen et al. 2008). Estimation results with a fixed discount factor are available upon request. 
33 We also tried other values for the coefficient of relative risk aversion ߠ. The estimated discount factor ߚ values change when we use 
different values of θ, but other structural parameter values remain the same. The policy simulation results are also robust to the use of 
different values of ߠ. 



- 31 - 

an overdraft is to occur because of a balance error. Therefore, the observed data pattern of higher overdraft 

fees paid for a longer period after the balance is checked can inform the structural parameter ߩ௜	.  

Intuitively, the monitoring cost ߦ௜  is identified by the expected overdraft payment amount. Recall 

that the tradeoff regarding balance checking is that a consumer checks his or her balance only when ߦ௜ is 

smaller than the expected overdraft payment amount. In the data, we observe the balance-checking frequency. 

By combining this with the calculated ߩ௜ , we can compute the expected overdraft probability and then the 

expected overdraft payment amount, which is the identified ߦ௜  . Given ߩ௜ , a consumer with few balance-

checking inquiries must have a higher balance-checking cost ߦ௜ . The dissatisfaction sensitivity parameter Υ௜ 

can be identified by the data pattern where consumers’ account closure probability varies with the ratio of the 

overdraft fee to the overdraft transaction amount, as shown in our exploratory data analysis (§ 3.2.3). Lastly, 

the mean value of the outside option ߙ௜ can be identified by the average account closing probability. 

Note that aside from these structural parameters, another set of parameters governs the transition 

process. These parameters can be identified prior to the structural estimation from the observed state 

variables in our data. The set includes ሼ	߶௜, ,௜ܩ ௜ܺ , 	.௜ሽ݌

In summary, the structural parameters to be estimated include ሼ	ߣ௜, ߫௜, ,௜ߦ ,௜ߩ Υ௜,  . ௜ሽߙ

5.2 Likelihood 

The full likelihood function is   

݀݋݋݄݈݅݁݇݅ܮ

ൌ ܮ ൬ቄ൛ܥ௜௧, ܳ௜௧, ௜ܹ௧| పܵ௧෢ൟ
௧ୀଵ

்
ቅ
௜ୀଵ

ூ
൰ ܮ ൬ቄ݂൛ పܵ௧෢| పܵ௧ିଵ෣,ܥ௜௧ିଵ, ܳ௜௧ିଵ, ௜ܹ௧ିଵൟ௧ୀଵ

்
ቅ
௜ୀଵ

ூ
൰ ܮ ቀ൛ పܵ଴෢ൟ

௜ୀଵ

ூ
ቁ 

where పܵ௧෢ ൌ ሼܤ௜௧, ߰௜௧, ௜ܻ௧, ,௜௧ܮܦ ,௜௧ܦܱ Γ௜௧, Ξ௜௧, ܱ ௜ܲ௧ሽ	. Because the likelihood for the optimal choice and that 

for the state transition process are additively separable when we apply a log transformation to the likelihood 

function, we can first estimate the state transition process from the data and then maximize the likelihood for 

the optimal choice. The likelihood function for the optimal choice is 
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ܮ ൬ቄ൛ܥ௜௧, ܳ௜௧, ௜ܹ௧| పܵ௧෢ൟ
௧ୀଵ

்
ቅ
௜ୀଵ

ூ
൰ ൌෑෑܮ൛ܥ௜௧, ܳ௜௧, ௜ܹ௧| పܵ௧෢ൟ

்

௧ୀଵ

ூ

௜ୀଵ

 

ൌෑෑ݂൛ܥ௜௧| పܵ௧෢ൟܲݎ൛ܳ௜௧| పܵ௧෢ൟܲݎ൛ ௜ܹ௧| పܵ௧෢ൟ

்

௧ୀଵ

ூ

௜ୀଵ

 

where ݂൛ܥ௜௧| పܵ௧෢ൟ is estimated from the normal kernel density estimator (explained in the next section) and 

|൛ܳ௜௧ݎܲ పܵ௧෢ൟ  and ܲݎ൛ ௜ܹ௧| పܵ௧෢ൟ  follow the standard logit model given the choice-specific value function.  

Using the logit specification, we can write:  

Pr൫ܳ௜௧ ൌ 1| పܵ௧෢൯ ൌ නනන
,௜௧ܥሺݒሼ݌ݔ݁ ܳ௜௧ ൌ 1, ௜ܹ௧, ௜ܵ௧ሻሽ
∑ ,௜௧ܥሺݒ ܳ௜௧, ௜ܹ௧, ௜ܵ௧ሻொ೔೟

 ௜௧݀߸௜௧ߝ௜௧݀ߟ݀

Pr൫ ௜ܹ௧ ൌ 1| పܵ௧෢൯ ൌ නනන
,௜௧ܥሺݒሼ݌ݔ݁ ܳ௜௧, ௜ܹ௧ ൌ 1, ௜ܵ௧ሻሽ
∑ ,௜௧ܥሺݒ ܳ௜௧, ௜ܹ௧, ௜ܵ௧ሻௐ೔೟

 ௜௧݀߯௜௧ߝ௜௧݀ߟ݀

5.3 Initial Conditions 

For each consumer i, we simulate the model for 60 initial periods to derive the initial state variables. 

Then we proceed to construct the likelihood increment for consumer i. 

5.4 Estimation Using the Imai, Jain and Ching (2009) Algorithm 

We aim to estimate our infinite horizon dynamic structural model on a large dataset, and we want to 

obtain individual responses so that we can recommend targeted marketing strategies. We investigate several 

estimation methods, including the nested fixed point algorithm (Rust 1987), the conditional choice probability 

estimation (Arcidiacono and Miller 2011) and the Bayesian estimation method developed in Imai, Jain and 

Ching (2009) (IJC). We adopt the IJC method for the following reasons. First, the hierarchical Bayes 

framework fits our goal of obtaining heterogeneous parameters. Second, we apply the model to a large dataset, 

so the estimation is computationally challenging. Fortunately, Bayesian MCMC can be combined with a 

parallel computing technique to reduce the computational burden. Third, IJC is the state-of-the-art Bayesian 

estimation algorithm for infinite horizon dynamic programming models. The IJC algorithm provides two 

additional benefits in tackling the computational challenges. One is that it alleviates the computational burden 
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by evaluating the value function only once in each epoch. Essentially, the algorithm solves the value function 

and estimates the structural parameters simultaneously. Thus, the computational burden of a dynamic 

problem is reduced by an order of magnitude with computational costs similar to a static model. The other is 

that the method reduces the curse of dimensionality by allowing state space grid points to vary between 

estimation iterations. 

Given the massive size of our dataset, a traditional MCMC estimation may take a prohibitively long 

time, because most methods must perform O(N) operations for N data points. A natural way to reduce the 

computation time is to run the chain in parallel. Past methods of parallel MCMC duplicate the data on 

multiple machines and cannot reduce the time of burn-in. We instead use a new technique developed by 

Neiswanger, Wang and Xing (2014) to address this problem. The key idea of this algorithm is that the data 

can be distributed into multiple machines and the IJC estimation can be performed in parallel. Once we 

obtain the posterior Markov Chains from each machine, we can algorithmically combine these individual 

chains to obtain the posterior chain of the whole sample. 

5.4.1 Modified IJC 

Our model involves a continuous choice variable, spending. Therefore, we modify the IJC 

algorithm34 to obtain the choice probability through kernel density estimation. We provide a sketch of our 

estimation procedure and refer the reader to Appendix A2 for more details. The whole parameter space is 

divided into two sets ( Ω ൌ ሼ	Ωଵ, Ωଶሽ	), where the first one contains the set of hyper-parameters ( Ωଵ ൌ

ሼ	ߤఒ, ,చߤ ,కߤ ,ఘߤ ,஌ߤ ,஑ߤ ,ఒߪ ,చߪ ,కߪ ,ఘߪ ,஌ߪ ஑ሽߪ  ) and the second set contains the set of heterogeneous 

parameters ( Ωଶ ൌ ሼ	ߣ௜, ߫௜, ,௜ߦ ,௜ߩ Υ௜, ௜ሽ௜ୀଵߙ
ூ ). We allow all the heterogeneous parameters (represented by ߴ௜ ) 

to follow a normal distribution with mean ߤణ and standard deviation ߪణ for the parameters. Let the observed 

choices be ܱௗ ൌ ൛	 ௜ܱ
ௗൟ

௜ୀଵ

ூ
ൌ ሼ	ܥ௜

ௗ, ܳ௜
ௗ, ௜ܹ

ௗሽ , where ܥ௜
ௗ ≡ ሼ	ܥ௜௧

ௗ, ሽݐ	∀ , ܳ௜
ௗ ≡ ሼ	ܳ௜௧

ௗ , ሽ	ݐ	∀  and ௜ܹ
ௗ ≡

ሼ	 ௜ܹ௧
ௗ,  . ሽݐ	∀

Each MCMC iteration consists of two blocks: 
                                                      
34 The IJC method is designed for dynamic discrete choice problems. Zhou (2012) also applied it to a continuous choice 
problem. 
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(i) Draw Ωଵ
௥ ; that is, draw ߤణ

௥ ∼ 	 ఓ݂ణሺߪ|ߴణ
௥ିଵ, Ωଶ

௥ିଵሻ and ߪణ
௥ ∼ 	 ఙ݂ഛሺߪణ|ߤణ

௥ , Ωଶ
௥ିଵሻ 

ߴ)  ∈ ሼ	ߣ, ߫, ,ߦ ,ߩ Υ, αሽ , the parameters that capture the distribution of ߴ for the population), where ఓ݂ഛ and 

ఙ݂ഛ are the conditional posterior distributions.  

(ii) Draw Ωଶ
௥  ; that is, draw individual parameters ߴ௜ ∼ 	 ௜݂ሺߴ௜| ௜ܱ

ௗ, Ωଵ
௥ሻ by the Metropolis-Hastings (M-H) 

algorithm. 

5.4.2 Parallel Computing Following Neiswanger, Wang and Xing (2014) 

We adopt the parallel computing algorithm by Neiswanger, Wang and Xing (2014) to estimate our 

model with data for more than 500,000 consumers. The logic behind this algorithm is that the full likelihood 

function is the product of the individual likelihoods: 

ேሻݔ|ߴሺ݌ ∝ ሻߴ|ேݔሺ݌ሻߴሺ݌ ൌ ሻߴ|௜ݔሺ݌ሻෑߴሺ݌

ே

௜ୀଵ

			

Therefore, we can partition the data onto multiple machines and then perform MCMC sampling on each 

machine by using only the subset of data on that machine (in parallel, without any communication). Finally, 

we can combine the subposterior samples to algorithmically construct samples from the full-data posterior. 

Our procedure is outlined below (for additional details, see Appendix A3):  

(1) Partition data ݔே into M subsets ሼݔ௡భ, . . . ,  . ௡ಾሽݔ

(2) For ݉ ൌ 1, . . . ,   :(in parallel) ܯ

(a) Sample from the subposterior ݌௠, where ݌௠ሺݔ|ߴ௡೘ሻ ∝ ሻߴሺ݌	
భ
ಾ݌ሺݔ௡೘|ߴሻ.	

(3) Combine the subposterior samples to produce samples from an estimate of the subposterior density 

product ݌ଵ ଵ݌ ,.ெ, which is proportional to the full-data posterior, i.e݌… ሻߴெሺ݌… ∝  .ேሻݔ|ߴሺ݌	

Given ܶ  samples ሼ	ߴ௧ሽ௧ୀଵ
்  from a subposterior ݌௠ , we can write the kernel density estimator as 

ሻ෣ߴ௠ሺ݌ , 

ሻߴ௠ෞሺ݌ ൌ
1
ܶ
෍

1
݄ௗ

்

௧ୀଵ

ሺܭ
ߴ|| െ ||௧ߴ

݄
ሻ	
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ൌ
1
ܶ
෍ሺ2ߨ	݄ଶሻି

ௗ
ଶ|ܫௗ|

ିଵଶ݁݌ݔ ൜െ
1
2݄ଶ

ሺߴ െ ௗܫ௧ሻᇱߴ
ିଵሺߴ െ ௧ሻൠߴ

்

௧ୀଵ

 

ൌ
1
ܶ
෍ܰሺߴ|ߴ௧, ݄ଶܫௗሻ
்

௧ୀଵ

		

where we have used a Gaussian kernel with bandwidth parameter ݄ and where ݀ is the dimensionality. After 

we have obtained the kernel density estimator ݌௠ෞሺߴሻ for M subposteriors, we define our nonparametric 

density product estimator for the full posterior as 

ଵ݌ ௠ෟ݌	⋯ ሺߴሻ	

ൌ 	ሻߴ௠ෞሺ݌⋯ଵෞ݌

ൌ
1
ܶெ

෍ ⋯ ෍ ෑܰ൫ߴ|ߴ௧೘
௠ , ݄ଶܫௗ൯

ெ

௠ୀଵ

்

௧ಾୀଵ

்

௧భୀଵ

	

∝ ෍ ⋯ ෍ ܰቆߴ| ∙	ݐߴ
തതതത,

݄ଶ

ܯ
௧೘ߴௗቇෑܰ൫ܫ

௠ | ∙	ݐߴ
തതതത, ݄ଶܫௗ൯

ெ

௠ୀଵ

்

௧ಾୀଵ

்

௧భୀଵ

 

ൌ ෍ ⋯ ෍ ∙	ݐݓ

்

௧ಾୀଵ

்

௧భୀଵ

	ܰ ቆߴ| ∙	ݐߴ
തതതത,

݄ଶ

ܯ
 ௗቇܫ

 This estimate is the probability density function (pdf) of a mixture of T^M Gaussians with 

unnormalized mixture weights ݓ௧	∙   Here, we use ݐ ⋅ൌ ሼݐଵ, … ,  ெሽ to denote the set of indices for the Mݐ

samples ሼߴ௧ଵ
ଵ, … , ௧ெߴ

ெሽ (each from one machine) associated with a given mixture component, and we let 

∙	ݐݓ ൌ ෑܰ൫ߴ௧೘
௠ | ∙	ݐߴ
തതതത, ݄ଶܫௗ൯

ெ

௠ୀଵ

 

∙	ݐߴ
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1
ܯ
෍ ௧೘ߴ

௠

ெ

௠ୀଵ
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Given the hierarchical Bayes framework, after the posterior distribution of the population parameter is 

obtained, we use the M-H algorithm once more to obtain the individual parameters (see the details in 

Appendix A2, Step 4). 

6 Results 

6.1 Model Comparison 

We compare our model against four other benchmark models in order to investigate the contribution 

of each element of the structural model. Models A, B, and C are special cases of our proposed model without 

forward looking, inattention and unobserved heterogeneity, respectively.  Model D is our proposed model. 

Table 10 shows the log-marginal density (Kass and Raftery 1995) and the hit rate for incidents of overdrafting, 

balance checking and account closing. (We only compare these events because non-incidents are so prevalent. 

The hit rates for non-incidents are given in Appendix A4.) All four measures show that our proposed model 

significantly outperforms the benchmark models. Notably, inattention contributes the most to the model fit, 

which is consistent with our conjecture in §3.2. 

 
A: No Forward 

Looking
B: No 

Inattention
C: No 

Heterogeneity 
D: Proposed

Log-Marginal Density -2937.66 -3628.72 -2759.51 -1751.08
Hit Rate: Overdraft 0.501 0.356 0.509 0.876
Hit Rate: Check Balance 0.407 0.231 0.639 0.843
Hit Rate: Close Account 0.662 0.727 0.670 0.763

Table 10. Model Comparison 
 

6.2 Computational Gains from the Parallel IJC Method 

We report the computational performance of different estimation methods in Table 11.  

Size\Method (seconds) Parallel IJC IJC CCP Parallel FIML FIML
1,000  521 1582 533 658 5,032
10,000 3,205 12,588 4,694 4,887 54,311
100,000 4,072 140,870 55,281 15,920 640,403
>500,000 5,339 788,389 399,417 32,388 3,372,895
 (1.5 hr) (9 days) (5 days) (9 hr) (39 days)

Table 11. Estimation Time Comparison 
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All the experiments are conducted on a server with a dual-core Intel Xeon E5-2630 processors (12 

cores) and 64 GB RAM. The first column shows the performance of our proposed method, the IJC method 

with parallel computing. We compare this method with the original IJC method, the Conditional Choice 

Probability (CCP) method by Arcidiacono and Miller (2011)35 and the Full Information Maximum Likelihood 

(FIML) method by Rust (1987) (or Nested Fixed Point Algorithm)36. As the sample size increases, the 

comparative advantage of our proposed method is more notable. Running the model on the full dataset with 

more than 500,000 accounts takes approximately 1.5 hours, whereas running the original IJC method takes 9 

days37. Our method takes less time because it takes advantage of multiple cores that run in parallel, while the 

other algorithms have not been designed to run in parallel and use only one core. The parallel IJC method is 

almost 600 times faster than the FIML method. This is because the full solution FIML method solves the 

dynamic programming problem at each candidate value for the parameter estimates, whereas this IJC 

estimator only evaluates the value function once for each iteration. 

We further run a simulation study to determine whether the various methods are able to accurately 

estimate all parameters. Table 12 shows that the different methods produce quite similar estimates and that all 

the mean parameter estimates are within two standard errors of the true values. The parallel IJC method is 

slightly less accurate than the original IJC method. 

Var True Value Parallel IJC IJC CCP FIML
Mean 0.9  ࢼࣆ 0.877 0.881 0.854 0.891
  Std 0.043 0.039 0.038 0.028
Mean 0.5 ࣍ࣆ 0.506 0.503 0.509 0.502
  Std 0.132 0.129 0.193 0.106
Mean 5  ࣈࣆ 4.802 5.118 5.28 5.104
  Std 0.573 0.043 0.075 0.048
Mean 5  ࣋ࣆ 5.142 5.130 5.156 5.083
  Std 0.053 0.048 0.059 0.026
ળ 8 Meanࣆ 8.200 8.153 7.943 7.970
  Std 0.075 0.069 0.022 0.013
હ 20 Meanࣆ 19.350 19.471 20.368 20.273
  Std 0.279 0.214 0.158 0.106

                                                      
35 We use the finite mixture model to capture unobserved heterogeneity and apply the EM algorithm to solve for the unobserved 
heterogeneity. More details of the estimation results can be obtained upon request. 
36 We use the random coefficient model to capture unobserved heterogeneity. More details of the estimation results can be obtained 
upon request. 
37 We keep a total of 2000 MCMC iterations and use the first 500 as burn-in. Convergence was assessed visually by using plots of the 
parameters. We chose a store of N=100 past pseudo-value functions. The bandwidth parameter is set to ݄ ൌ 0.01. 
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Mean 0.1  ࢼ࣌ 0.114 0.098 0.081 0.109
  Std 0.016 0.017 0.022 0.013
Mean 0.2 ࣍࣌ 0.218 0.215 0.187 0.209
  Std 0.033 0.029 0.037 0.026
Mean 0.1  ࣈ࣌ 0.113 0.087 0.078 0.089
  Std 0.057 0.032 0.029 0.027
Mean 1  ࣋࣌ 1.109 1.095 1.283 1.084
  Std 0.028 0.025 0.033 0.016
ળ 1 Mean࣌ 1.244 1.188 1.276 1.107
  Std 0.066 0.057 0.072 0.045
હ 2 Mean࣌ 1.832 2.161 1.704 1.912
  Std 0.082 0.070 0.105 0.041

Table 12. Monte Carlo Results When N=100,000 
 

6.3 Parameter Estimates 

Table 13 presents the results of the structural model. 

Var Interpretation Mean (ࣖࣆ)
Standard deviation 

(ࣖ࣌)
Discount factor  ࢏ࢼ 0.9997 0.363
 (0.00005) (0.062)
Standard deviation of relative risk aversion ࢏࣍ 0.258 0.030
 (0.016) (0.006)
Monitoring cost  ࢏ࣈ 4.605 0.259
 (0.087) (0.043)
Inattention Dynamics–lapsed time  ࢏࣋ 7.860 0.652
 (0.338) (0.105)
ળ࢏ Dissatisfaction Sensitivity 5.446 1.278
 (1.356) (0.118)
હ࢏ Mean value of outside option 17.842 2.361

 (1.660) (0.837)
Table 13. Structural Model Estimation Results 
 

We find that the daily discount factor is approximately 0.9997. This is equivalent to a yearly discount 

factor of 0.89, which is largely consistent with the literature (Fang and Wang 2014, Hartmann and Nair 2010). 

The standard deviation of the discount factor is 0.363. This suggests that some consumers have quite low 

discount factors—consistent with our heavy discounting hypothesis.  The monitoring cost is estimated to be 

4.605. Using the coefficient of risk aversion, we can evaluate the monitoring cost in monetary terms to be $2.  

In other words, consumers behave as if checking their balance costs them $2.  (We can also obtain the cost 

measure for each individual consumer.) 
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The variance of the balance perception error increases with the time elapsed since the last balance 

check and with the mean balance level. Notably, the variance in the balance perception error is quite large. If 

we take the average number of days to check the balance from the data, which is 9, then the standard 

deviation is 7.860*9=70.74. This suggests that the balance perception error has a diffuse distribution. 

The estimated dissatisfaction sensitivity parameters confirm our hypothesis that consumers can be 

strongly affected by overdraft fees and close their account due to dissatisfaction. If we consider an average 

overdraft transaction amount of $33, then the relative magnitude of the effect of dissatisfaction is comparable 

to $171. This suggests that unless the bank would like to offer $171 in compensation to consumers, 

dissatisfied consumers will close their current account and choose the outside option.  Moreover, consistent 

with our exploratory data analysis (see Figure 5), the dissatisfaction sensitivity is stronger for light overdrafters 

(whose average is 5.911) than for heavy overdrafters (whose average is 3.387).  Keeping the average overdraft 

transaction amount fixed, a 1% increase in the overdraft fee can increase the closing probability by 0.12%. 

7 Counterfactual Studies of Alternative Overdrafting Policies 

Our structural model allows us to examine counterfactual studies that consider the effect of changing 

the pricing structure on consumers’ spending patterns and, more importantly, their overdrafting behavior. We 

test the effect of three alternative pricing schemes, namely, a reduced per-item flat fee, a percentage fee, and a 

quantity premium. We provide the results in Table 14Error! Reference source not found..  We make two 

assumptions for all these simulations. One is fungibility, i.e., a consumer’s reaction depends only on the fee 

amount rather than the fee structure. If two different fee structures result in the same fee amount, then 

consumers should respond in the same fashion. The other is the universal dissatisfaction effect. We assume 

that consumers’ dissatisfaction effect is proportional to the ratio of the overdraft fee to the transaction 

amount, despite the fee structure. It is possible that consumers will be less dissatisfied with alternative pricing 

schemes, such as a percentage fee, because they may be perceived as more fair (Bolton, Warlop and Alba 

2003). However, we argue that rational consumers discover the commonality between different pricing 

strategies and react to only the essential factor (implicit price) that triggers dissatisfaction. 
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Segment Behavior Current Reduced Flat Percentage Quantity Premium
    $31 $29.27 15.80% 8.5% *I ( OD ≤ 10 ) + 

$31 *I ( OD>10 )
Non-
overdraft
er 

Overdraft Frequency                  -   704 35,224     56,358 
Overdraft Revenue           -   18,993 358,759 308,839 
∆Overdraft Frequency 0.09% 4.70% 7.52%
∆Overdraft Revenue 0.09% 1.61% 1.39%
Interest 6,093,611  6,092,289  6,090,966  6,091,627 
∆Interest -0.02% -0.04% -0.03%
Total Revenue 6,093,611  6,111,282  6,449,724  6,400,466 
∆Total Revenue 0.29% 5.84% 5.04%
Balance Checking Frequency 62.3 60.5 55.3 51.2
Account Closing Frequency 7.87% 7.83% 7.85% 7.80%

Light 
overdraft
er 

Overdraft Frequency  181,113 195,654 575,172  1,069,142 
Overdraft Revenue   5,316,813  5,440,440  6,113,303  6,253,254 
∆Overdraft Frequency 8.03% 217.58% 490.32%
∆Overdraft Revenue 2.33% 14.98% 17.61%
Interest    153,601   154,091 155,875   159,443 
∆Interest 0.32% 1.48% 3.80%
Total Revenue 5,470,413  5,594,531  6,269,178  6,412,697 
∆Total Revenue 2.27% 14.60% 17.23%
Balance Checking Frequency 56.2 51.2 51.4 50.9
Account Closing Frequency 5.30% 5.00% 3.90% 1.70%

Heavy 
overdraft
er 

Overdraft Frequency    568,439   620,097 314,158   579,807 
Overdraft Revenue 16,917,234    17,442,387 16,643,512 17,255,070
∆Overdraft Frequency 9.09% -44.73% 2.00%
∆Overdraft Revenue 3.10% -1.62% 2.00%
Interest  24,213 24,238 24,087 24,213 
∆Interest 0.10% -0.52% 0.00%
Total Revenue 16,941,448    17,466,625 16,667,599    17,279,282 
∆Total Revenue 3.10% -1.62% 1.99%
Balance Checking Frequency 58.4 58.4 58.3 58.4
Account Closing Frequency 4.00% 3.90% 4.50% 4.00%

Total Overdraft Frequency    749,551   816,455 924,554  1,705,308 
Overdraft Revenue 22,234,047    22,901,820 23,115,574    23,817,162 
∆Overdraft Revenue 8.93% 23.35% 127.51%
∆Overdraft Freq 3.00% 3.96% 7.12%
Interest 6,271,426  6,270,617  6,270,927  6,275,283 
∆Interest -0.01% -0.01% 0.06%
Total Revenue 28,505,473    29,172,437 29,386,501    30,092,445 
∆Total Revenue $   670,946 885,231  1,593,922 
∆ Total Revenue % 2.35% 3.11% 5.59%
∆ Consumer Surplus $  1,166,431  1,337,297   515,681 
∆ Consumer Surplus % 0.023% 0.026% 0.010%
∆ Total Surplus 0.036% 0.044% 0.042%
∆Balance Checking Frequency -3.54% -7.27% -6.39%
∆Account Closing Frequency 7.41% -0.31% -1.23% -3.97%

 
Table 14. Welfare analysis under Alternative Pricing 

 

In the first scenario, we keep the per-item flat fee scheme but reduce it to $29.27 per item. Consistent 

with the law of demand, there is a negative relationship between the per-item overdraft fee and the overdraft 

frequency. Our choice of $29.27 is the solution for an optimization task where we solve the optimal per-item 

fee to maximize the sum of the expected revenue. We use revenue instead of profit as the optimization 
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objective because it is nearly impossible to derive an accurate measure of the costs per overdraft occurrence. 

Such costs include bad debts from defaults, labor costs to handle consumer complaints, costs for the 

customer service team to waive fees for some transactions, and so forth. This is a limitation of our analysis. 

The cost of default is an important consideration for banks. Because all three counterfactuals will 

lower the default cost for consumers and make default less likely, we expect that the revenue increase results 

reported here are a lower bound of the effects after taking into account default. Expected revenue is the sum 

of revenue across our entire sample for a one-year period, and it includes overdraft fees and consumers’ 

lifetime value38. For convenience, we define this sum as the total revenue. Because we aggregate data to the 

daily level, we calculate the average transaction amount for each item, which is $44, and we use it to derive 

the total overdraft fee amount. For example, if a consumer overspent by $170, then the consumer would 

incur four overdraft item fees. The optimization is a nested algorithm that searches for the per-item overdraft 

fee in the outer loop, and that solves the consumer’s best response in terms of optimal spending, balance 

checking and account closing, given the fee size in the inner loop. We found that the optimal per-item 

overdraft fee is $29.27, which would increase the bank’s revenue by 2.35%. This suggests that the current 

overdraft fee is too high, because the bank fails to take into account consumers’ negative reactions to 

overdraft fees, which results in a huge loss in consumers’ lifetime value. In other words, at the original per-

transaction price, demand is in the elastic region. Reducing it could increase the total revenue. Notice that for 

non-overdrafters, the account closing frequency increases because some of them start paying overdraft fees 

and, hence, become dissatisfied. Therefore, the interest revenue decreases under the reduced flat fee. 

In the second scenario, the per-item flat fee is converted into a percentage fee of 15.8% (optimized 

in a similar way as described in the first scenario). This is lower than the 17% calculated from the ratio of the 

total fee paid to the total transaction amount that caused the fee in the data. Again, this suggests that the 

bank’s current overdraft fees might be too high. Intuitively, the percentage structure should encourage 

consumers to overdraw on transactions with small amounts but deter them from overdrawing on transactions 

                                                      
38 We calculate the lifetime value of a consumer by multiplying the average balance and the interest rate, accounting for 
the life expectancy (closing the account). This is the source of the interbank interest rate. Board of Governors of the 
Federal Reserve System (US), Effective Federal Funds Rate [FEDFUNDS], retrieved from FRED, Federal Reserve 
Bank of St. Louis https://research.stlouisfed.org/fred2/series/FEDFUNDS, March 14, 2016. 
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with large amounts. Because there are more transactions with small amounts than transactions with large 

amounts, the total revenue generated soars by 3.11%. Therefore, the percentage overdraft fee invites more 

consumers to use the overdraft service. It is this market expansion effect that increases the bank’s overdraft 

revenue. At the segment level, the overdraft frequency for non- and light overdrafters increases, while the 

overdraft frequency for heavy overdrafters decreases. This is because non- and light- overdrafters are mainly 

overdrawing due to transactions with small-amounts, which benefit from a lower cost under the percentage 

fee. In contrast, heavy overdrafters suffer from a higher fee because they overdraw primarily with large 

transaction amounts. 

In the last scenario, a quantity premium structure is employed. Specifically, when a consumer 

overdraws fewer than ten times, the consumer pays an 8.5% percentage fee, but once ten overdrafts occur, 

each overdraft incurs a flat fee of $31. This quantity premium increases the bank’s revenue by 5.59%.  The 

motivation for this fee structure is to charge a quantity premium after second-degree price discrimination in 

which we segment light and heavy overdrafters. The bank would earn more in overdraft fees from the heavy 

overdrafters who are willing to pay for the flat fee but retain the lifetime value for the light overdrafters who 

prefer the percentage fee (due to their high dissatisfaction sensitivity). Different from the percentage fee, 

under quantity premium, the overdraft revenue from heavy overdrafters also increases because the fee is 

capped for them. 

Interestingly, across the three strategies, the balance checking frequency of heavy overdrafters 

remains largely unchanged. This is because they overdraw primarily because of heavy discounting rather than 

inattention due to their low monitoring cost. For non- and light overdrafters, the three new strategies all 

decrease their balance checking frequency, because when their fees become lower, there is less incentive for 

them to check their balance. Furthermore, the reduced flat fee and percentage fee both lead to a drop in 

interest revenue, but the quantity premium leads to a rise in interest revenue because the overdrafters are not 

likely to close their accounts under this pricing strategy. As to welfare effects, both the consumer surplus and 
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the social surplus increase under all three strategies. The increase in consumer welfare comes from reduced 

fees as well as lower monitoring costs incurred by consumers39. 

8 Contributions and Limitations 

The $32 billion in overdraft fees assessed by banks in 2012 has increased consumer attrition and 

drawn regulators’ attention to this issue. However, there is little quantitative research on consumers’ financial 

decision-making processes that explains their overdrafting behavior. The lack of well-calibrated models 

prevents financial institutions from designing appropriate pricing strategies and improving their financial 

products. With the aid of Big Data that capture consumers’ income and spending patterns, banks can use 

adverse targeting (Kamenica, Mullainathan, and Thaler 2011) to help consumers know themselves better and 

make better financial decisions. 

In this paper, we build a dynamic structural model of consumer daily spending that incorporates 

inattention to rationalize consumers’ overdrafting behavior. We quantify the discount factor, monitoring cost 

and dissatisfaction sensitivity for each consumer and use these variables to design new strategies. In 

comparing the current pricing scheme with several alternative pricing strategies, we find that a percentage fee 

structure can increase the studied bank’s revenue through market expansion and that the quantity premium 

structure can increase the bank’s revenue because of second-degree price discrimination. New fee structures 

can also improve consumer welfare because of reduced monitoring costs. 

We calibrated our model at an individual level on a sample of more than 500,000 accounts. This large 

dataset is necessary for several reasons. First, compared with numerous other types of transactions, overdrafts 

are relatively rare events. Without a large amount of data, we cannot detect these rare but detrimental events, 

let alone understand and predict their diverse causes. Second, as shown in section 3 of the paper, we find that 

consumers exhibit great heterogeneity in their spending behavior, cause of overdraft, monitoring cost and 

dissatisfaction sensitivity. Because consumer heterogeneity is high-dimensional, the Big Data allow us to 

                                                      
39 A similar effect is documented in Chen and Yao 2016, where consumers incur lower search costs with refinement 
tools. 
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capture this rich consumer heterogeneity in a much more refined fashion. Third, a selected subset might 

suffer from sampling error or sample bias. Because consumer behaviors and characteristics are high-

dimensional, it is difficult to collect an accurate, random and representative sample. To illustrate the potential 

sampling error, we performed the same analysis on a 10% subset of the data. The predicted revenue in the 

counterfactual of the quantity premium strategy is 6%, or 0.3 million dollars less than the value obtained from 

results using the entire dataset. In other words, the sampling error might lead to an incorrect strategy and a 

significant loss to the bank. Therefore, we argue that, given the sizable sampling error, if the computational 

burden of estimating a dynamic structural model on a large dataset is minimal, as demonstrated by our parallel 

IJC algorithm, using the full dataset is preferred. 

To estimate a complicated structural model with Big Data, we adopt parallel computing techniques in 

combination with the Bayesian estimation algorithm developed by Imai, Jain and Ching (2009). This new 

method significantly reduces the computation burden, and it could be used by other researchers and 

marketers who would like to use structural models to solve real-world large-scale problems. Although we 

apply it to the overdraft context, the model framework can be generalized to analyze other marketing 

problems in which consumers have similar dynamic budget allocation decisions (e.g., utility accounts and 

mobile phones). 

Several limitations of the current study call for future work. First, we do not observe consumers’ 

existing alert settings. Some consumers may have already received alerts to help them make financial decisions. 

This might cause an overestimation of the monitoring cost and an underestimation of the inattention 

sensitivity to lapsed time. But given the prevalence of overdrafts, we conjecture that many consumers are not 

using alerts. And because our counterfactual only alters the pricing strategies, we cannot think of any reason 

that our welfare analysis results can be different after accounting for alerts. Second, we do not have data on 

consumers’ decision to opt-in for overdraft protection by ATM/POS transactions. We only know that if 

ATM/POS transactions caused an overdraft, then the consumer must have opted-in. If no such transactions 

occurred, we do not know the consumer’s opt-in status. Had we known this information, we could have 

provided an informative prior within our Bayesian model, as consumers who have opted-in probably have 
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stronger needs for short-term liquidity owing to fluctuations in the size and arrival time of their income and 

spending. Third, we lack precise data on the bank’s cost structure, and while we can make predictions about 

its revenue, we cannot predict its profits.  Finally, we only model consumers’ non-preauthorized spending in 

their checking account. In reality, consumers usually have multiple accounts, such as savings, credit cards and 

loans, with multiple financial institutions. A model that captures consumers’ decisions across all accounts for 

both short-term and long-term finances would provide a more complete picture of consumers’ financial 

management capabilities and resources so that the bank can design more-customized products. 
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Appendix 

A1. Overdraft Fees at Top US Banks 

Bank 
Overdraft 

Fee 
Max Fees per 

Day

Overdraft 
Protection 

Transfer

Continuous 
Overdraft 

Fee 
Grace Period

Bank of America $35 4 $10.00 $35  5
BB&T $36 6 $12.50 $36  5
Capital One $35 4 $10.00  
Capital One 360 $0  N/A N/A  
Chase $34 3 $10.00 $15  5
Citibank $34 4 $10.00  
PNC $36 4 $10.00 $7  5
SunTrust $36 6 $12.50 $36  7
TD Bank $35 5 $10.00 $20  10
US Bank* $36 4 $12.50 $25  7
Wells Fargo $35 4 $12.50  
Table  A1. Overdraft Fees at Top US Banks 

A2. Estimation Algorithm: Modified IJC 

1. Suppose we are at iteration ݎ . We start with ܪ௥ 	ൌ 	 ቄ	൛ ሚܵ௜
௞	, ෨ܸ ௞൫ መܵ௜

௞, ሚܵ௜
௞; ௜ߴ

௞൯ൟ
௜ୀଵ

ூ
ቅ
௞ୀ௥ିே

௥ିଵ
, where ܫ  is the 

number of consumers, ܰ is the number of past iterations used for the expected future value approximation 

and ߴ௜ ൌ ሼߣ௜, ߫௜, ,௜ߦ ,௜ߩ Υ௜,  .௜ሽߙ

2. Draw ߤణ
௥  (population mean of ߴ௜) from the posterior density (normal) conditional on  ߪణ

௥ିଵ and൛ߴ௜
௥ିଵൟ

௜ୀଵ

ூ
. 

ణߤ
௥ 	~N ൬

∑ ణ೔
ೝషభ಺

೔సభ

ூ
, ణߪ

௥ିଵ	൰. 

3. Draw ߪణ
௥	(population variance of ߴ௜) from the posterior density (inverted gamma) conditional on ߤణ

௥  and 

൛ߴ௜
௥ିଵൟ

௜ୀଵ

ூ
ణߪ .

௥~ܩܫ ቆ
ூ

ଶ
,
∑ ൫ణ೔

ೝషభିఓഛ
ೝ ൯

మ಺
೔సభ

ଶ
ቇ. 

4. For each ൌ 1, . . . , ௜ߴ draw , ܫ
௥ from its posterior distribution conditional on ሺܥ௜

ௗ, ܳ௜
ௗ, ௜ܹ

ௗ, ణߤ
௥ , ణߪ

௥ሻ, which is  

௜݂൫ߴ௜	|	ܥ௜
ௗ	, ܳ௜

ௗ	, ௜ܹ
ௗ, ణߤ

௥ , ణߪ
௥൯ ∝ ణߤ|	௜ߴሺߨ

௥ , ణߪ
௥ሻ	݌௜൫ܥ௜

ௗ|ߴ௜൯	݌௜൫ܳ௜
ௗ	|ߴ௜൯݌௜൫ ௜ܹ

ௗ|ߴ௜൯  

Because there is no easy way to draw from this posterior distribution, we use the M-H algorithm.  

(a) Draw ߴ௜
∗௥from the proposal distribution ݍሺ	ߴ௜

௥ିଵ, ௜ߴ
∗௥	ሻ (e.g., ߴ௜

∗௥~ܰሺ	ߴ௜
௥ିଵ, ௜ߴ ଶሻ, whereߪ

∗௥ is a candidate 

value of ߴ௜
௥ .  
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(b) Compute the pseudo-likelihood for consumer ݅	at ߴ௜
∗௥ , i.e., ݌௜൫ܥ௜

ௗ|ߴ௜
∗௥൯, ݌௜൫ܳ௜

ௗ	|ߴ௜
∗௥൯, and ݌௜൫ ௜ܹ

ௗ|ߴ௜
∗௥൯ . 

Because there is no closed form solution to the optimal strategy profile, a likelihood function based on 

observed ܥ௜௧ becomes infeasible. Instead, we implement a numerical approximation method to establish a 

simulated likelihood function for estimation. For each ܥ௜௧ observed in the data and its corresponding state 

point መܵ௜௧ , we use the following steps to simulate its density: 

i. First assume that the unobserved state variables are ሚܵ௜௧ ൌ ሼߝ௜௧, ,௜௧ߟ ߯௜௧, ߸௜௧ሽ . Draw ݊ݎ ൌ 1000 random 

shocks ሚܵ௜௧ ൌ ሼߝ௜௧, ,௜௧ߟ ߯௜௧, ߸௜௧ሽ from  

௜௧ߟ ∼ ܰ൫0, ߱௜
ଶ൯	, ௜௧ߝ ∼ ܰ൫	0, ߫௜

ଶ൯, ߯௜௧	~ܫܸܧ, ߸௜௧~ܫܸܧ 

ii. For each balance checking decision ܳ ൌ ሼ1,0ሽ and account closing decision ൌ ሼ1,0ሽ , each random draw 

of ሚܵ௜௧; it and the observed መܵ௜௧ calculate the optimal consumption by solving the following equations 

௜௧ܥ
∗ ൫ መܵ௜௧, ሚܵ௜௧|ܳ௜௧, ௜ܹ௧൯ ൌ max݃ݎܽ

஼೔೟
,௜௧ܥ෤௥൫ݒ ܳ௜௧, ௜ܹ௧, መܵ௜௧, ሚܵ௜௧; ௜ߴ

∗௥൯ 

ൌ max݃ݎܽ
஼೔೟

ܷ൫ܥ௜௧, ܳ௜௧, ௜ܹ௧, መܵ௜௧, ሚܵ௜௧; ௜ߴ
∗௥൯ ൅ ෠ௌ೔೟శభܧߚ

௥ ൛ܸ൫ መܵ௜௧ାଵ, ሚܵ௜௧ାଵ; ௜ߴ
∗௥൯|ܥ௜௧, ܳ௜௧, ௜ܹ௧, መܵ௜௧, ሚܵ௜௧ൟ 

iii. Using the calculated ݊ݎ ൌ 1000 optimal ܥ௜௧
∗ ൫ መܵ௜௧, ሚܵ௜௧൯, simulate ݌௜൫ܥ௜௧

ௗ|ߴ௜
∗௥൯, the density of the observed 

௜௧ܥ
ௗ , using a Gaussian kernel density estimator. (This simulation borrows an idea from Yao, Mela, Chiang and 

Chen (2012)). Moreover,  

௜൫ܳ௜௧݌
ௗ ; ௜ߴ

∗௥൯ ൌ
1
ݎ݊

෍
௜௧ܥఞ೔೟൫ݒ൛̅݌ݔ݁

∗ , ܳ௜௧, ௜ܹ௧
∗ , መܵ௜௧, ሚܵ௜௧; ௜ߴ

∗௥൯ൟ

∑ ௜௧ܥఞ೔೟൫ݒ൛̅݌ݔ݁
∗ , ܳ, ௜ܹ௧

∗ , መܵ௜௧, ሚܵ௜௧; ௜ߴ
∗௥൯ൟொ∈ሼ଴,ଵሽఎ,ఌ,ధ

 

and 

௜൫݌ ௜ܹ௧
ௗ; ௜ߴ

∗௥൯ ൌ
1
ݎ݊

෍
ధ೔೟ݒ൛̅݌ݔ݁

൫ܥ௜௧
∗ , ܳ௜௧, ௜ܹ௧

∗ , መܵ௜௧, ሚܵ௜௧; ௜ߴ
∗௥൯ൟ

∑ ధ೔೟ݒ൛̅݌ݔ݁
൫ܥ௜௧

∗ , ܳ௜௧
∗ ,ܹ, መܵ௜௧, ሚܵ௜௧; ௜ߴ

∗௥൯ൟௐ∈ሼ଴,ଵሽఎ,ఌ,ఞ

 

௜൫݌ ௜ܱ
ௗ; ௜ߴ

∗௥൯ ൌෑ݌௜൫ܥ௜௧
ௗ|ߴ௜

∗௥൯݌௜൫ܳ௜௧
ௗ ; ௜ߴ

∗௥൯݌௜൫ ௜ܹ௧
ௗ; ௜ߴ

∗௥൯

்

௧ୀଵ

 

To obtain ݒ෤௥൫ܥ௜௧, ܳ௜௧, ௜ܹ௧, መܵ௜௧, ሚܵ௜௧; ௜ߴ
∗௥൯  , we need ܧ෠ௌᇲ

௥ ൛ܸ൫ መܵ௜
ᇱ, ሚܵ௜

ᇱ; ௜ߴ
∗௥൯|ܥ௜௧, ܳ௜௧, ௜ܹ௧, መܵ௜௧, ሚܵ௜௧ൟ  , which is 

obtained by a weighted average of ൛	 ෨ܸ ௞൫ መܵ௜
௞, ሚܵ௜

௞; ௜ߴ
∗௞൯ൟ

௞ୀ௥ିே

௥ିଵ
, treating ߴ௜  as one of the parameters when 
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computing the weights. In the case of independent kernels, for all መܵ௜ ൌ ሼܤ௜,Ψ௜, ௜ܻ , ,௜ܮܦ ,௜ܦܱ Γ௜, Ξ௜, ܱ ௜ܲሽ, 

because ܤ௜	, 	௜ߌ are continuous and evolve deterministically, Ψ௜  and ܱܦ௜	 are continuous and evolve 

stochastically, and ௜ܻ , ,௜ܮܦ ,௜߁ ܱ ௜ܲ are discrete, so  

෠ௌᇲܧ
௥ ൛ܸ൫ܤ௜

ᇱ, Ψ௜
ᇱ, ௜ܻ

ᇱ, ௜ܮܦ
ᇱ , ௜ܦܱ

ᇱ, Γ௜
ᇱ, Ξ௜

ᇱ, ܱ ௜ܲ
ᇱ, ሚܵ௜

ᇱ; ௜ߴ
∗௥൯|ܥ௜௧, ܳ௜௧, ௜ܹ௧ , ,௜ܤ Ψ௜, ௜ܻ , ,௜ܮܦ ,௜ܦܱ Γ௜, Ξ௜, ܱ ௜ܲ, ሚܵ௜ൟ

ൌ ෍ ෨ܸ௞൫ܤ௜
௞, Ψ௜

௞, ௜ܻ
ᇱ, ௜ܮܦ

ᇱ , ௜ܦܱ
௞, Γ௜

ᇱ, Ξ௜
ᇱ, ܱ ௜ܲ

ᇱ, ሚܵ௜
௞; ௜ߴ

∗௞൯
௜ߴ௛ణ൫ܭ

∗௥ െ ௜ߴ
∗௞൯ܭ௛ௌ൫ܤ௜

ᇱ െ ௜ܤ
௞൯݂൫Ψ௜

௞|߶௜, ௜ܦ௜൯݂൫ܱܩ
௞| ௜ܺ, ௛ௌ൫Ξ௜ܭ௜൯݌

ᇱ െ Ξ௜
௞൯

∑ ௜ߴ௛ణ൫ܭ
∗௥ െ ௜ߴ

∗௟൯ܭ௛ௌ൫ܤ௜
ᇱ െ ௜ܤ

௟൯݂൫Ψ௜
௟|߶௜, ௜ܦ௜൯݂൫ܱܩ

௟| ௜ܺ , ௛ௌ൫Ξ௜ܭ௜൯݌
ᇱ െ Ξ௜

௟൯௥ିଵ
௟ୀ௥ିே

௥ିଵ

௞ୀ௥ିே

 

 We repeat the same step and obtain the pseudo-likelihood ݌௜
௥൫ ௜ܱ

ௗ; ௜ߴ
∗௥ିଵ൯ ) conditional on (ߴ௜

௥ିଵ). 

We then determine whether or not to accept ߴ௜
∗௥ . The acceptance probability, ߉, is given by  

߉ ൌ ݉݅݊ ቆ
௜ߴሺߨ

∗௥; ణߤ
௥ , ణߪ

௥ሻ݌௜
௥൫ ௜ܱ

ௗ; ௜ߴ
∗௥൯ݍ൫ߴ௜

∗௥, ௜ߴ
௥ିଵ൯

௜ߴ൫ߨ
௥ିଵ; ణߤ

௥ , ణߪ
௥൯݌௜

௥൫ ௜ܱ
ௗ; ௜ߴ

௥ିଵ൯ݍ൫ߴ௜
௥ିଵ, ௜ߴ

∗௥൯
ቇ 

where ߨሺ⋅ሻ  denotes the prior distribution. 

(c) Repeat (a) & (b) for all i. 

5. Computation of the pseudo-value function, ൛ ෨ܸ ௥൫ መܵ௜
௥, ሚܵ௜

௥; ௜ߴ
∗௥൯ൟ

௜ୀଵ

ூ
	  

(a) Make one draw of the unobserved state variables ሚܵ
௜
௥  from ߟ௜ ∼ ܰ൫0, ߱௜

ଶ൯	, ௜ߝ ∼ ܰ൫	0, ߫௜
ଶ൯, 

߯௜	~ܫܸܧ,߸௜~ܫܸܧ; 

(b) Compute the pseudo expected future value at ߴ௜
∗௥.  

෠ௌᇲܧ
௥ ൛ܸ൫ መܵ௜

ᇱ, ሚܵ௜
ᇱ; ௜ߴ

∗௥൯|ܥ௜௧, ܳ௜௧, ௜ܹ௧, መܵ௜
௥, ሚܵ௜

௥ൟ

ൌ ෍ ෨ܸ௞൫ܤ௜
௞, Ψ௜

௞, ௜ܻ
ᇱ, ௜ܮܦ

ᇱ , ௜ܦܱ
௞, Γ௜

ᇱ, Ξ௜
ᇱ, ܱ ௜ܲ

ᇱ, ሚܵ௜
௞; ௜ߴ

∗௞൯
௜ߴ௛ణ൫ܭ

∗௥ െ ௜ߴ
∗௞൯ܭ௛ௌ൫ܤ௜

௥ െ ௜ܤ
௞൯݂൫Ψ௜

௞|߶௜, ௜ܦ௜൯݂൫ܱܩ
௞| ௜ܺ, ௛ௌ൫Ξ௜ܭ௜൯݌

௥ െ Ξ௜
௞൯

∑ ௜ߴ௛ణ൫ܭ
∗௥ െ ௜ߴ

∗௟൯ܭ௛ௌ൫ܤ௜
௥ െ ௜ܤ

௟൯݂൫Ψ௜
௟|߶௜, ௜ܦ௜൯݂൫ܱܩ

௟| ௜ܺ , ௛ௌ൫Ξ௜ܭ௜൯݌
௥ െ Ξ௜

௟൯௥ିଵ
௟ୀ௥ିே

௥ିଵ

௞ୀ௥ିே

 

(c) Compute ෨ܸ ௥൫ መܵ௜
௥, ሚܵ௜

௥; ௜ߴ
∗௥൯ using the pseudo expected future values computed in (b) and the optimal 

choices ܥ௜
∗	, ܳ௜

∗	, ௜ܹ
∗. 

෨ܸ ௥൫ መܵ௜
௥, ሚܵ௜

௥; ௜ߴ
∗௥൯ ൌ ܷ൫ܥ௜

∗	, ܳ௜
∗	, ௜ܹ

∗, መܵ௜
௥, ሚܵ௜

௥; ௜ߴ
∗௥൯ ൅ ෠ௌᇲܧߚ

௥ ൛ܸ൫ መܵ௜
ᇱ, ሚܵ௜

ᇱ; ௜ߴ
∗௥൯|ܥ௜

∗	, ܳ௜
∗	, ௜ܹ

∗, መܵ௜
௥, ሚܵ௜

௥ൟ 

where ܥ௜
∗	, ܳ௜

∗	, ௜ܹ
∗ satisfy 

෨ܸ ௥൫ መܵ௜
௥, ሚܵ௜

௥; ௜ߴ
∗௥൯ ൌ max

஼೔,ொ೔,ௐ೔
ܷ൫ܥ௜, ܳ௜, ௜ܹ , መܵ௜

௥, ሚܵ௜
௥; ௜ߴ

∗௥൯ ൅ ෠ௌᇲܧߚ
௥ ൛ܸ൫ መܵ௜

ᇱ, ሚܵ௜
ᇱ; ௜ߴ

∗௥൯|ܥ௜, ܳ௜, ௜ܹ , መܵ௜
௥, ሚܵ௜

௥ൟ 

 (d) Repeat (a-c) for all i.  

6. Go to iteration ݎ ൅ 1. 
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A3. Parallel MCMC Sampling Algorithm 

Input: Subposterior samples, ൛ߴ௧భൟ௧భୀଵ
்

,ሻߴଵሺ݌~	 … , ൛ߴ௧ಾൟ௧ಾୀଵ
்

 ሻߴெሺ݌~

Output: Posterior samples (asymptotically, as ܶ → ∞ ), ሼߴ௜ሽ௜ୀଵ
் ∼ ଵ݌ . . . ሻߴெሺ݌ ∝  ேሻݔ|ߴሺ݌

1: Set ݄ ൌ 1.  10: Draw ∼ ܷ݂݊݅ሺሾ0,1ሿሻ .  

2: Draw ݐ	 ⋅	ൌ ሼݐଵ	, . . . , 	ெሽݐ 	ܷ݂݊݅ሺሼ1, … , ܶሽሻ∼
௜௜ௗ   11: if ݑ ൏

௪೟ ⋅

௪೎ ⋅
 then  

3: Set 	⋅	ൌ 	ݐ ⋅ . 12: Draw ߴ௧ ∼ ܰሺ̅ߴ௧ ⋅ ,
௛మ

ெ
ௗܫ ሻ .  

4: Draw ߴଵ ∼ 	ܰ ቀ̅ߴ௧	⋅	,
௛మ

ெ
⋅ ௗቁ . 13: Setܫ ൌ ݐ ⋅ . 

5: for ݅	 ൌ 	2 to ܶ do  14: else  

6: for ݉	 ൌ 	1 to ܯ do 15: Draw ߴ௧ ∼ ܰሺ̅ߴ௖ ⋅ ,
௛మ

ெ
ௗܫ ሻ . 

7: Set ݐ	 ⋅	ൌ ܿ	 ⋅	. 16: end if  

8: Draw ݐ௠ 	∼ 	ܷ݂݊݅ሺሼ1, … , ܶሽሻ 17: end for  

9: Set ݄ ൌ 	 ݅ି
భ

ሺరశ೏ሻ .  18: end for 

Table A2. Algorithm: Asymptotically Exact Sampling via a Nonparametric Density Product Estimation 

A4. Model Comparison--Hit Rates for Non-incidents 

 
A: No Forward 

Looking
B: No 

Inattention
C: No 

Heterogeneity 
D: Proposed

Hit Rate: Overdraft 0.893 0.81 0.925 0.939
Hit Rate: Check Balance 0.766 0.659 0.804 0.897
Hit Rate: Close Account 0.885 0.853 0.901 0.916

Table A3. Model Comparison 

A5. Predict Overdrafting 

Instead of conditioning on overdrafting, we examine the factors that can predict whether a consumer 

is going to overdraw and whether the consumer is a heavy overdrafter or a light overdrafter. The logistic 

regressions in Table A4 show the following: 

• Being younger or a student increases the likelihood that a consumer will overdraw and be a light overdrafter. 

• Having low income increases the likelihood that a consumer will overdraw and be a heavy overdrafter. 

• Having longer tenure/direct deposit/more debit/credit/mortgage accounts decreases the likelihood that a 

consumer will overdraw or be a heavy overdrafter. 

• Having more debit card transactions increases the likelihood that a consumer will overdraw and be a light 

overdrafter. 
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• Checking balances frequently or having a steep spending slope decreases the likelihood that a consumer will 

be a light overdrafter. 

Dep Overdraft=1 (N=275,843, R2=0.1561) Dep: OD Freq (N=56,362, R2=0.03) 
Var Est. Std. Var Est. Std. 
Age -0.0045*** 0.0004 Age  0.0097*** 0.0008
Low Income  0.2617*** 0.0117 Low Income  0.0593* 0.0237
Student  0.6510*** 0.0284 Student -0.3744*** 0.0737
Tenure -0.0023*** 0.0001 Tenure -0.0010*** 0.0001
Direct Deposit -1.0780*** 0.0143 Direct Deposit -0.2895*** 0.0357
Debit Card Acct -0.0693*** 0.0049 Debit Card Acct -0.0480*** 0.0105
Credit Card Acct -0.5911*** 0.0127 Credit Card Acct -0.6464*** 0.0359
Mortgage Acct -0.0981*** 0.0281 Mortgage Acct -0.2773*** 0.0683
Debit Card #Txn  0.0053*** 0.0002 Debit Card #Txn -0.0007* 0.0003
Online Transfer #Txn -0.0957*** 0.0140 Online Transfer #Txn -0.0226 0.0278
Balance Checking Freq  0.0030     0.0020 Balance Checking Freq  0.0010*** 0.0000
Spending slope  0.0236*** 0.0168 Spending slope  0.0507*** 0.0088

Note: ***: p-value<0.001, **: p-value<0.01, *: p-value<0.05 
Table A4. Predict Overdrafting.  
 

A6. One-Period-Ahead Model 

Following Gabaix et al.’s (2006) directed cognition (DC) model, we solve the problem by evaluating 

the utility as if each evaluation operation were the last. To apply directed cognition, we calculate the expected 

benefit and cost of each available choice alternative as if this operation were the last one executed before a 

final choice is taken. We call this model a one-period-ahead model.  We compare the model fit and parameter 

estimates of the three models: a myopic model, a one-period-ahead model and a fully forward-looking model. 

  A: Myopic B: One Period Ahead E: Fully Forward-Looking

Log-Marginal Density -2943.28 -2482.09 -1758.33
Hit Rate: Overdraft 0.499 0.657 0.87
Hit Rate: Check Balance 0.405 0.705 0.841
Hit Rate: Close Account 0.66 0.691 0.758

Table A5. Model Comparison 
 

Table A5 shows that the one-period-ahead model has a better model fit than the myopic model but a 

worse fit than the fully forward-looking model. This suggests that when performing dynamic budget 

allocations, consumers have foresight greater than one day. 
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Var Interpretation One Period Ahead Fully Forward-Looking 

 Discount factor ࢏ࢼ
ଵ

ଵା௘௫௣ሺఒ೔ሻ
 0.9998 0.9997

Standard deviation of discount factor 0.381 ࢏ࢼ࣌ 0.363

Standard deviation of preference shock 0.271 ࢏࣍ 0.258

Monitoring cost 4.850 ࢏ࣈ 4.605

Inattention sensitivity to lapsed time 7.093 ࢏࣋ 7.860

ળ࢏ Dissatisfaction sensitivity 8.625 5.446

હ࢏ Mean value of outside option 13.277 17.842
Table A6. Comparison of the Structural Model Estimation Results  
 

Moreover, we find (in Table A6) that the estimated discount factor is higher in the one-period-ahead 

model than in the fully forward-looking model. Failing to account for the full dynamics can also lead to an 

overestimation of the standard deviation of the preference shock, monitoring cost and dissatisfaction 

sensitivity and an underestimation of the inattention sensitivity to time elapsed since the last balance check 

and the outside option value. 

A7. Discussion of the Normalization Constraint on Identification 

 Past work by Norets and Tang (2013), Arcidiacono and Miller (2015), Aguirregabiria and Suzuki 

(2014), Chou (2015) and Kalouptsidi, Scott, and Souza-Rodrigues (2015) have found that under certain 

conditions, normalizations of payoffs across states in dynamic discrete choice models may not be innocuous 

for predicting counterfactual outcomes. However, these conditions are not met in our case, so our 

normalization is indeed innocuous. In the following, we show that our procedure meets the conditions for 

innocuous normalization specified in each of the aforementioned papers. 

 First, as shown in Lemma 3 of Norets and Tang (2013), setting the outside option payoff to an 

arbitrary vector (for example, zero) “can serve as an innocuous normalization if the goal is to predict 

counterfactual outcomes under linear changes in the per-period payoffs”. In our pricing counterfactuals, the 

changes are linear in the per-period payoffs, so the normalization is innocuous. The case where normalization 

is not innocuous is to change the state transition matrix, which does not apply to our counterfactual (to be 

further explained later). 
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 In addition, the examples in Appendix B of Chou (2015) change the state transition matrix, which 

does not apply to our case. Moreover, Arcidiacono and Miller (2015) confirm that “counterfactual choice 

probabilities for temporary policy changes are identified if the policy change only affects the flow payoffs, 

though in the context of non-stationary finite horizon short panels”. In the setting of entry and exit game, 

Aguirregabiria and Suzuki (2014) (Proposition 3 and Proposition 4) reinforce the findings that when 

counterfactuals change only the per-period payoffs, rather than the discount factor or the state transition 

matrix, identification is guaranteed. The same idea is supported by Kalouptsidi, Scott, and Souza-Rodrigues 

(2015) (Proposition 21).  In summary, as long as our counterfactual affects the per-period payoffs rather than 

the state transition matrix, the normalization is innocuous. 

 Next, we show that our counterfactual affects only the per-period payoffs, not the state transition. 

There are three dynamic choices in our model, one continuous, which is consumption, and two discrete, 

which are balance check and account close. The normalization is applied to the discrete choice of account 

close. Therefore, if the counterfactuals do not affect the state transitions related to this choice, then 

normalization is innocuous. As shown in Blevin 2014, when both continuous and discrete choices are present, 

the model can be decomposed into two stages. In stage one, the agent makes a discrete choice, then in stage 

two, the agent makes a continuous choice given her previous discrete choice. As noted in Chow 2015, “the 

advantage of using such a two-stage specification is that once the policy function of continuous choice is 

identified, the optimal continuous choice can be viewed as an observable state variable”. Our model is a 

direct application of this setup. After solving the optimal continuous choice problem for consumption, when 

the agent is solving the optimal stopping problem of whether to close the account, the optimal consumption 

can be treated as a state variable that affects only the per-period payoff. Thus, in the counterfactuals where we 

change the pricing strategy from per-transaction fee to percentage fee or quantity-premium, the changes only 

apply to the per-period payoff from consumption, not to the state transition related to the discrete choice of 

account close. Let ܱ ௜ܲ௧ be the state variable that denotes the status of the account, whether open or not 

(ܱܲ ൌ 1 is open and ܱܲ ൌ 0 is closed).  In fact, the state transition  
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݂ሺܱ ௜ܲ௧ାଵ|ܱ ௜ܲ௧, ௜ܹ௧ሻ ൌ ቐ
0, ݂݅	ܱ ௜ܲ௧ ൌ 0
1, ݂݅	 ௜ܹ௧ ൌ 0	ܽ݊݀	ܱ ௜ܲ௧ ൌ 1
0, ݂݅	 ௜ܹ௧ ൌ 1	ܽ݊݀	ܱ ௜ܲ௧ ൌ 1

 

is deterministic and does not change in the counterfactuals. Our conclusion is that the normalization used in 

our model is innocuous for identification of the utility primitives and counterfactuals because of the nature of 

the counterfactuals.  

A8. Proof for Satisfying All the Assumptions of IJC’s  

ASSUMPTION 1: Parameter space ߆ ⊆	ܴ௃  is compact, that is, closed and bounded in the Euclidean space ܴ௃ . The 

proposal density ݍሺߠ,൉ሻ is continuously differentiable, strictly positive, and uniformly bounded in the parameter space given any 

	ߠ ∈  .߆

In our model, the parameter space is compact in the Euclidean space. The proposal density is normal, so it is 

continuously differentiable, strictly positive and uniformly bounded in the parameter space given any ߠ	 ∈  .߆

ASSUMPTION 2: For any ݏ	 ∈ 	ܵ , ܽ	 ∈ ܣ	 , and ߳ 	ߠ , ∈ ߆	 , | ෨ܴሺݏ, ܽ, ߳, |ሻߠ ൏ ோܯ  for some ܯோ ൐ 	0 . Also, 

෨ܴሺݏ, ܽ,∙, ,ݏሻ is a nondecreasing function in ߳ and ෨ܴሺߠ ܽ,∙,∙ሻ satisfies the Lipschitz condition in terms of 	߳ and θ. Also, the 

density function ݀ܨሺ߳, ሻ and the transition function ݂ሺ൉ߠ | ൉, ܽ,൉ሻ given a satisfy the Lipschitz condition. 

In our model, ෨ܴሺݏ, ܽ,൉௔, ሻߠ ൌ ݉݅݊ሼ݉ܽݔሼ ௜ܷ௧ሺݏ, ܽ, ߳, ,	ሻߠ െܯோሽ,ܯோሽ . We assume ܯோ ൌ 10ଵ଴ . Our per-

period utility function ௧ܷ has additive error terms χ and ϖ, and another error term ε in the CRRA function. 

డ௎೔೟
డఌ೔೟

ൌ
஼೔೟
భష೐ೣ೛൫ഇ೔శഄ೔೟൯௘௫௣ሺఏ೔ାఌ೔೟ሻሼ௟௡஼೔೟ሾ௘௫௣ሺఏ೔ାఌ೔೟ሻିଵሿାଵሽ

ሾଵି௘௫௣ሺఏ೔ାఌ೔೟ሻሿమ
൐ 0. Thus, ௜ܷ௧  is a nondecreasing function in all the 

error terms. 

෨ܴሺݏ, ܽ,∙,∙ሻ satisfies the Lipschitz condition because it is continuously differentiable in ߳ and θ in the compact 

parameter space. The density functions for χ and ϖ are Type 1 extreme values, while the density function for 

ε is normal. All of them satisfy the Lipschitz condition. Many state variables in the model are iid, including 

bills (ߖ௜௧), income ( ௜ܻ௧), overdraft fee (ܱܦ௜௧), and all error terms (ߝ௜௧, ߯௜௧, ߸௜௧). The other state variables all 

transit deterministically, including (perceived) balance (ܤప௧෪ ), days left until the next payday (ܮܦ௜௧), days since 



- Appendix: 9 - 

last balance check (Γ୧୲), the ratio of the overdraft fee to the overdraft transaction amount (Ξ୧୲) and open 

status (ܱ ௜ܲ௧). Deterministic transitions automatically satisfy the Lipschitz condition. 

ASSUMPTION 3: ߚ is known, and ߚ ൏ 1. 

Although we estimate ߚ in the model, the mean relative risk averse coefficient is assumed to be known. 

Fixing one of the two is sufficient to identify the payoff function as well as counterfactual payoffs and the 

convergence of IJC. 

ASSUMPTION 4: For any ݏ	 ∈ 	ܵ, ߳, and ߠ	 ∈ ,ݏሺ଴ሻሺܸ ,߆	 ߳, ሻߠ 	൏ ூܯ ூ for someܯ	 ൐ 0. Furthermore, ܸሺ଴ሻሺݏ.൉,൉ሻ 

satisfies the Lipschitz condition in terms of ߳ and ߠ. 

In iteration 0, we allow the expected value function to be 0. Thus,  ܸሺ଴ሻሺݏ, ߳, ሻߠ 	൏ 	1. As a result, the 

Lipschitz condition is satisfied. 

ASSUMPTION 5: ߨሺߠሻ is positive and bounded for any ߠ	 ∈ 	ߠ Similarly, for any uniformly bounded .߆	 ∈  ,ܸ and ߆	

,ߠ|	ሺܻே೏,்೏ܮ ܸሺ൉, ሻሻߠ ൐ 0 and is bounded and uniformly continuous in ߠ	 ∈  .߆	

In our model, the prior for all ߠ is normal, and the prior for all hyper-parameters is diffuse normal. Thus, the 

prior distribution is positive and bounded for any ߠ	 ∈  Our likelihood function is bounded and uniformly .߆	

continuous in ߠ	 ∈  .߆	

ASSUMPTION 6: ܰሺݐሻ  is nondecreasing in ݐ , increases at most by one for a unit increase in ݐ , and ܰሺݐሻ →∞ . 

Furthermore, ݐ െ ܰሺݐሻ → ∞ and there exists a finite constant ܣ ൐ 0 such that ෩ܰሺ݈	 ൅ 1ሻ ൏ ܣ ෩ܰሺ݈ሻ for all ݈	 ൐ 	1, and, 

for any ݈	 ൌ 	2, … , ܰሺݐሺ݈ሻ ൅ 1ሻ 	ൌ 	ܰሺݐሺ݈ሻሻ ൅ 1. 

We set N=100. Because the number of iterations t=2000, all the requirements are satisfied. 

ASSUMPTION 7: The bandwidth h is a nonincreasing function of ܰ  and because ܰ	 →∞ , ℎሺܰሻ 	→ 	0  and 

݄ܰሺܰሻଽ௃ → ∞. Furthermore, ݄ሺܰሻ is constant for ܰሺݐሺ݈ሻሻ ൏ ܰ	 ൑ 	ܰሺݐሺ݈ ൅ 1ሻሻ. 

We set h=0.01. All the conditions are satisfied. 

ASSUMPTION 8: ܭ௛ሺ൉ሻ is a multivariate kernel with bandwidth ݄ ൐ 0. That is, ܭ௛ሺݖሻ 	ൌ 	 ሺ1/݄௃ሻܭሺݖ/݄ሻ, where K 

is a nonnegative, continuous, bounded real function that is symmetric around 0 and integrates to 1, that is, ܭ׬ሺݖሻ݀ݖ 	ൌ 	1. 
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Furthermore, ׬ ݖሻ݀ݖሺܭݖ 	൏∞  and ׬ ௭|வଵ/௛|ݖሻ݀ݖሺܭ 		൑ ସ௃݄ܣ	  for some positive constant ܣ , where for a vector ݖ , 

|ݖ| 	ൌ  .has an absolutely integrable Fourier transform ܭ ௝|, andݖ|௝ୀଵ,…,௃݌ݑݏ

We use the standard normal kernel, so it satisfies all the constraints. 

 


