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Abstract

We develop a general theory relating technology change and skill demand. Performers (hu-
man or machine) face stochastic issues that must be solved in order to complete tasks. Firms
choose how production tasks are divided into steps, the rate at which steps need to be com-
pleted, and the skill of the performer assigned to a step. Longer steps are more complex.
Performers face a tradeoff between the complexity of their step and the rate at which they
can perform. Human performers tend to have an advantage in complex steps while machine
performers have an advantage in high rates. The cost of fragmenting tasks into steps and the
cost of allocating performers to multiple steps are both central to the theory. We derive the op-
timal division of tasks, the level of automation, and the demand for workers of different skill
levels. The theory predicts that automation generates skill polarization at lower production
volumes and is upskilling at higher volumes; in addition, the theory implies that a reduction
in fragmentation costs (such as interchangeable parts) increases the demand for low skill; and
that technology change that raises the cost of fragmenting tasks (such as parts consolidation)
reduces the dispersion of skill demand. We find counterparts to the theory across a range of
contexts and time periods, including the Hand-Machine Labor Study covering mechanization
and process improvement at the end of the 19th century and in contemporary automotive body
assembly and optoelectronic semiconductor manufacturing.
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1 Introduction

The goal of this paper is to understand why different technological advancements have had
varying effects on workers throughout history. For instance, the introduction of the factory system
and machinery in the 19th century resulted in a reduction in skill requirements (Hounshell,
1985; Goldin and Katz, 1998). Conversely, the automation of routine tasks from the 1970s to the
1990s led to an increase in skill demand (Autor, Levy, and Murnane, 2003).1 While the literature
has provided compelling explanations of these patterns in terms of substitutability between the
capital that embodies a technology and worker skill, it does not explain why these differences
in substitutability exist. This paper provides an explanation: we identify three pivotal factors
that together can explain the impact of technology on the demand for skills. The first factor,
recognized since Adam Smith’s time, pertains to technology’s role in shaping the division of
labor. The second factor looks at the trade-offs between the complexity of tasks and the speed
of execution, and ways in which the tradeoff differs for machines and workers. The final factor
looks at the cost of redeploying workers or machines at different tasks.

The starting point of the model is the set of tasks that must be completed to make a product or
a service. To minimize the cost of producing at a given volume, a firm chooses how to divide this
set of tasks into production steps. The firm selects the performer type for each step (humans or
machines of different ability level) and the rate of production for each step. The difficulty of a step
is increasing in the number of tasks (the length of a step) and in the rate at which the step needs
to be completed. How the difficulty of a step is impacted by the number of tasks or the rate of
completion is specific to the type of performer: humans are less sensitive to the number of tasks
than machines (they are more general than machines) but more sensitive to rate. In deciding
the division of production, the firm faces a trade-off. More difficult steps require a more able
and thus more costly performer. This mechanism provides an incentive for smaller steps. On the
other hand, division of two sequential tasks incurs fragmentation costs, providing an incentive for
longer steps. The firm must also take into account excess performer capacity, either by allowing
a performer to be idle or by reallocating the performer to a different step. Reallocation incurs a
performer-specific divisibility cost. This cost is higher for machines than humans. In the model,
technological change can be described in terms of how it alters five dimensions: 1) the overall
complexity of a process, 2) the cost of dividing tasks in a process, 3) the sensitivity of performers
to the rate of production, 4) the sensitivity of performers to the number of tasks in a step, 5) the
cost of dividing performers among multiple steps.

We characterize the impact of key technological changes on production and workers with
three main results. First, we identify conditions under which it is optimal for firms to divide
production into smaller steps. We show that heterogeneous costs of dividing different tasks are
necessary for heterogeneity in ability demand within a firm. For division to occur, performer

1The literature on the impact of technology on workers and specifically the way in which different technologies
differ is vast. As a starting point refer to: Caselli (1999), Bresnahan, Brynjolfsson, and Hitt (2002), Acemoglu and
Autor (2011) Autor and Dorn (2013), Dinlersoz and Wolf (2018), Eden and Gaggl (2019), Acemoglu and Restrepo
(2020), Jaimovich et al. (2021).
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costs must be convex in the length of steps. This convexity occurs when wages are sufficiently
convex with increasing skill or with a sufficiently high production volume. From a historical
perspective, the optimality of division of labor under high volume explains the adoption of the
factory system and of the assembly line.

Second, we provide conditions under which it is optimal to automate a step. We find that
two dimensions determine the choices of automation: the volume of production and the step
length. Within these two dimensions, our theoretical results identify a region we call a cone
of automation. Specifically, we find that at sufficiently low production volumes no automation is
optimal because the higher divisibility costs of machines lead firms to leave them idle, thus raising
overall costs. At middle production volumes, it is optimal to automate middle-length steps. This
causes machines to substitute for middle skill workers, generating skill polarization. Short steps
are not automated because they have high rates of work and hence low machine utilization,
leading to high idling costs. Long steps are also not automated due to their complexity. As steps
increase in length, the cost of a machine performer increases faster than a human performer,
because machine performers are less general than human performers. At high volumes, machine
utilization is high even at high rates of work, and so only the longest steps are not automated
(substituting for low and middle skill workers). The cone of automation is a useful result for
understanding the root causes of historical variation in the effects of automation (Goldin and Katz,
1998) and the more recent polarization of occupational demand (Goos, Manning, and Salomons,
2009; Acemoglu and Autor, 2011). The result on the cone of automation is significant as it implies
that the phenomenon of skill polarization is not only a relatively recent aggregate information-
technology related phenomenon but is connected to any type of automation and is potentially
observable at firm level.

For our third main result we explore how changes in the division of tasks can affect skill
demand and hence wages. We show that declining costs of dividing tasks (occurring during
the initial phases of the industrial revolution) decreases the lower bound of skill demand. We
also consider technologies that reduce fragmentation costs but increase process complexity (such
as modularization). We find that such technologies increase inequality between the highest and
lowest wages by polarizing the upper and lower bounds of skill demand. This result also shows
that technologies that reduce process complexity by eliminating opportunities to divide tasks
(such as parts consolidation) can reduce inequality between the highest and lowest wages.

We take our model to the data and provide empirical counterparts to key results of the the-
ory. The model presented in the paper is rich enough to provide a tight linkage with production
operations data. This type of data has rarely been used in the economic analysis of technology
change. We use three sources of detailed operations data. The first dataset is the Hand and Machine
Labor Study (HML) (Wright, 1898), covering mechanization and process innovations at the time
of the Second Industrial Revolution (1870s to 1910s). This dataset breaks down the production
of products spanning mining, agricultural, manufacturing and transportation services. The other
two data sets are contemporary, capturing in detail the optoelectronic semiconductor component
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production and assembly (Combemale, Whitefoot, Ales, and Fuchs, 2020) and the automotive
body assembly (Fuchs, Field, Roth, and Kirchain, 2008). The optoelectronic semiconductor data
involves hand-collected shop-floor-level production data for a single data communications prod-
uct. The automotive body assembly data contains detailed data on process flow from multiple
major U.S. vehicle manufacturers.

In taking the model to the data, we first look at some of the underlying assumptions of
the model. We find evidence (using the automotive and optoelectronic semiconductor data)
of the trade-offs between the number of tasks in steps and the rate of operations, consistent
with the developed model. We also find evidence (using the optoelectronic semiconductor data)
that the level of ability demand is indeed increasing with the number of tasks that make up a
production step. We show that our theory can explain historical and contemporary changes in
the distribution of worker ability demand when technology impacts the cost of dividing tasks.
We show in the HML context that an increase in the division of tasks leads to polarization toward
the highest and lowest wages. This finding is consistent with what the theory would predict for
technology changes occurring at the time, such as the adoption of interchangeable parts. The
theory is also consistent with our observations in optoelectronics that technologies that reduce
the divisibility of tasks but also reduce process complexity (such as parts consolidation) lead to
a convergence of ability demand, with less demand for the highest and lowest ability and higher
demand for middle-level ability. Finally, our main result, we find that the theory can rationalize
patterns of substitution of machines for human workers. We recover an empirical analog to
the cone of automation directly from production data during the second industrial revolution, in
the HML study. The empirical analogue cone of automation is built by comparing steps across
products with different levels of utilization (a measure that can be related to production volumes
in our theory). In modern production data on optoelectronics, we also show polarization of
ability demand following automation, consistent with the implications of our theory at middle
production volumes.

Literature Building on Adam Smith’s insights and the pin-factory example, a small literature
examines task division factors. Smith and Stigler (1951) suggest market size limits specialization
due to low demand for high-output firms in small markets. An alternative view (Becker and
Murphy (1992); Yang and Ng (1998)) considers coordination costs among team members as the
limit. Our approach covers both aspects: volume is directly considered, and coordination costs
are represented as fragmentation costs. Our findings expand on this literature, revealing how
task division, technology change, and skill demand interact, showing that finely divided tasks
are more susceptible to automation in high-volume settings.

We connect to a literature focusing on the task content of production (Autor, 2013; Acemoglu
and Restrepo, 2018a,b) and featuring task-assignment models.2 The former examines the long-
run effects of displacement of workers by capital using a framework where jobs are bundles of

2See for example, Rosen (1978); Costinot and Vogel (2010); Ales et al. (2015); Lindenlaub (2017); Ocampo (2018);
Haanwinckel (2020).
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tasks that can be performed by humans or machines. The latter literature studies the optimal
assignment of heterogeneous workers to jobs of varying complexity.3 Similarly to Autor (2013)
and Acemoglu and Restrepo (2018a,b), we consider a job as a bundle of steps and study the as-
signment of a step to either a human or a machine. Similarly to other task-assignment models,
we consider heterogeneous workers with different abilities that can be assigned to jobs of varying
complexity. We extend both approaches by considering technology change more broadly (going
beyond automation) and by studying the endogenous bundling and assignment of work activi-
ties. In our model the assignment is endogenous and so is the complexity of the job, which is
determined by the set of tasks and the rate of production. This approach is closer to the original
motivation of Rosen (1978). We also study the effects of performer indivisibility on differential
returns to scale, a feature whose importance Rosen emphasized but did not include in his model.
Our focus is also distinct from most of this literature. This paper is well suited at analyzing
changes that occur within firms adopting new technologies. On the other hand, papers such as
Acemoglu and Restrepo (2018b), considering creation of new tasks, speak on the equilibrium of
the entire economy.

The paper relates to the literature on polarization of occupational demand (Goos, Manning,
and Salomons, 2009; Acemoglu and Autor, 2011; Goos, Rademakers, Salomons, and Vandeweyer,
2019; Jaimovich and Siu, 2020). This literature has identified aggregate changes in the occupa-
tional structure of advanced economies in the last few decades. Polarization refers to the fact that
middle-wage occupations exhibit slower growth relative to low and high paying occupations. Rel-
ative to this literature, we provide a micro-founded mechanism for these occupational changes.
We show the condition in which automation is more likely to occur for mid-level skills, and we
also examine when automation occurs for low-level skills. In addition, the data presented in this
paper provides additional plant-level evidence of the polarization phenomenon.

The paper also connects to the literature on the labor consequences of different forms of
automation, from traditional mechanization (Goldin and Katz, 1998) to robotics (Graetz and
Michaels, 2018; Acemoglu and Restrepo, 2020) to machine learning (Brynjolfsson et al., 2018).
We do so by explaining how these and other technological changes affect task divisibility and
may generate differential labor outcomes. For example, in our theory robotics offers more gen-
eral performers than traditional mechanization, leading to more automation of high skill steps.
Meanwhile machine learning offers both greater generality and greater divisibility, which leads
to more automation of high and low skill steps.

Our modeling approach, like Garicano and Rossi-Hansberg (2006), focuses on hierarchical
organization within firms, dividing tasks by complexity and assigning them to workers, creating
an endogenous earnings-talent link. Unlike their work, our theory accommodates flexible task
division, involving human and machine performers, and endogenous production rates.

The paper proceeds as follows: Section 2 motivates the key ingredients in the model which is
formalized in Section 3. Section 4 analyzes the implications of the model: optimality of division

3Most of the task-assignment literature is fairly general in the set of jobs and skills analyzed. This is expected as
the scope of the analysis encompasses the entirety of the labor market.
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of tasks and provides results leading to the cone of automation. Section 5 provides empirical
counterparts on the main findings of this paper. Section 6 concludes.

2 Empirical Motivation

This section introduces and provides support for our modeling ingredients using evidence from
the economic, historic, and engineering literature.

A key feature of the theory is the ability of a firm to divide production in multiple steps and
assign these steps to either a human or machine performer. The historical literature provides
extensive examples of the importance of the division of tasks for early US manufacturing. For
example, Hounshell (1985) and Womak, Jones, and Roos (1990) provide measurement for Ford
automotive assembly plants. They report that with the introduction of the moving assembly line
around 1913, the average cycle time of a worker decreased from 2.3 to 1.2 minutes (the cycle
time was 514 minutes before a fine division of tasks was introduced). Hounshell (1985) and
Womak et al. (1990) also report that the demand for the skill of workers also changed during the
move from craft production to factories to the adoption of the assembly line. In the time of craft
production, a worker was trained via lengthy apprenticeships on many aspects of automobile
fabrication and assembly; however, by the time the assembly line was in full usage, the average
training time for a worker was measured in minutes. This is an important ingredient of our
theory: the fewer the tasks to perform, the easier the job for a worker.4

The difficulty of completing a job is also driven by the overall time a worker or a machine
has available to complete a task. The trade-off between measures of complexity and speed of
execution has been extensively documented for both humans and machines.5 Our own measure-
ments confirm these regularities. In Figure 1a we display machine-level data from the automotive
industry taken from Fuchs et al. (2008). In this case, it can be clearly seen how more complex part
production (involving multiple welding joins per each step) is associated with an overall decrease
in the number of completed steps per unit of time.6 Dividing production into ever smaller steps
is not costless. When production is divided, one task in a sequence is handled by a different per-
former from the next task. Transferring a work-in-progress from one performer to another takes
time for both parties and creates errors. This phenomenon has been extensively studied, see for
example Becker and Murphy (1992) and Baldwin (2008). Our own measurements illustrate the
importance of these costs. In Figure 1b, we look at machine-level data from the optoelectronic
semiconductor manufacturing industry taken from Combemale et al. (2020). A lower bound on

4For an example of this pattern for services refer to Autor et al. (2002) that looks at the division of tasks in a
check-processing department before and after the introduction of computerized equipment.

5See the work of Fitts (1954), Welford (1981) and MacKay (1982) for the case of human motor movements; For
application to robotic systems refer to Lin and Lee (2013). The common denominator of these empirical regularities
resides in the fact that any task requires information to be completed, and any operator has a limited bandwidth for
such information (Shannon, 1948).

6The time-per-join varies across steps (steps with more joins tend to require less time per-join), so that the rela-
tionship between complexity and the rate of steps completed is not merely a linear function of the number of joins.

5



0
1

2
3

4
5

6
lo

g 
(S

te
ps

 p
er

 H
ou

r)

0 1 2 3 4 5 6 7
log (Joins per Step)

(a) Speed Complexity Tradeoffs

0
5

10
15

20
25

30
Fr

eq
ue

nc
y

0 10 20 30 40 50 60 70 80
% of Step Production Costs Devoted to Loading/Unloading

(b) Fragmentation Costs

Figure 1: (a) Relationship between rate and step complexity (Source: Fuchs
et al. 2008), and (b) costs of fragmenting steps into less-complex bundles of
tasks (Source: Combemale et al. 2020).

the step fragmentation costs is the time devoted by the operator to load and unload a machine.
For a large number of steps, this time-cost alone amounts to more than ten percent of all step-wise
production costs. Introducing fragmentation cost is also essential to model several technological
developments. For example, a key development behind the growth of mass production is the
introduction of exchangeable parts, which lowered the cost of splitting production across multi-
ple workers (Hounshell, 1985). Technological progress does not always lead to decreases in costs
of splitting production. For example, parts integration in electronics reduces divisibility due to
monolithic part integration (Combemale et al., 2020).

The previous costs are embodied in the technology used in production. An additional source
of costs in dividing production, and a final ingredient of the model, is incorporated in the cost of
splitting performers across steps. Very short steps do not demand the full capacity of a performer,
which introduces the possibility of a worker or a machine being under-utilized in production. Re-
allocating underutilized performers to other steps is not costless, for instance incurring time to
reconfigure machines or for workers to change tooling or position. Differently from the previ-
ous costs, these opportunity costs now depend on the total level of production (see Hopp and
Spearman (2011) and Laureijs, Fuchs, and Whitefoot (2019) for an extensive analysis).

The ingredients described in this section give intuitive dimensions to the problem of the firm
in dividing production tasks: the firm must trade-off between the cost of complex steps and the
cost of dividing tasks and performers. We formalize these dimensions in the following section.
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3 Model

We first describe the nature of production introducing tasks and steps. Then we introduce the
difficulty associated with each step. The section concludes with the problem of the firm.

3.1 Tasks and Steps

A good or service is produced by executing a set of tasks in the interval V = [0, ν] with ν finite.7

Tasks are indexed by ν ∈ V . A task can be performed by a human or a machine. A consecutive
set of tasks Si ⊆ V performed by either a single human or a machine is referred to as a step.8 To
define a step, we introduce a series of T ≥ 1 thresholds {si}T

i=1 that split the set of tasks. For all i
we have si ∈ V and sT = v. T thresholds define T steps as follows: Si = (si−1, si] for i = 2, . . . , T
and S1 = [0, s1]. The type of performer in step t is defined with the indicator oi ∈ {m, h}. When
oi = h, a human (or when oi = m, a machine) is performing step i. For every step, we associate a
length li = si − si−1 for all i = 2, . . . , T and l1 = s1.

Whenever production is split into multiple steps, a fragmentation cost is generated. Fragmen-
tation costs are characterized by the point at which a step ends, and by the type of performer
executing the step. The costs are described by the function f (·, ·) : V × {h, m} → R+, with
f (v, ·) = 0. For a given production process split over T steps and executed by performers accord-
ing to {oi}T

i=1, total fragmentation costs are then by: ∑T
i=1 f (si, oi).

3.2 Steps and Difficulty

Firms assign the performer (either human or machine) to a step of a particular length and deter-
mine the rate at which the step needs to be completed. Length and rate drive the overall difficulty
of a step for a performer and define the different margins on which humans and machines have
an advantage.

Length & Complexity To complete a step, a performer needs to solve a number of issues that
may arise. Issues arise according to a Poisson process so that the probability of n issues arising in
a step of length l is given by: Pn(l) =

(λl)n

n! e−λl . Parameter λ > 0 governs the relationship between
step length (l) and the expected number of issues denoted by N(l) = λl.

Just as the number of issues that need to be solved to complete the step is uncertain, so is
the magnitude of issues. To capture both uncertainties, we model issues as a compound Poisson

7The interval of tasks does not indicate that tasks must be carried out sequentially over time. The model can
represent a variety of production processes including the case of tasks being executed simultaneously as occurs with
parallel production of subsystems that are later assembled together.

8In practice, multiple performers may be involved in the completion of a step through parallelization or coordi-
nation. It is also common for performers of different types to work simultaneously on a specific unit (e.g., a human
and a collaborative robot). In this case, each performer is generally performing a different task: a human might be re-
sponsible for visual and cognitive tasks, while a robot may be responsible for strength-based tasks Vicentini (2021). In
our model these cases are described as separate steps. Since steps are defined by a performer, they do not distinguish
between a human performer and a tool used (following Frohm et al. 2008, a tool is an object that makes a task easier
for a human, while a machine performs a task).
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process. The complexity of each issue is modeled according to an i.i.d. random variable X ∈ X ⊆
R+. We assume that all moments of X exist and are bounded. A key difference between a human
and machine performer is the ability to solve closely related issues. For a human performer,
the ability to solve an issue likely implies an ability to solve easier issues. Instead, for a typical
machine, the ability to solve an issue is less informative on the ability to solve other issues. We
formalize this distinction as follows. Given n issues Xi with i = 1, . . . , n, step complexity is given
by:

X(n|ρ) = E

( n

∑
j=1

(Xj)
ρ

) 1
ρ

 , n ≥ 1.

Parameter ρ ∈ [1, ∞) represents an important property of a performer; we will refer to ρ as
the degree of generality.9 To understand the role of ρ, it is convenient to consider two extreme
examples:

1. Perfect Generalist: A perfect generalist is a performer with ρ = ∞. In this case: Xg(n) ≡
limρ→∞ X(n|ρ) = E[maxi=1,...,n Xi]. In this scenario, only the most complex issue drives step-
complexity for the performer. As a consequence, solving an issue of a given level implies
the performer can solve all easier issues.

2. Perfect Specialist: At the opposite end, a perfect specialist is a performer with ρ = 1. In this
scenario, each issue affects the step complexity separately. In this case Xs(n) ≡ ∑n

i=1 E[Xi],
so that the realization of all issues contributes equally to the overall step complexity.

Differences between humans and machines can now be summarized as follows:

Assumption 1. Let ρh (ρm) be the degree of generality of a human (machine) performer. Then ρh > ρm.

To formally show the relationship between ρ and complexity, it is helpful to relate the definition
of X(n|ρ) to an Lp norm. The result below follows from using Hermite-Hadamard inequalities
for convex functions.

Lemma 1. Suppose Assumption 1 holds. Then: (i) for all n > 1, X(n|ρm) > X(n|ρh). (ii) limn→∞ X(n|ρm)−
X(n|ρh) = ∞.

Proof. In Appendix A.1.

To gain intuition on how the complexity of a step for human and machine performers increases
at a different rate, consider the case for large n. Let Sn({Xi}n

i=1) = ∑n
i=1(Xi)

ρ and Sn = E[Sn] =

nE[Xρ]. We then have from Proposition 2 in Biau and Mason (2015) that:

lim
n→∞

X(n|ρ) ≈ E
[

S
1/ρ
n +

1
2

1 − ρ

ρ2 S
1/ρ−2
n

(
Sn − Sn

)2
+ · · ·

]
≈ n1/ρ(E[Xρ])1/ρ. (1)

9The definition of complexity is reminiscent of a CES production function with degree of substitutability ρ (and
elasticity of substitution equal to 1/(1 − ρ)).The model with ρ = 1 becomes a version of the Cramer-Lundberg model.
See also, Cai (2014).
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From (1) we see that X(n|ρ) increases more quickly with n for lower values of ρ.10 Finally,
X(n+ 1|ρ)−X(n|ρ) is decreasing in n. This last observation is the basis for a concave relationship
between step length and step complexity.

We can now define complexity of solving a step by a performer by:

c(l|ρ) =
∞

∑
n=0

Pn(l)X(n|ρ). (2)

Where we normalize X(0|ρ) = 0. Complexity of a step inherits properties of X(n|ρ). The follow-
ing lemma summarizes key properties of complexity used later in this paper.

Lemma 2. The function c(l|ρ) is: (i) strictly increasing, and (ii) strictly concave in step length l; (iii) If
Assumption 1 holds, then liml→∞[c(l|ρm)− c(l|ρh)] = ∞.

Proof. In Appendix A.1.

To fix intuition, it is helpful to go back to the case of performers being either perfect generalists
or perfect specialists and see how different performer characteristics impact step complexity.

Example 1 (A Solved Case). Let Xk:n the k-th order statistic out of a sample of n draws of X, in this case
the step complexity for the perfect generalist can be written as Xg(n) = E[Xn:n]. Assume that each Xi is
uniformly distributed in [0, 1]. We then have that: E[Xn:n] =

n
n+1 . Since the number of issues and their

complexity are assumed independent of each other, we have that the expected total difficulty to complete
steps of length l by a perfect generalist is given by:

c(l|∞) =
∞

∑
n=0

n
n + 1

(λl)n

n!
e−λl =

1
eλlλl

+
λl − 1

λl
.

From the above, it is easy to see directly that c(l|∞) is increasing and strictly concave in l for all λ > 0.
Similarly, for a perfect specialist, we have:

c(l|1) =
∞

∑
n=0

n
2
(λl)n

n!
e−λl =

λl
2

.

In contrast to c(l|∞), c(l|1) is now linear in step length.

Rate & Difficulty A second choice of firms is the production rate at which performers operate.
A higher production rate increases performer output per unit time but also raises the overall

10The right-hand side of (1) holds as an upper bound for complexity for small n. To see this for all n and for ρ ≥ 1
we have:

n1/ρ(E[Xρ])1/ρ =

E

 n

∑
j=1

(Xj)
ρ

 1
ρ

≥ E


 n

∑
j=1

(Xj)
ρ

 1
ρ

 = X(n|ρ),

with equality holding when ρ = 1 or n = 1.
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difficulty of a step. We denote with r ≥ r the rate in terms of the number of repetitions of a step
per unit time (the unit of time can, for example, be the length of a shift.)

We can now define the overall difficulty of a step of complexity c performer at rate r. Step
difficulty is generated by an aggregator function D : R2 → R. A step with complexity c(l|ρ) per-
formed by a performer of type o ∈ {h, m} with rate r is associated with a difficulty D (c(l|ρ), r|o).11

We assume the following for the difficulty function D.

Assumption 2. The function D is differentiable, strictly increasing and convex in both arguments. Denote
with D′

r the derivative of D with respect to r. We assume: D′
r(c, r, |h) > D′

r(c, r, |m) and D′′
r (c, r, |h) >

D′′
r (c, r, |m) for all c > 0, and r ≥ r.

The conditions in Assumption 2 formalize the differences between a human and machine per-
former with respect to sensitivity to rate: as the rate of the step grows, eventually the difficulty
for a human performer overtakes that of a machine performer. The difficulty function D encodes
two important properties. First is the substitutability between step length and rate for a given
difficulty level. Second is the sensitivity of D with respect to rate r, defined as: σ = 1 + r D′′

r
D′

r
. To

fix ideas, an example of a functional form that satisfies Assumption 2 is:

D (c(l|ρ), r|o) = c(l|ρ)(c + rςo), (3)

with c > 0 and ςo > 1. The above specification features a constant σ = ςo and a lower bound on
the difficulty, c · c(l|ρ), which is independent of r.

3.3 Performer Ability and Costs

So far, we have discussed two differences between performers: the ease with which a performer
addresses problems of increased complexity (ρ), and the tolerance to an increase in rate (σ). In
general, these characteristics vary between performer types (human vs. machine) and among
performers of the same type. We next assume that performers are heterogeneous along a single-
dimensional ability level (denoted with a). When assigning an operator to a step, the ability
level of the performer needs to be commensurate with the difficulty of the step. Formally, a
performer of type o ∈ {h, m} with degree of generality ρ can execute a step of length l with rate
r if a ≥ D (c(l|ρ), r|o).

Divisibility The final dimension characterizing performers is their divisibility. Performers vary
in how easily they can divide their time across steps and reallocate their effort. Indeed, when
asked to perform a different set of tasks, a human can more easily switch while a machine needs

11Job difficulty originates from the interaction between tasks and the type of performer. In general, when compared
to machines, humans are better able to solve a variety of issues and experience a smaller increase in errors as complex-
ity increases (Wickens, Hollands, Banbury, and Parasuraman 2015). Dividing complex work into smaller steps, reduces
human advantage and allows competition with machines. Also, humans experience sharp increases in failure-rates as
they are made to perform tasks faster; machines typically outperform humans in terms of the error-effect of repeating
simple tasks faster.
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to be reprogrammed and refitted (Korsah et al., 2013).12 A highly divisible human performer is
able to easily switch to a different set of tasks once the initial set of tasks are completed. For
example, a human computer programmer can quickly switch to answering emails once their
programming tasks are completed. As a consequence, this performer is then not idle even when
they can finish their tasks quickly. In contrast, say a robotic welding machine, cannot switch
to different tasks when the welding tasks are completed. The firm must pay for the performer
(the rental price of capital in this case) even when they are idle.13 Divisibility thus introduces an
additional trade-off for firms. Requiring performers to work quickly reduces the amount of time
a performer spends per unit produced; however, it also increases the possibility of having idle
performers.

Denote with Y the number of products that must be produced. We encode divisibility using
the function: g(Y, r) : R+ × R → R+. This function is used to scale the cost of production for a
given step. The function depends on the rate (r) at which a step is performed. A higher r implies
a shorter amount of performer time that is devoted to the step, thus a lower performer cost for
the step (a lower value for g). The function g also depends on output (Y), this is because the
cost-saving done by raising r ultimately depends on the number of products to be processed and
on the ability to reallocate the performer to a different task. To fix ideas, consider the following
examples:

1. Perfectly divisible performer: In this case we set: g(Y, r) = 1/r. So that any increase in
r translates into a proportional reduction in performer-costs. In this case, cost reductions
from higher r are independent of Y.

2. Indivisible performer: This is the case of a performer that cannot be reallocated to a dif-
ferent task when idle. For this type of performer we set: g(Y, r) = 1

Y

⌈Y
r

⌉
. In this case, the

gains from higher rate r are limited by the number of products produced, Y.

Function g(Y, r) is assumed to be differentiable with respect to the second argument and assumed
to have the following properties:

Assumption 3. For human (o = h) and machine (o = m) performers, the function go(Y, r) is such that:

1. For all Y, there exists an r(Y) such that go(Y, r) = go(Y, r(Y)) for all r ≥ r(Y);

2. Threshold r(·) is strictly increasing in Y and limY→∞ go(Y, r) = 1/r;

3. If r > r′ then go(Y, r) ≤ go(Y, r′) for all Y (inequality is strict when r < r(Y));

12The degree of divisibility of a performer can also be influenced by policy, for example minimum shift labor laws.
It can also be impacted by institutional and organizational constraints. For example Schmitz and Teixeira (2008), in the
Brazilian iron ore industry, document the productivity impact of organizational changes within the firm; specifically,
they document how allowing repair staff to perform repairs outside their job classification (increasing the divisibility
of the performer) increases labor productivity of these workers.

13The inability to fully use the capacity of a performer is a common concern in the systems engineering literature.
Refer to Hopp and Spearman (2011) for an extensive analysis.
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4. For all Y, rh(Y) ≥ rm(Y).

Condition 1 in the above Assumption formalizes the idea that above a certain rate there are no
further cost savings that can occur.14 We refer to ri(Y) as a divisibility threshold for the performer.
When r > r, all output is produced with a single performer within the minimum time increment,
and so increasing r further cannot reduce the costs associated with the performer. Condition
2 states that as the output quantity grows, the constraint on the minimum time a performer
can be allocated to the task becomes progressively looser (r(·) is increasing) and eventually is
non-binding. Condition 3 highlights that increasing the rates weakly reduces the operator costs.
Finally, Condition 4 encodes the idea that moving a human performer to a different task is easier
than re-tasking a machine performer.

We can now determine the total cost of assigning a performer to a step. Total step-costs are
determined by the ability-price of the performers, w(a) for humans and k(a) for machines, as
well as the cost saving associated with increasing the rate in which a step is executed, go(Y, r).
We have that the price of a performer to complete a step with ability a, rate r, and total number
of products produced Y is given by:

p(a, r, Y|oi) =

w(a)gh(Y, r), if oi = h

k(a)gm(Y, r), if oi = m
. (4)

We assume the following conditions for functions w(·) and k(·).15

Assumption 4. The functions w(·) and k(·) are positive, strictly increasing and weakly convex.

We now have all the model ingredients needed to define the problem of the firm.

3.4 Firm Optimization

Firms take as given the number of units it needs to produce Y and the operator prices w(·)
and k(·). . The firm chooses how to subdivide the production process by choosing the number
and positions of steps and which performer to assign to each step. For each step, the firm also
determines the required completion rate. We begin by taking output Y and the number of steps
T as given and finding the cost minimizing step thresholds, si, operator, oi, ability, ai, and rate, ri,
for each step i. In this case the firm solves:

C(Y, T) = min
{si}T

i=1,{ri ,ai ,oi}T
i=1

T

∑
i=1

p(ai, ri, Y|oi) +
T

∑
i=1

f (si, oi), (5)

14This insight is commonly represented in the engineering literature by assuming that performers are “dedicated”
to a process or to a step, meaning that their unused capacity cannot be productively used elsewhere.

15Assumption 4 on operator costs is fairly general. It can also accommodate the common assumption in the task-
assignment literature where it is unfeasible for a machine to perform certain tasks. This case can be modeled with a
level of k(·) sufficiently high for a certain ability level.

12



subject to:
l1 = s1; li = si − si−1, ∀ i = 2, . . . , T; (6)

ai ≥ D(c(li|ρoi), r|oi), ∀ i = 1, . . . , T; (7)

si ∈ [0, ν]; sT = v; oi ∈ {h, m}; ri ≥ r, ∀ i = 1, . . . , T. (8)

The two terms driving costs in (5) represent the performer and fragmentation costs associated
with a given choice of T (and performer characteristics). The per-unit cost of producing Y units
is then determined by choosing the cost minimizing number of steps T.

C(Y) = min
T≥1

C(Y, T). (9)

3.5 Discussion

Table 1: Model interpretation of a variety of technology changes.

Technology Change Period Theory Interpretation Labor Impact

Mechanization: Substi-
tution of human perform-
ers by machines

1870s-
1890s

Machine work faster than hu-
mans but less able to perform
varied work: ρm < ρh and
σm < σh. Machines less di-
visible than humans, r̄m < r̄h.

Human ability demand polarized.
Empirically: growth of higher skill
professional jobs (Chandler, 1990),
more demand for unskilled labor (At-
ack et al., 2019)

Interchangeable Parts
and Assembly Line: In-
creased standardization
of parts facilitate transfer
of work and minimize
refitting requirements

1870s-
1910s

Increased process complexity,
leading to λ ↑, but facilita-
tion of transfer and reduced
post-processing of parts driv-
ing f ↓

Upper bound of human ability de-
mand increases, lower bound of de-
mand decreases. In data: creation
of new managerial jobs and of sim-
ple production jobs. (Hounshell, 1985;
Womak et al., 1990)

Consolidation of Parts:
Formerly discrete parts
fabricated as one

1970s-
2010s

Joint fabrication of parts
makes some fabrication tasks
indivisible, driving f ↑, al-
lows simpler design and re-
duced assembly, driving λ ↓

Upper bound of human ability de-
mand decreases, lower bound in-
creases. In data: convergence of skill
towards middle, reduced division of
production (Combemale et al., 2020).

Automation and Com-
puterization: Substitu-
tion of human labor by
computer and machine
performers

1960s-
2010s

Machines able to repeat tasks
faster than humans but un-
able to perform highly varied
work: ρm < ρh and σm < σh.
Compared to mechanization,
performers are more general
(ρ ↑), intense (σ ↓) and divis-
ible (r̄ ↑)

Polarization of worker ability demand
at low volumes, shifting to high skill at
high volumes. In data: up-skilling of
skill demand (especially in manufac-
turing), aggregate polarization in con-
junction with lower automation in ser-
vices (Goos et al., 2019; Willcocks and
Lacity, 2016).

The goal of the theory is to offer a unified explanation of the labor implications of technological
change, capable of rationalizing the impacts of many historical and modern technological trends.
Table 1 highlights how some of the different parameters of the theory can be used to develop a
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sort of taxonomy of technology change. First, technological change can be described as a change
of the tasks that need to be solved (a product development).16 In the cases when a change in
the set of tasks is not a key change, a technology change may be described in terms of its effects
on process complexity (λ) and task separability ( f ) and on performer characteristics such as
divisibility (g), sensitivity of performers to rate (σ), and generality (ρ).

The implications of the model can be analyzed considering any combination of the parameters
above that describe changes in technology. Given the data available in Section 5, we next focus
on the choice of automation (the choice of performers) and changing fragmentation costs.

4 Analysis

We analyze the model in four steps. First, we provide conditions for the division of tasks to occur.
Second, we establish a relationship between step length and ability demand, rate, and performer
costs. Third we study the conditions for firms to automate steps. We conclude by analyzing the
effect of changes in fragmentation costs on the division of production and on ability demand.

4.1 The Structure of Production: Division of Tasks

We begin analyzing when it is optimal to divide steps. Since the price of performers is strictly
increasing in their ability, it follows that constraint (7) binds at the optimum. Given this, a
necessary condition for tasks to be divided into more than one step is the existence of at least one
feasible step-length l, performers o′, o′′ and rates r′, r′′ such that:

p(D (c(ν|ρo), r∗|o) , r∗, Y
∣∣o) > p(D

(
c(l|ρo′), r′|o′

)
, r′, Y

∣∣o′) + p(D
(
c(ν − l|ρo′′), r′′|o′′

)
, r′′, Y

∣∣o′′)
(10)

where r∗ is the optimal rate without any division of tasks. The above inequality is strict since frag-
mentation costs are nonzero. Two forces lead firms to divide steps: convexity of operator ability-
prices and high output. The intuition for why convexity of operator prices lead to fragmentation
is straightforward. A sufficiently convex wage or capital cost makes it extremely expensive for
a firm to hire a worker or a machine to execute a large non-fragmented step. Formally, this is
described as follows.

Proposition 1. Suppose that f (·, ·) is sufficiently low and that w(·) or k(·) is sufficiently convex. Then
division of tasks is optimal.

Proof. In Appendix A.2.

The previous result considered division of tasks as a way to reduce the cost of production for
sufficiently convex operator prices, trading off against fragmentation costs. The notion of con-
necting division of tasks to increases in production efficiency dates to Adam Smith in the Wealth

16This is the focus of papers such as Acemoglu and Restrepo (2018b) which is mostly interested in studying the
role of automation on the aggregate equilibrium level of employment and wages.
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of Nations in his discussion of the division of labor (Smith, 1776). Smith himself argues that the
degree of specialization may also be limited by market size; we turn to this channel for division
of labor next. The following proposition sharpens the trade-off present between fragmentation
costs and the size of output (related to the size of the market).

Proposition 2. Suppose that: f (·, ·) is sufficiently low and Y is sufficiently high. If D′
r =

∂D
∂r is sufficiently

small (or ν is sufficiently large), then division of tasks is optimal.

Proof. In Appendix A.2.

4.2 Step-Length, Costs and Ability

Next we explore how changing the length of a step impacts the overall costs and the ability
required for a performer executing that step. The next proposition provides conditions in which
the rate of execution and performer costs are inversely related to the length of a step. The result
requires that the difficulty function D is sufficiently super-modular in rate and step length.

Proposition 3. Suppose that Assumptions 2 and 4 hold. Suppose that D′′
cr/D′

c ≥ −g′r/g. Given two
steps i and j with the same performer: oi = oj. Denote with ri, rj (ai, aj) the optimal choice for rate (ability)
in step i and j. Then if li > lj, we have that (i) ri ≤ rj, (ii) p(ai, ri, Y|oi) > p(aj, rj, Y|oi).

Proof. In Appendix A.3.

To gain intuition on the Assumption on D and g in the previous proposition, consider the case in
which D and g are given by the following Assumption:

Assumption 5. For human (o = h) and machine (o = m) performers we have: D (c(l|ρ), r|o) =

c(l|ρ)(c + rς) for r > r with ς > 1 and c > 0. In addition, go(Y, r) is given by:

go(Y, r) =

1/r, if r ≤ ro(Y)

1/ro(Y), if r > ro(Y)
,

with ro(Y) = r + Yro and rh > rm.

If this Assumption holds, we have that the condition in Proposition 3: D′′
cr

D′
c
≥ −−g′r

g implies 1 ≥
c+rς

ςrς . So that the condition in Proposition 3 holds whenever, for example, ς is high enough so that
the sensitivity to increased effort is high enough so that a lower rate becomes optimal with longer
steps. The previous result does not imply a specific ability demand for steps of different length.
The relationship between step length and ability can be sharpened once we assume that costs
relative to ability grow fast enough. In this case we determine a monotone relationship between
step-length and ability.

Assumption 6. The function w, defined for oi = h (and similarly for oi = m) as w(x, oi) = xw′(x)/w(x),
is increasing for all x > 0.
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Under the above Assumption (that holds for example with log-linear wages) we have that:

Proposition 4. Suppose that Assumptions 5 and 6 hold. Given two steps i and j with the same performer:
oi = oj. Then if li > lj, we have that ai > aj.

Proof. In Appendix A.3.

The result of the proposition relies on showing that the increase in costs due to ability demand
are not outweighed by the increase in cost due to operating with a lower rate. The result will
then hold for any functional form for D and g for which the function − g′

g
D
Dr

is decreasing in r.

4.3 Automation

We next describe the conditions under which a firm automates (choosing a machine performer
rather than a human). We show how automation impacts labor demand by showing that step
length (l) and production quantity (Y) are key determinants for understating patterns of automa-
tion. When combined, the results in this section generate a pattern of automation referred to as
the cone of automation as displayed in Figure 2. The cone of automation implies that a minimum
amount of output (Y1 in the Figure) is necessary for automation to be an economically valuable
option for firms. When automation occurs, it is likely to occur for steps performed by middle
ability workers (thus automation is polarizing in ability demand). As output grows so does the
range of steps that are automated. Ultimately, for high enough output (past Y2 in the Figure) only
the highest ability steps are not automated.

Y1 Y2

Human (oi = h)

Machine (oi = m)

l

Y

Figure 2: Automation patterns: production quantity (Y) and step length (l).

In this section, we assume that when a firm is indifferent between automating a step or not, it
chooses not to automate.17 The first result shows that if a step is long enough, then it will not

17This assumption can be made directly by assuming that fragmentation costs are arbitrarily close but lower for
humans (as documented in Korsah et al. 2013).
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be automated. The result provides upper bounds of a region of step-lengths that are automated.
This result is driven by the relatively higher generality (higher ρ) of humans versus machines.

Proposition 5 (Upper Bound on Automation). Suppose Assumptions 1, 3, and 4 hold. There exists l
such that oi = h for all i with li > l.

Proof. In Appendix A.4.

The previous result is stated in terms of l sufficiently high for a given step. A similar result holds
for any l if λ (the intensity of the Poisson process for issues) is instead sufficiently high. In both
cases the step will likely feature a high number of issues during execution. We now consider
the case of automation of small steps. The result below provides a lower bound of automated
step-lengths, it is driven by the lower ability of machines to be redeployed to different tasks. This
feature is encoded in Assumption 3 Part 4. An additional natural assumption for the result to
occur is that operator costs for humans are sufficiently low for lowest ability levels.

Proposition 6 (Lower Bound on Automation). Suppose the g function satisfies Assumption 3. Suppose
there exists a step i with li sufficiently small. Also suppose that limc→0,r→r w(D(c, r|h)) ≤ k(D(c, r|m)).
Then if Y is sufficiently low, we have that oi = h.

Proof. In Appendix A.4.

The proof is straightforward and relies on the idea that, for low Y, the advantage of a machine
performer operating at a high rate is eliminated. This, of course, requires a minimum cost for
human workers that is sufficiently low else automation at the bottom is always preferred. This
floor for human wages is, in general, not something observed in practice as firms endogenously
choose the rate of operations for humans and machines typically above their minimum level.
Hence the demanded ability level for the operator is above the theoretical minimum ability level
needed to execute the step.

The previous results focus on step length. A second dimension important in driving automa-
tion is the level of output (Y). A key advantage that machines have relative to humans is the
lower sensitivity to rate (r). For sufficiently high levels of Y, we expect automation to be opti-
mal since in this case the cost-minimizing machine rate is higher than the human rate and hence
machine-operator costs are lower. On the other hand, for low levels of output, the advantage of a
machine is lost as a machine with high operational rate remains idle for a significant amount of
time. The following results describe optimality of automation for different step lengths and for
different levels of output.

Proposition 7. Suppose Assumption 5 holds. Denote with oi(Y) the optimal operator choice for li at
output value Y. (i) If Y is sufficiently large then for all Y′ > Y we have that oi(Y) = oi(Y′); (ii) Let
oi(Y) = m. Suppose that w′ ≥ k′, w′′ ≥ k′′ and that w(D(c(l|ρh), r|h)) < k(D(c(l|ρm), r|m)) for all
l > 0, then for all Y if Y′ > Y we have that steps of length li also feature oi(Y′) = m; (iii) Assume wages
and cost of capital are log-linear. Let oi(Y) = m, under the assumption of (ii), if Y is sufficiently large,
then for all steps with l′j < li we have that oj(Y) = m.
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Proof. In Appendix A.4.

The previous Proposition provides three results. First it shows how for sufficiently high levels
of output only step length and not changes in output matter for the choice of operator. This is
because, eventually, only the characteristics of the operator and not the amount of output matters
for the optimal rate of the operator. This is true for both humans and machines. The second result
specializes this intuition for machines also for smaller levels of output. Finally, under additional
assumptions on costs, part (iii) highlights the optimality of automation of small steps for high
levels of outputs.

Combining the three previous Propositions provides a characterization of where we might
expect automation when considering steps of different length and different output requirements.
The result can, diagrammatically, be represented with a cone of automation as highlighted in Figure
2. This pattern is a key theoretical aspect we will map to data in Section 5.4. The result on the cone
of automation is significant as it implies that the phenomenon of skill polarization (automation
impacting middle length steps as between output level Y1 and Y2 in Figure 2) is not only a
relatively recent ICT-related phenomenon but is connected to any type of automation and is
potentially observable already at firm level.

Remark 1. The previous results are formulated in terms of output Y. Changes in output impact the choice
of the firm by affecting the minimum divisibility threshold r. Given Assumption 3 on the monotonicity of r
with respect to Y, it is then possible to recast the preceding results directly in terms of r. This interpretation
of the preceding results will be helpful for the quantitative counterpart in Section 5.4.

4.4 Fragmentation Costs and Division of Tasks

Over time, technological change has also impacted fragmentation costs. This section expands
the analysis between changes in fragmentation costs ( f ) and the implied changes in the division
of tasks and ability demand. We consider two benchmarks: a change in uniform fragmentation
costs, and arbitrary fragmentation costs affected by a uniform shift. As a first step we show
that variation in fragmentation costs is a necessary condition for (within plant) wage inequality:
without variation in fragmentation costs, steps are uniform and hence so is the ability demand.

Lemma 3. Suppose that the Assumptions of Proposition 1 and Proposition 4 hold. Consider the case in
which f (·, ·) = f . Then li = l and ai = a for all i.

Proof. In Appendix A.5.

While constant fragmentation costs do not create heterogeneity in skill demand, the level of skill
is impacted by the level of fragmentation costs even when these costs are homogeneous. We now
look at the impact of a reduction in fragmentation costs (this strengthens Proposition 1 where it
was shown that sufficiently low fragmentation costs increase the number of steps). The reduction
of fragmentation cost can be modeled as a proportional reduction in costs, when this occurs, the
next Corollary shows a reduction in the lowest ability level demanded.
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(a)

(b)

tb

ta tc

l1 = tb l2 = v − tb

l′1 = ta
l′2 = tc − ta > l1 l′3 = v − tc

Figure 3: Maximum Step Length and T. (a) Case T = 1, (b) Case T = 2.

Corollary 1. Suppose that the Assumptions of Proposition 4 hold. Let w(·) and k(·) be sufficiently convex.
Consider arbitrary fragmentation costs f and let f ′ so that f ′(t, ·) = f · f (t, ·) for f > 0. Let amin and
a′min be the lowest ability demanded under f and f ′, respectively. If f is sufficiently low, then a′min ≤ amin.

Proof. In Appendix A.5.

This Corollary shows how a sufficiently large reduction in fragmentation costs results in a de-
crease in the minimum step length. There is no equivalent property for the maximum step length.
Indeed, it is possible for the maximum step length to increase due to an increase in T, even if the
total cost of production decreases. The following example and Figure 3 make this point.

Example 2. In this example we show how it is possible for the longest step length to increase as the number
of steps increases. Let fragmentation costs be arbitrarily high for all t, except for three points, ta, tb, tc, with
f (ta, ·) = f (tc, ·) and let f (tb, ·) = f (ta, ·) + d, with d > 0. Let ta < tc − tb and tb > v̄

2 . For T = 1 we
have s1 = tb, the more centrally located cut. This is the case whenever the convexity of costs with respect
to length dominates the higher fragmentation costs at tb. For T = 2 we have s1 = ta and s2 = tc. This
occurs if the reduction in performer costs from placing step thresholds at ta, tb or tb, tc relative to ta, tc are
less than a. Figure 3 summarizes the example when T = 1 and T = 2.18

The previous example featured regions where fragmentation costs are arbitrarily high. In many
instances, it is natural to think of step lengths being defined by regions of tasks which are indi-
visible or have arbitrarily high fragmentation costs, such as in highly controlled processes (e.g.,
material deposition as described in Combemale et al. 2020), continuous processing (e.g., in steel
production), or highly interconnected tasks (e.g., indivisible loads in computing as in Berenbrink
et al. 2015). To formalize this phenomenon, we next consider sets of lumpable tasks defined as a
set of tasks V = [ti, tj] such that f (t, ·) is arbitrarily high for t ∈ V. In the presence of a set of
lumpable tasks such as V we have that the maximum step length will never be less than tj − ti.
We next exploit the presence of lumpable tasks to think about technological changes that change
the difference between the least and highest ability demand.

18The parametric scenario with p(l) = l1.088, ta = .4, tb = 7, tc = 7.5, v̄ = 10, d = 0.05 delivers the required
properties for the example. Formally, we require ta, tb, tc be such that p(tb) + p(v̄ − tb) < min{p(tc) + p(v̄ − tc) −
a, p(ta)+ p(v̄− ta)− a}. Let ta, tc be such that p(tc − ta)+ p(v̄− tc) < p(tc − tb)+ p(v̄− tb)+ a and p(tc − ta)+ p(ta) <
p(tb − ta) + p(tb) + a.
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Changes in Issue Arrival Important historic technological changes have simultaneously af-
fected the complexity and divisibility of processes.19 These technological changes can be de-
scribed by a simultaneous change in fragmentation costs f and in the parameter governing the
average number of issues λ.20 In what follows, we consider the ability demand implications of a
change in technology which increases issue arrival and sufficiently decreases fragmentation costs.
We show that this change generates an increase in the upper bound of ability demanded.

Corollary 2. Suppose that the Assumptions of Proposition 4 hold. Suppose there exists a set of lumpable
tasks V̂ of length l̂. Also suppose that under issue arrival λ, the maximum step length is l̂. Consider an
issue arrival λ′ > λ. Let amax and a′max be the lowest ability demanded under λ and λ′, respectively. If the
performer for the longest step remains the same, we then have a′max > amax.

Proof. In Appendix A.5.

The previous Corollary requires a constant performer type for the longest step. If the longest step
is sufficiently long, then by Proposition 5 this Assumption is automatically satisfied, as human
performers are assigned to this step before and after the change in issue arrival rate. Together
Corollary 1 and 2 provide a theoretical basis to understand how within-firm inequality might
increase or decrease given different types of technological change. For example, the previous
Corollaries imply that in the presence of technological change that simultaneously lowers frag-
mentation costs and raises issue arrival, we will expect an increase of within-firm inequality.

5 Empirical Analysis

This Section provides empirical counterparts to the theoretical results described thus far. In order
we show that: (i) increasing complexity of production requires performers with higher ability
working at lower rates; (ii) a reduction in fragmentation costs leads to an increase in the number
of steps; (iii) a reduction in fragmentation costs and an associated increase in issue arrival rates
leads to an increase in the upper bound of ability demand, and a decline in the lower bound
of ability demand; (iv) our main empirical finding, we show that a cone of automation similar to
Figure 2 forms where automation substitutes for workers of middle ability at low volumes, and
the range of ability substituted widens as production volumes increase.

19The development of the assembly line in manufacturing permitted a finer division of tasks but entailed a more
complex overall process with greater logistical and managerial requirements (Hounshell, 1985; Chandler, 1990). The
more recent phenomenon of design modularity in programming and design allows for easier separation of work but
increases system complexity (Baldwin and Clark, 2003). The inverse is also possible. In modern manufacturing, parts
consolidation, when formerly discrete parts are fabricated as one piece, makes dividing tasks more costly but reduces
the number of issues that might arise in assembly (Selvaraj et al., 2009; Combemale et al., 2020).

20Technological changes affecting multiple dimensions are also intuitive from an adoption perspective. For example,
a firm will not adopt a technology increasing fragmentation costs or issue arrival without an opposing effect reducing
costs, such as reduced fragmentation cost or fewer issues.
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5.1 Data Sources

We use three datasets that provide detailed information on production: the Hand and Machine
Labor Study of 1898 (Wright, 1898); data on optoelectronic semiconductor manufacturing from
Combemale, Whitefoot, Ales, and Fuchs (2020); and data on contemporary auto-body assembly
from Fuchs, Field, Roth, and Kirchain (2008).

The Hand and Machine Labor Study (HML) The original data collection for this study was
conducted by the Bureau of Labor Statistics between 1894 and 1898, with the goal of investigating
the effect of the use of machines on labor.21 The study covers 672 products across the agricul-
tural, manufacturing, mining, and transportation sectors. Detailed descriptions of production
steps (ranging from one to hundreds) are provided for all products. Every product recorded in
the HML is described twice in two separate processes: a “hand” process (a relatively more man-
ual process), and a “machine” process (a relatively more mechanized process). Taken together
the two descriptions represent a change in process structure and performer type to produce the
same good with identical characteristics.22 The data characterizes each process step-by-step, anal-
ogously to the structure of steps in our model: for example, the hand process for producing hay
consists of 1) mowing grass, 2) tending hay, 3) raking hay, 4) cocking hay, 5) hauling hay, 6)
bailing hay and 7) weighing hay. The data includes the occupations employed in each step, the
number of employees for each occupation for the step, the task content of the step and the motive
power used in the step (e.g., hand, water, steam). Wages and operations data consist of the time
worked per step cycle, the output per cycle of a process step, the number of workers required per
step and the number of workers required per workstation. Each process step has a detailed task
description, and coding to identify which step (or steps) in the hand process contains the same
tasks as the machine process. For example, the machine process for making a sleigh (Product 183)
includes steps coded 2 and 3 for sanding panels and setting up the sleigh body, while the hand
process has a step for setting up and sanding the body, coded as (2,3) to indicate that it contains
the same tasks as the other process but combined into one step. Refer to Appendix B for further
details.

The remaining two datasets contain modern direct measurement of plant-level production pro-
cesses. This data is collected to identify the technical parameters of a highly detailed production
model. These models, called Process Based Cost Models (PBCMs) in the industrial engineering
and operation management literature, are used across a variety of industries to inform engineer-
ing and production decisions. This modeling approach provides the benefit of isolating the effects
of technology changes at the level of individual process inputs, for example the effect of using a
human or a machine to perform a specific production step on output.

21The dataset is also described in Atack, Margo, and Rhode (2019).
22The original authors note rare exceptions, such as slabs of granite of different final weight or an 8-inch versus

9-inch pipe. These products are of the same composition, but different dimensions.
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Optoelectronic Semiconductor Manufacturing This second dataset looks at the production of
optoelectronic semiconductor transceivers for communications. We use data ranging from the
fabrication of semiconductor components to their assembly into a final package. The optoelec-
tronic semiconductor industry is a useful case study for the effects of technology change because
optoelectronic transceivers have a common form factor and end-use, so that they are functionally
homogeneous while varying significantly in their internal design and method of production (i.e.,
in terms of the technological parameters in our theory). This dataset (originally collected and
described in Combemale et al. 2020) allows us to compare step-level demand for worker ability
(captured using the same methodology as the O∗NET database) under different technological sce-
narios. These scenarios vary in the level of automation and the level of consolidation of product
designs (increasing in the number of internal components which are jointly fabricated).

Automobile Body Fabrication and Assembly The final dataset is from automobile body fabri-
cation and assembly. This dataset was originally collected and presented in Fuchs et al. (2008).
The data which we use in this paper characterize process flow and step-level process inputs for
automobile body assembly. For each assembly process step, the data includes capital and labor
inputs (demand, price) for each process cycle as well as operations parameters, specifically batch
size and cycle time. The dataset also includes data for each step on the number of welding joins
required for each part of the automobile body.

5.2 The Relationship Between Ability, Rate and Step Length

We first use the optoelectronic semiconductor and automobile body production data to provide
an empirical analogue to Proposition 3 and Proposition 4. These results relate rate (r) and ability
(a) to step length (l). Using Proposition 3 we can use performer costs as a proxy for step length. In
the data, human performer costs are given by the compensation of workers divided by the worker
time needed per unit output. Machine performer costs are given by the cost of the machine used,
scaled by the time of use per part and the length of service life of the machine. The empirical
results from both contemporary contexts, presented in Figure 4, are consistent with Proposition
3 by showing that rate is decreasing in step length. In the optoelectronic semiconductor context
(Figure 4, panel (b)), the same wire-bonding machine takes longer to complete more complex
configurations while preserving the same proportion of successful versus failed outputs. In the
automobile body assembly context (Figure 4, panel (a)), more complex welding operations require
more expensive machines (see Figure C.1 in Appendix) or require the same machines to operate
more slowly.

We next use the worker-level dexterity ability measures from the optoelectronic semiconductor
data to explore the relationship between a and l. Recall that Proposition 4 provides conditions in
which a is increasing in l. As before we proxy step length l with performer costs.23 For finger

23In the optoelectronics contexts, we use a constant operator hourly wage across all steps based on the average
hourly wage observed at each plant. To sharpen the focus on human ability we consider only steps in which human
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Figure 4: Rates of production and performer costs per step. Data for (a) is from Fuchs
et al. (2008). Data for (b) is from Combemale et al. (2020).

dexterity ability information, our data provides information on ability levels as defined in the
O∗NET database. We compare across all steps in the dataset which have either a dexterity ability-
level rating of 1 (the lowest value) or a level of 5 (the highest value recorded in the data).24 For
context, level 1 indicates that the task is easier than putting coins into a parking meter, and level
5 means that it is harder than assembling small knobs onto stereo equipment in an assembly line.
The distribution of labor costs associated with steps of high and low ability is consistent with
Proposition 4 that highlights a negative relationship between ability and length. We have that the
average labor cost per unit for the low-ability steps is $0.19, while the average labor cost per unit
for the high-ability steps is $0.52.

5.3 Fragmentation Costs and Division of Tasks

The time period covered by the HML dataset is characterized by a reduction of fragmentation
costs and the onset of automation.25 This dataset thus offers a useful empirical counterpart to
the results of Sections 4.1 and 4.4. First, we look at how the reduction in fragmentation costs
leads to changes in the number of production steps. In the HML dataset we look at mappings
between hand and machine process steps to capture intervals which are affected by an increase
in the division of tasks (for detailed information on the processing of data, refer to Appendix
B.2). Since the HML dataset does not contain information on the fragmentation costs, we focus
on the overall distribution of the number of steps across all processes. Results are in Figure 5.
The figure displays a reduction in the number of processes that feature a small number of steps,

labor costs are at least 70 percent of total performer costs (human and machine combined).
24As a check for robustness to ability type, we also performed a comparison between all steps whose maximum

ability was 1 across the abilities captured in the data (operations and control, dexterity, near vision) and steps whose
maximum ability was 5. We found comparable results.

25See for example the analysis on interchangeable parts as documented by Hounshell (1985), Chandler (1990).
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Figure 5: Fragmentation costs and step divisibility. HML data.

consistent with the increased division of tasks discussed in Section 4.1 following a reduction in
fragmentation costs.

Within the HML dataset we next look at wages. We restrict the analysis to steps with constant
performer type (i.e., manual motive power regardless of whether the process is characterized as a
hand or machine process) this is to make sure we capture the impact of changing fragmentation
costs as opposed to automation (analyzed below). Table 2 displays data from four distinct distri-
butions. With the leftmost two columns, we compare the distribution of wages when changing
from the hand to the machine process does not incur changes in the number of steps (constant
T). To compare across plants, relative wages are calculated using the wage of a performer di-
vided by the average wage in the plant. With the rightmost two columns, we look at the case in
which changing from the hand to the machine process leads to an increased number of steps (T
increasing). In either case we compare the distribution of relative wages for the hand and ma-
chine processes. Consistent with Corollary 1, for the case of increasing T, we observe a decrease
of the lowest wages. As wages are monotone in ability this also suggests a decrease of ability
demanded.26 The Corollary emphasizes how in the presence of decreasing fragmentation costs
we expect downward pressure in demand for the lowest skills. To confirm that the changes in
wages are indeed driven by changes in the number of steps, consider the case of constant T in
the first two columns of Table 2. In this case, the widening of the distribution of relative wages
is much smaller than the case of increasing T.27 The HML dataset, while covering a variety of
different industries and products, lacks precise controls on fragmentation cost and lacks direct

26This pattern appears in direct industry observations see for example Womak et al. (1990).
27The initial distribution of wages is narrower for tasks that show increasing T than for those that have constant T

between the Hand and Machine Process. This difference is expected because the processes which in practice see the
greatest increase in T initially had less division of labor.
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Table 2: Fragmentation costs and wages. HML data.

Constant T Increasing T
Relative Wage Hand Process Machine Process Hand Process Machine Process

10th Percentile 0.58 0.53 0.66 0.48
25th Percentile 0.85 0.76 0.88 0.70
50th Percentile 1.00 1.00 1.00 0.91
75th Percentile 1.23 1.22 1.10 1.15
90th Percentile 1.54 1.61 1.32 1.45

Number of Steps 1440 1440 770 2445

measurement of ability levels. To overcome these limitations, we next look at the optoelectronic
semiconductor production data. This data provides information on different levels of automation
and consolidation (different number of steps). For all levels of automation and consolidation, the
final products are functionally homogeneous and perfect substitutes on the market. Changing the
level of consolidation of the design drives step consolidation: the more consolidated the design,
the fewer number of steps (lower T). Consolidation of parts leads to an increase in fragmentation
costs ( f ) but also a reduction in assembly issues, captured in our theory by reduced issue arrival
(λ). The case of consolidation allows us to look for an empirical analogue of Corollary 1 and
Corollary 2 for constant performer type. Taking these two Corollaries together, we expect a con-
vergence in ability demand (decline at the top and at the bottom), as fragmentation costs increase
and issue arrival decrease. We use the skill-ratings collected for each step by Combemale et al.
(2020) as a measure of a.28 Holding performer type constant across levels of consolidation, Fig-
ure 6 shows the effects of two changes in consolidation (from low to medium consolidation and
then from medium to high consolidation) on the distribution of skill demand.29 We see that with
consolidation skill demand converges toward middle skills. This is similar to the convergence in
ability demand anticipated in Corollary 1 and 2.

5.4 Automation

We next move to our main empirical results looking at which steps in a production process are
most likely to be automated. The results in Section 4.3 provide guidance on what steps are more
likely to be automated when considering steps of different length or production processes with
different levels of output. Together, the results of Section 4.3 describe what we refer to as a cone
of automation where automation is more likely for higher level of output and for middle length
steps (see Figure 2). In what follows we first look at the HML data and then at the optoelectronic

28Specifically we focus on the O∗NET defined skill Operation and Control. A skill of 1 is rated low, a skill of 5 or
greater (levels 6 and 7 were not observed) high, and 2-4 medium. As shown in Combemale et al. (2020), this result is
robust across different types of skills and without aggregation of skill rankings.

29For the optoelectronic product studied, some components are fabricated independently and then assembled onto
a common platform. The different levels of consolidation refer to the number of sub-components that are merged into
one. Refer to Combemale et al. 2020 for additional details.
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Figure 6: Impact of change in parts consolidation on skill demand. Different color bars
denote different levels of parts consolidation. Data from Combemale et al. (2020).

semiconductor data to find evidence for this pattern of automation.
We begin with the HML dataset. An analogous of Figure 2 can either be constructed by ob-

serving a single plant at different output levels or by combining observations across different
plants. The HML dataset provides a rich set of observations that allows us to implement the
latter strategy. First it provides labor costs at step-level. This data, combined with Proposition 3,
can be used to recover information on the length of a step. Then, to compare across production
processes, cost for each step is normalized by the average cost observed in that process. The sec-
ond dimension driving automation in Figure 2 is output level Y. For this variable, the connection
with the data when dealing with multiple plants is more involved (as the absolute measure of
output for different goods and services is not comparable across plants). The key insight is to
use the capacity utilization of each step instead of the overall output level. As stated in Remark
1, the pattern in Figure 2 can be recast in terms of r as opposed to Y. The intuition on the role
of r is that at a high enough rate, performers are underutilized. This is because the performer
will run out of tasks that need to be performed. The HML data allows us to compute the degree
of utilization (hence r) across plants. We explain this procedure next (refer to Appendix B.2 for
additional details.)

The HML dataset provides information on the number of workers involved in a step and
the amount of time the step requires to be completed. For each process, following Hopp and
Spearman (2011), we identify the bottleneck in production by looking at the step that requires
the longest time to be completed. We determine the fractional utilization of a step by compar-
ing its completion time to the completion time of the bottleneck. For example, if a bottleneck
requires 10 hours to be completed and a preceding step requires 1 hour to be completed, the
fractional utilization of the preceding step is 1/10. Finally, using the information on the number
of performers on a given step we recover the fractional utilization of performers in a step. In
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Figure 7: Patterns of automation over wage and utilization bins. Numbers in each cell
denote the percentage of steps automated in each step. HML data.

the previous example, if the step has two workers assigned to it, it implies that the fractional
utilization of performers in the step is 1/5 of a worker. This fractional performer utilization rate
can be compared across steps and across processes and is used as one of the two key drivers for
automation in Figure 7.

When comparing plants an additional consideration is required. Figure 2 describes upper and
lower bounds on automation for a given set of structural parameters. In our approach we compare
different products in the HML dataset. Intuitively, the different products are heterogeneous in the
production structural parameters (for example, they might differ in ρ or σ). Given this unobserved
heterogeneity we expect to observe a probability of automation that varies as we vary wages and
capacity utilization as opposed to a strict demarcation. In the HML dataset, for each product
we consider pairs of steps with identical task content between the hand and machine processes.
We select steps from hand processes that were performed manually. We then measure whether a
step has been automated in the machine process using a binary indicator of a change in motive
power.30 Figure 7 displays the results.

In Figure 7, each cell is ordered in terms of percentile of performer utilization and wage
of the performer. The number in each cell denotes the percentage of steps in each range of
utilization and wage that is automated. As expected from Figure 2, the pattern that emerges
displays characteristics of a cone of automation: automation occurs more often at middle wage
steps, and the range of middle wage steps that are likely to be automated becomes progressively
larger for higher utilization steps. Intuitively, the most automated steps in the HML data are the
ones in which a large fraction of worker time is devoted to a step thus allowing a machine in that
step to be less rate constrained. Additionally, automation is more likely when wages are not too
high or too low.

We next turn to optoelectronic semiconductor data. In this dataset we observe different pro-

30We do not observe any instances of a hand step shifting to a less mechanized form of motive power in the
equivalent step in the machine process. For additional details refer to Appendix B.2.
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Figure 8: Impact of automation on skill demand. Data from Combemale et al. (2020).

duction scenarios with different levels of automation.31 This level of detail allows us to precisely
determine if a step has been automated or not. In addition, the available data allows us to de-
termine the ability of each operator directly. As with the case with consolidation we focus on
Operation and Control (as defined in the O∗NET database) as a skill level. In Figure 8 we display
the results as we move from a low to medium level of automation. The data displayed is for a
single output level. This Figure can then be considered as a vertical slice of Figure 2 for middle
output levels. The vertical axis denotes the number of displaced workers being automated at
a given skill level. As anticipated by our theory, the impact of automation is more evident for
middle-skill workers.

6 Conclusion

This paper provides a general theory relating technology change and labor demand. The theory
provides a model of the firm that can be easily mapped to various types of technological change.
We emphasize three dimensions of the problem of the firm affected by technology: the ease of
fragmenting the production process into smaller steps; the costs of relocating the same performer
(human or machine) across multiple steps; and the trade-off between step complexity and rate
of completion. We show that automation has a polarizing effect on skill demand at low output
and an upskilling effect at higher output. Technological changes that reduce fragmentation costs
and increase process complexity can increase the dispersion of labor abilities demanded. We find
that these implications of the theory are supported by empirical evidence across a wide range
of technologies and industry contexts from the late 19th century and contemporary manufactur-
ing. The theory offers multiple broad insights about technology change and the division of labor.
First, the division of production into different steps is the origin of heterogeneous ability demand.

31The change in level of automation is characterized using a taxonomy of automation (see Combemale et al. 2020).
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Heterogeneous ability demand does not occur unless some steps are more costly to divide than
others. Second, as it is easier to maintain machines at a high utilization rate (e.g., cloud com-
puting), the effect of automation becomes less skill-polarizing and more upskilling. Third, the
paper makes the point that the phenomenon of skill polarization is not only a relatively recent
IT-related phenomenon that holds at the aggregate. Instead, we make the case that polarization
naturally occurs with any form of automation and can occur within a firm. Several extensions of
the model can be considered. A natural extension is to relax the assumption that firms set their
ability demand to ensure that a step is completed in expectation. This extension allows firms
to choose ability greater or less than step difficulty at the cost of higher or lower success (yield)
rates. This extension can help explain empirical cases where high costs of failing to solve issues in
a specific step would warrant higher demand for operator ability so that failure is less frequent.
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Appendix

A Proofs

A.1 Proofs of Section 3

Lemma 1. Suppose Assumption 1 holds. Then: (i) for all n > 1, X(n|ρm) > X(n|ρh). (ii) limn→∞ X(n|ρm)−
X(n|ρh) = ∞.

Proof. (i) For any realization of {Xi}n
i=1, from Lemma 2.1 in Kirmaci et al. (2008) and Assumption

1 we have that: (
n

∑
j=1

(Xj)
ρm

) 1
ρm

>

(
n

∑
j=1

(Xj)
ρh

) 1
ρh

,

the result then follows immediately. For (ii), an application of Hölder inequality gives

(
n

∑
j=1

(Xj)
ρm

) 1
ρm

≤
(

n

∑
j=1

(Xj)
ρh

) 1
ρh

n
1

ρm − 1
ρh ,

so that X(n|ρm) ≤ X(n|ρh)n
1

ρm − 1
ρh . We then have:

X(n|ρm)− X(n|ρh) ≥ X(n|ρm)

[
1 −

(
n

1
ρm − 1

ρh

)−1]
.

Since X(n|ρm) diverges, the result follows.

Lemma 2. The function c(l|ρ) is: (i) strictly increasing, and (ii) strictly concave in step length l; (iii)
Suppose Assumption 1 holds, then liml→∞[c(l|ρm)− c(l|ρh)] = ∞.

Proof. We have that for all n, dPn(l)
dl = Pn(l)

( n
l − λ

)
. Since X(n|ρ) is strictly increasing in n, we

have that:
dc(l)

dl
=

∞

∑
n=1

Pn(l)
(n

l
− λ

)
X(n|ρ) >

∞

∑
n=1

Pn(l)
(n

l
− λ

)
X(1|ρ),

so that:
dc(l)

dl
> X(1|ρ)

[
1
l

∞

∑
n=0

nPn(l)− λ(1 − P0(l))

]
= X(1|ρ)λP0(l) > 0.

Showing (i). We next prove (ii). Since X(0|ρ) = 0 and since n
l Pn(l) = λPn−1(l), we have that

dc(l)
dl

= λ
∞

∑
n=0

Pn(l)(X(n + 1|ρ)− X(n|ρ)) > 0,

so that:
d2c(l)

dl2 = λ
∞

∑
n=0

Pn(l)
(n

l
− λ

)
(X(n + 1|ρ)− X(n|ρ)),
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so that:

d2c(l)
dl2 = λ2

∞

∑
n=0

Pn−1(l)(X(n + 1|ρ)− X(n|ρ))− λ2
∞

∑
n=0

Pn(l)(X(n + 1|ρ)− X(n|ρ)) =

< λ2
∞

∑
n=1

Pn(l) [(X(n + 2|ρ)− X(n + 1|ρ))− (X(n + 1|ρ)− X(n|ρ))] < 0.

Where the first inequality holds since λ2P0(l)(X(1|ρ) − X(0|ρ)) > 0 and the second inequality
holds since X(n + 1|ρ)− X(n|ρ) is decreasing in n.To show (iii) we have that:

lim
l→∞

[c(l|ρm)− c(l|ρh)] = lim
l→∞

∞

∑
n=0

Pn(l) [X(n|ρm)− X(n|ρh)] .

From the definition of Pn(l) and from Lemma 1 (iii), we have that the elements of the sum diverge,
proving the result.

A.2 Proofs of Section 4.1

Proposition 1. Suppose that f (·, ·) is sufficiently low and that w(·) or k(·) is sufficiently convex. Then
division of tasks is optimal.

Proof. If fragmentation costs f (·, ·) are sufficiently low, then the condition in (10) is also sufficient.
Suppose that, by contradiction, for all l, o′, o′′ and all r′, r′′ we have:

p
(

D (c(ν|ρo), r∗|o) , r∗, Y
∣∣o) ≤ p

(
D
(
c(l|ρo′), r′|o′

)
, r′, Y

∣∣o′)+ p
(

D
(
c(ν − l|ρo′′), r′′|o′′

)
, r′′, Y

∣∣o′′).

To reach a contradiction, set l = ν/2 and o′′ = o′ = o, using (4) we have for o = h (and proceeding
similarly for o = m):

w(D (c(ν|ρh), r∗|h))gh(Y, r∗) ≤ w(D
(
c(ν/2|ρh), r′|h

)
)gh(Y, r′) + w(D

(
c(ν/2|ρh), r′′|h

)
)gh(Y, r′′),

setting r′ = r′′ = r∗ the above implies:

w(D (c(ν|ρh), r∗|h)) ≤ w(D (c(ν/2|ρh), r∗|h)) + w(D (c(ν/2|ρh), r∗|h)). (A.1)

If w is sufficiently convex, so is the function w̃(l) = w(D (c(l|ρh), r∗|h)), reaching a contradiction.

Proposition 2. Suppose that: f (·, ·) is sufficiently low and Y is sufficiently high. If D′
r =

∂D
∂r is sufficiently

small (or ν is sufficiently large), then division of tasks is optimal.

Proof. If fragmentation costs f (·, ·) are sufficiently low, then the condition in (10) is also sufficient.
Suppose that, by contradiction, for all l, o′, o′′ and all r′, r′′ we have:

p
(

D (c(ν|ρo), r∗|o) , r∗, Y
∣∣o) ≤ p

(
D
(
c(l|ρo′), r′|o′

)
, r′, Y

∣∣o′)+ p
(

D
(
c(ν − l|ρo′′), r′′|o′′

)
, r′′, Y

∣∣o′′).
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Set l = ν/2 and o′′ = o′ = o, using (4) we have for o = h (and proceeding similarly for o = m):

w(D (c(ν|ρh), r∗|h))gh(Y, r∗) ≤ w(D
(
c(ν/2|ρh), r′|h

)
)gh(Y, r′) + w(D

(
c(ν/2|ρh), r′′|h

)
)gh(Y, r′′).

(A.2)
Set the values of r′ = r′′ = r̂ so that D (c(ν|ρh), r∗|h) = D (c(ν/2|ρh), r̂|h). Totally differentiating
D (c(l|ρ), r|h) and keeping a constant difficulty level we get: dr

dl = −c′l(l|ρ)D′
c/D′

r. So that r̂ =

r∗ + c′l(l|ρ)
ν
2 (D′

c/D′
r). From Assumption 3, for Y sufficiently high, we have g(Y, r) ≈ 1/r for all

r. Equation (A.2) evaluated at r′ = r′′ = r̂ simplifies to r̂ ≤ 2r∗. From the definition of r̂ we see
that this condition is violated when D′

r is sufficiently small or ν is sufficiently large thus reaching
a contradiction.

A.3 Proofs of Section 4.2

Proposition 3. Suppose that Assumptions 2 and 4 hold. Suppose that D′′
cr/D′

c ≥ −g′r/g. Given two
steps i and j with the same performer: oi = oj. Denote with ri, rj (ai, aj) the optimal choice for rate (ability)
in step i and j. Then if li > lj, we have that (i) ri ≤ rj, (ii) p(ai, ri, Y|oi) > p(aj, rj, Y|oi).

Proof. Suppose that oi = oj = h (similar arguments follow for a machine performer). Abusing
notation let p(li, ri) = w(D(c(li|ρh)), ri|h)gh(Y, ri). We first show (i). From the statement of the
proposition on the optimality of rj, we have that p(lj, rj) ≤ p(lj, ri). Suppose statement (i) is not
true so that ri > rj we then have:

p(li, ri) < p(li, rj). (A.3)

We next show how the above leads to a contradiction. If the function p satisfies the strict increas-
ing difference property then, since li > lj and ri > rj, we have that:

0 > p(li, ri)− p(li, rj) > p(lj, ri)− p(lj, rj),

where the first inequality follows from (A.3). From the above we then have that 0 > p(lj, ri)−
p(lj, rj) contradicting the optimality of rj. It remains to be shown that the function p has the strict

increasing difference property. From Topkis (1998) Chapter 2, it suffices to show that ∂2 p
∂r∂l > 0. We

have that:

∂2 p
∂r∂l

=
∂2[w(D (c(l|ρh), r|h))gh(r, Y)]

∂r∂l
=

∂

∂r
[
w′D′

cc′l g
]
=

= w′′D′
cD′

rc′l g + w′D′′
crc′l g + w′D′

cc′l g
′
r > 0.

where the inequality follows from properties of w, D, c and the assumption that D′′
cr/D′

c ≥ −g′r/g.
We next look at (ii). From (i), since li > lj, we have that ri ≤ rj. If ri = rj result (ii) follows
immediately. Suppose (ii) is not true then: w(D(c(li), ri))g(ri) ≤ w(D(c(lj), rj))g(rj). We then
have w(D(c(lj), rj))g(rj) ≥ w(D(c(li), ri))g(ri) > w(D(c(lj), ri))g(ri) which is a contradiction
given the optimality of rj for step-length lj.
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Proposition 4. Suppose that Assumptions 5 and 6 hold. Given two steps i and j with the same performer:
oi = oj. Then if li > lj, we have that ai > aj.

Proof. If ri ≥ rj the result follows immediately. Let ri < rj. Suppose the statement is not true so
that ai ≤ aj. Suppose that oi = oj = h (similar arguments follow for a machine performer). From
(5), for step length l, the choice for r solves:

min
r≤r≤Yrh

w (D (c(l|ρh), r|h)) gh(Y, r). (A.4)

If both ri and rj are interior, from the first order conditions follows that (suppressing notation):

ws =
D(c(ls), rs)w′(D(c(ls), rs))

w(D(c(ls), rs))
= − g′r(Y, rs)

g(Y, rs)

D(c(ls), rs)

Dr(c(ls), rs)
, s = i, j. (A.5)

Where ws = w(D(c(ls), rs)). From Assumption 6 and the contradicting assumption ai ≤ aj we
have that wi ≤ wj. From the functional forms specified in Assumption 5 we have that:

wi = − g′r(Y, ri)

g(Y, ri)

D(c(ls), ri)

Dr(c(li), ri)
=

1
ς
+

c
ςrς

i
>

1
ς
+

c
ςrς

j
= −

g′r(Y, rj)

g(Y, rj)

D(c(lj), rj)

Dr(c(lj), rj)
= wj.

Where the strict inequality follows from ri < rj. We thus reach a contradiction. We now consider
the corner solutions. Since ri < rj We have that rj > r and ri < Yrh. Remaining cases include
rj = Yrh and ri = r. For these cases have that: wi ≥ 1

ς + c
ςrς

i
> 1

ς + c
ςrς

j
≥ wj. Where the

strict inequality as before is from ri < rj. We then reach a contradiction with the contradicting
assumption that implies wi < wj.

A.4 Proofs of Section 4.3

Proposition 5 (Upper Bound on Automation). Suppose Assumptions 1, 3, and 4 hold. There exists l
such that oi = h for all i with li > l.

Proof. Suppose not, then given our indifference assumption for all l there exists a j with lj > l
such that oj = m. Let rm

j be the optimal choice for rate for step j, this implies that for all rh
j :

k(am
j )gm(Y, rm

j ) < w(ah
j )gh(Y, rh

j ). (A.6)

From Assumption 4, k(·) and w(·) are increasing. Given Assumption 3 Part 1, the optimal r for
either performer is always r ≤ r ≤ r. We then have D(c(lj|ρh), rh

j |h) = ah
j ≤ D(c(lj|ρh), r|h) ≡

a(lj), and D(c(lj|ρm), rm
j |m) = am

j ≥ D(c(lj|ρm), r|m) ≡ a(lj). Substituting the previous inequalities
in (A.6) we have:

k(a(lj)) < w(a(lj))
gh(Y, r)
gm(Y, r)

. (A.7)

From Lemma 2 (iii) with D continuous, we have that: liml→∞ D(c(lj|ρm), r|m)− D(c(lj|ρh), r|h) =
∞. Reaching a contradiction with (A.7).
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Proposition 6 (Lower Bound on Automation). Suppose the g function satisfies Assumption 3. Suppose
there exists a step i with li sufficiently small. Also suppose that limc→0,r→r w(D(c, r|h)) ≤ k(D(c, r|m)).
Then if Y is sufficiently low, we have that oi = h.

Proof. Suppose not, then for step i: k(D(c(li|ρm), rm|m))gm(Y, rm) < w(D(c(li|ρh), rh|h))gh(Y, rh).
If Y is sufficiently small we have that rm = rm(Y) < rh(Y) = rh. From Assumption 3 this implies
that gh(Y, rh) < gm(Y, rm). From the contradicting assumption we have k(D(c(li|ρm), rm|m)) <

w(D(c(li|ρh), rh|h)). If li is sufficiently small, we then have that c(li|ρ) ≈ 0; in addition, from
Assumption 3 Part 2, we have that limY→0 rj = r for oj = h, m. We then reach a contradiction with
the assumption in the Proposition stating that limc→0,r→r w(D(c, r|h)) ≤ k(D(c, r|m)).

Proposition 7. Suppose that the g function satisfies Assumption 5. Denote with oi(Y) the optimal operator
choice for li at output value Y. We then have: (i) If Y is sufficiently large then for all Y′ > Y we have
that oi(Y) = oi(Y′); (ii) Let oi(Y) = m. Suppose that w′ ≥ k′, w′′ ≥ k′′ and that w(D(c(l|ρh), r|h)) <
k(D(c(l|ρm), r|m)) for all l > 0, then for all Y if Y′ > Y we have that steps of length li also feature
oi(Y′) = m; (iii) Assume wages and cost of capital are log-linear. Let oi(Y) = m, under the assumption of
(ii), if Y is sufficiently large, then for all steps with l′j < li we have that oj(Y) = m.

Proof. We begin with (i). Denote with r∗o (li) the optimal choice for rate for operator o assuming
no concern for the amount of output produced (assuming ro(Y) = ∞). If Y is sufficiently large,
for operator o we have that the optimal choice for ri = r∗o (li). Since ro(Y) is increasing in Y,
the optimal choice of rate for both types of operators o performing step li is unchanged. It
immediately follows that oi(Y′) = oi(Y) for all Y′ > Y.

We next look at (ii). For this case we cannot rely on the rate being set at the optimum (output
unconstrained) rate. Since step i is automated it implies:

min
r≤rm(Y)

{
k (D (c(li|ρm), r|m))

r

}
< min

r≤rh(Y)

{
w (D (c(li|ρh), r|h))

r

}
, (A.8)

The proof proceeds by contradiction. Suppose that with Y′ > Y the step of length li is not
automated. The contradicting assumption implies that:

min
r≤rm(Y′)

{
k (D (c(li|ρm), r|m))

r

}
≥ min

r≤rh(Y′)

{
w (D (c(li|ρh), r|h))

r

}
, (A.9)

Let r̃ be defined as the rate such that k(D(c(li|ρm), r̃|m)) = w(D(c(li|ρh), r̃|h)). This r̃ exists and
is unique given Assumption 2 and our stated assumptions on w and k including the assumption
that w(D(c(li|ρh), r|h)) < k(D(c(li|ρm), r|m)). For any r < r̃ we have that:

k (D (c(li|ρm), r|m))

r
>

w (D (c(li|ρh), r|h))
r

,

hence we have that for (A.8) to hold it must be the case that r̃ ≤ rm(Y). Given Assumption 2 and
w(D(c(li|ρh), r|h)) < k(D(c(li|ρm), r|m)), it also follows that D′

r(c(li|ρm), r|m) < D′
r(c(li|ρh), r|h)
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and D′′
r (c(li|ρm), r|m) < D′′

r (c(li|ρh), r|h) for all r ≥ r̃. Since difficulty increases with respect to
r at a faster rate for humans relative to machine performers, given the assumption on first and
second derivatives of k and w, we reach a contradiction with (A.9).

We finally look at (iii). As notation let the cost of capital be given by k(D) = k0eγkD (and for
labor w(D) = w0eγl D). As for case (i), in this case we can set the operator rate optimally. From
first order conditions for capital (similarly for labor) we get that the optimal machine rate rm

when step-length is li satisfies:

γkc(li|ρm)σmrσm
m = 1 → rm =

[
1

γkc(li|ρm)σm

] 1
σm

. (A.10)

Denote with r′m the optimal choice with step length l′j. We have that:

log r′m − log rm =
1

σm

[
log(c(li|ρm))− log(c(l′j|ρm))

]
.

Since σm < σh and
[
log(c(li|ρm))− log(c(l′j|ρm))

]
>
[
log(c(li|ρh))− log(c(l′j|ρh))

]
, it follows that

(log r′m − log rm) > (log r′h − log rh). (A.11)

Denote with k and k′ the capital cost for step li and l′j (similarly for labor). The result holds if:

log k − log k′ + (log r′m − log rm) > log w − log w′ + (log r′h − log rh).

Given (A.11), we need to show next that the relationship log k − log k′ > log w − log w′ holds.
Given the assumption on wages and the functional form for D, the above relationship implies:

γk

(
c(li|ρm)(c + rσm

m )− c(l′j|ρm)(c + r′σm
m )
)
> γw

(
c(li|ρh)(c + rσh

h )− c(l′j|ρh)(c + r′σh
h )
)

.

Substituting the optimal r from (A.10) we get

γkc
(

c(li|ρm)− c(l′j|ρm)
)
> γwc

(
c(li|ρh)− c(l′j|ρj)

)
which holds as long as γk > γw.

A.5 Proofs of Section 4.4

Lemma 3. Suppose that the Assumptions of Proposition 1 and Proposition 4 hold. Consider the case in
which f (·, ·) = f . Then li = l and ai = a for all i.

Proof. Suppose not, then there exist two consecutive steps i, j such that without loss of gener-
ality li > lj. Consider the alternative allocation with l = (li + lj)/2. For this allocation not to
be optimal it must be the case that: p(D (c(li|ρh), ri|h) , ri, YR|h) + p(D

(
c(lj|ρh), rj|h

)
, rj, Y|h) ≤
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2p(D(c(l|ρh), r|h), r, Y|h). The contradiction is then reached as in the proof of Proposition 1 ex-
ploiting sufficiently convex wages. The result for ability follows from Proposition 4.

Corollary 1. Suppose that the Assumptions of Proposition 4 hold. Let w(·) and k(·) be sufficiently convex.
Consider arbitrary fragmentation costs f and let f ′ so that f ′(t, ·) = f · f (t, ·) for f ≥ 0. Let amin and
a′min be the lowest ability demanded under f and f ′, respectively. If f is sufficiently low, then a′min ≤ amin.

Proof. Let T, T′ be the optimal number of thresholds under f , f ′ respectively. For sufficiently
small f it follows from Proposition 1 that T′ > T. Let lmin (l′min) be the length of the shortest step
given T (T′). We have that lmin ≤ v̄

T . If not ∑T
i=1 li > v̄, reaching a contradiction. It then follows

that l′min < lmin. The result then follows from Proposition 4.

Corollary 2. Suppose that the Assumptions of Proposition 4 hold. Suppose there exist a set of lumpable
tasks V̂ of length l̂. Also suppose that under issue arrival λ, the maximum step length is l̂. Consider an
issue arrival λ′ > λ. Let amax and a′max be the lowest ability demanded under λ and λ′, respectively. If the
performer for the longest step remains the same, we then have a′max > amax.

Proof. Since V̂ is lumpable, the maximum step length cannot be smaller than l̂. From the defini-
tion of complexity in (2) we observe that step length and issue arrival are perfect substitutes in
their effect on complexity. The result then follows the proof of Proposition 4 substituting changes
in l with changes in λ.

B Hand and Machine Labor Data

B.1 Overview

For each product, the Hand and Machine Labor (HML) dataset includes general information
on the process as well as detailed information on the steps required to create the product using
different methods: either by hand (hand process) or using a machine (machine process). Products
vary greatly in the complexity of production: the observed number of steps range from one to over
two hundred and fifty. The data used in this paper comprise 612,625 step-level entries and 21,120
process-level entries. The HML data is publicly available in a non-digitized form. The entire
dataset was digitized from scanned and physical copies of the data by undergraduate students at
Carnegie Mellon University between 2019 and 2023. The type and definition of variables present
in the HML dataset are described below.

Table B.1 describes process-level variables, which apply across all steps and methods. For
ease of comparison between processes of each method, the dataset reports observed production
volumes for each process. The dataset also reports the input requirements to meet a conformed
volume which is consistent across the hand and machine methods. Table B.2 describes variables
which are reported for each step.
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Table B.1: Process variables in HML data.

Variable Name Definition Example

Unit Product name Potatoes
Unit Volume Volume of product for each full cycle 880 bushels
Conformed Volume Volume of product per cycle used in pre-

sentation of step-level data
220 bushels

Method Level of process mechanization Hand/Machine
Total Employment Number of people employed in process 4 people
Total Animals Number and type of animals used 2 horses
Time Worked The number of hours worked per day 10 hours
Year Date of production process 1893
Unit Characteristics Additional product details From grafts

Table B.2: Step-level variables in HML data.

Variable Name Definition Example

Operation Number Code for the set of tasks in a process step {2, 3}
Work Done Type of the activities performed in a step Planting seed
Machine, Implement or
Tool Used

Description of primary equipment used
to complete step

Steam shovel

Motive Power Source of power for operations described Steam; Horse
Persons Necessary on
One Machine

Number of workers required per ma-
chine or station

2 workers

Animals Necessary on
One Machine

Number of animals required per ma-
chine (type recorded in motive power)

2 horses

Number of Workers Number of workers required in a process
step across all stations

4 workers

Sex Sex of workers M, F
Occupation Occupational title of workers Laborer
Age Age (or age range) of workers 21-30
Time Worked Total hours and minutes to complete step 1hr 15m
Animal Time Worked Total hours and minutes to complete step 2hr 30m
Worker Pay Rate Per-period pay (nominal dollars) $1.00
Animal Pay Rate Per-period cost (nominal dollars) $0.375
Worker Pay Period Payment cycle for workers 1 Day
Animal Pay Period Cost cycle for animals 1 Day
Labor Cost Total labor cost $.125
Animal Cost Total animal cost $.0938
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B.2 Mapping Hand and Machine Processes

We next describe additional steps taken to map the data to the model. In the original data,
entries concerning animal labor in production are given a distinct line with otherwise identical
step information (tools, task content). Since there are never animals used in production without
workers, we condense animal information into the same step as the human workers that manage
them. Some steps also include workers with multiple occupational titles. When this occurs, the
dataset provides separate entries in the data. When mapping the task content between hand and
machine methods, distinct occupations are kept as separate steps with the same task content. Any
step containing multiple occupations (7.4 percent of steps observed) is excluded from our analysis
of step automation or changes in the division of tasks among steps, because the division of tasks
within occupations within a single step is not specified (and to avoid double-counting steps). For
all products, we build a mapping between hand and machine processes. We index the tasks in
hand and machine processes as VH and VM respectively. In terms of notation, superscripts H, M
indicate either hand or machine process-types. Every step i contains a set Si of tasks.1 Any given
step belongs to exactly one of the following six possible cases:

1. 1 to 1: Steps iH and jM belong to this case if they have the same task content and do not
share task content with any other steps.A 1 to 1 mapping is useful when analyzing a change
in performer type or performer characteristics, independently of changes in the division of
production.

2. 1 to 0: a step iH belongs to this case if SH
i ∩ VM = ∅. These steps capture activities that are

no longer performed in the machine case (e.g., post-processing work made unnecessary by
process improvement).

3. 0 to 1: a step iH belongs to this case if SM
i ∩ VH = ∅. These steps represent activities which

are new to a process (e.g., firing a boiler, which would be unnecessary in a hand process
without a steam engine).

4. 1 to N: step iH belongs to this case if: (a) all of its tasks are contained in the machine process,
(b) tasks in the hand step are contained in more than one machine step, and (c) no machine
step with a task set intersecting the hand step contains tasks that are contained in any other
hand step. (∀j such that SM

j ∩ SH
i ̸= ∅ we have SM

j ∩ (VM \ SH
i ) = ∅) Step jM belongs

to this case if SM
j ⊂ SH

i such that iH satisfies the above conditions. This case allows us to
capture an increase in the division of tasks.

5. M to 1: a step jM belongs to this case if: (a) all of its tasks are contained in the hand process,
(b) tasks in the machine step are contained in more than one hand step, and (c) no hand
step with a task set intersecting the machine step contains tasks that are contained in any

1Note that it is possible for two steps i ̸= j to exist such that SM
i ∩ SM

j ̸= ∅: for example, steps with content 1a
and 1b in the hand process are identical in task content to step 1 in the machine process, and to each other.
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other machine step. Step iH belongs to this case if SH
i ⊂ SM

j such that jM satisfies the above
conditions. This case allows us to capture a decrease in the division of tasks.

6. M to N: any remaining step not included above belongs to this case.

Table B.3 reports the number and share of process steps for each method which belong to each of
the six cases described above. We have that 77% of Hand steps and 56% of Machine steps belong
to mappings which can be interpreted as changes in T or o for fixed V , allowing them to be used
to explore technological cases which vary or hold constant the division of tasks.

Table B.3: Mapping between steps of different methods recovered from HML data.

Process Mapping Hand Steps Share of Hand Machine Steps Machine Share

0 to 1 0 0 4,890 .37
1 to 0 832 .11 0 0
1 to 1 3,849 .49 3,849 .29
1 to N 948 .12 3,086 .23
M to 1 1,327 .17 477 .04
M to N 915 .12 881 .07
Missing Alternate 9 .001 0 0

Total 7,880 13,183

The “Missing Alternate”row indicates steps from processes which do not have a corresponding
process of the opposite method: in our data, one hand process had a counterpart machine process
for which the authors of the Hand and Machine study could not compare task content and thus
could not encode operation numbers.

Automation and Utilization When analyzing the impact of automation, we focus on the rate of
automation of steps belonging to the 1 to 1 case described in the previous section (so to keep the
task content of each step constant across the human and machine processes). The HML dataset
features no observations of motive power in hand processes such as steam or water shifting
to “less mechanized” motive powers such as hand or animal power in the respective machine
processes. Given this we treat all changes in motive power as a shift toward automation.

To look at the implications of r̄ on the rate of automation, we construct a measure of the
utilization of performers in each process step, u = Y/r. The lower the utilization of performers,
the lower the returns to increasing rate and the closer the performer is to r̄. To compare between
process steps which were or not automated, we use the parameters of a step’s performer in the
hand process to determine utilization given the volume in the machine process, as a proxy for r̄.
For each product, we can recover an upper bound on the possible output of each process step:
YH

j = rn, where r is the rate of output per performer shift and n is the number of performers
demanded per shift. The maximum effective output of any step in a production process cannot be
greater than the maximum output of every other step (bottlenecks), giving us YH

i = minN
i=1(Y

H
i ).
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When analyzing the division of tasks, to remove the effect of other changes beyond the di-
vision of tasks, we control for task content and for the level of automation. For the former we
only consider the case of steps mapping from 1 to N (the decrease in the division of tasks is
characterized by a M to 1 mapping. As only 55 machine processes have any steps that exhibit
this property with a constant motive power, we do not consider this scenario). To control for the
level of automation we further restrict the sample selection to steps in which the motive power is
unchanged.

C Additional Figures
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Figure C.1: Machine costs and step complexity. Prices in 2006 Dollars. For information
on the data refer to Fuchs et al. (2008).
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