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1 Introduction

One of the major goals of mechanism design is to study the properties of optimal

mechanisms maximizing a given objective such as revenue or welfare maximization.

The difficulty in deriving such mechanisms results from the designer lacking informa-

tion about the agents’ preferences. Hence, a well-designed mechanism should take

into account the agents’ ability to hide their privately held information, often called

incentive compatibility constraints.

Previous work provides important insights into these constraints. Myerson (1981)

showed that in standard private value settings with one-dimensional types, any non-

decreasing allocation rule can be implemented; that is, there exists a payment rule

that when combined with the allocation rule produces a direct mechanism where

truth-telling is in the best interests of the agents. In multi-dimensional settings,

Rochet (1987) showed that an allocation rule is implementable if and only if it is

cyclically monotone. To define a cyclically monotone allocation rule f : RN → RN ,

N ≥ 1 consider a weighted graph with points in the domain of f being vertices and

directed edges from any point t to any other point t′. With each directed edge, we

associate weight t · (f(t) − f(t′)). Allocation f is then cyclically monotone if along

any cycle the sum of edge weights is non-negative. If the weight of any cycle with two

edges is non-negative, the allocation rule satisfies a weaker condition called monotone.

Though the Rochet’s characterization and its modifications have been successfully

used in auction theory, computer science, and matching theory, it is often tedious

to verify.1 An important contribution by Saks and Yu (2005) (also Bikhchandani

et al., 2006) establishes an equivalence between cyclically montone and monotone

conditions for convex domains with a finite set of outcomes. Their result greatly

simplifies checking whether an allocation rule is implementable.2

Does the equivalence result extend to non-convex domains? Ashlagi et al. (2010)

showed that Saks and Yu’s result cannot be extended beyond domains with convex

closure if one requires equivalence between two conditions for every finite-valued ran-

domized allocation. However, randomized allocations might not always be plausible.

1See Lavi and Swamy (2009), Mishra and Roy (2013), and Carbajal and Mu’alem (2020). The
cyclic monotonicity condition has also applications in revealed preference theory, producer theory,
and spatial allocation (see Chambers and Echenique, 2018; Kushnir and Lokutsievskiy, 2019).

2The result with a similar flavor for environments without transfers also appeared in Pycia (2012).
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Further, Ashlagi et al. (2010)’s result does not preclude equivalence between mono-

tone and cyclically monotone conditions on non-convex domains for a given set of

possible outcomes.

In this paper, we provide sufficient conditions on a domain, on a set of possible

outcomes, and on a function that guarantee that if the function is monotone, then

it is also cyclically monotone. Our two main conditions require the domain to be

simply connected and the function to satisfy the local-to-global condition. The former

condition ensures that the domain does not contain “holes” of a certain type. The

latter condition ensures that if a function is a solution to a local optimization problem,

it also delivers the global optimal.3

We then apply these conditions to study deterministic demand functions on the

domain of gross substitutes. The domain of gross substitutes is an important non-

convex domain of agent preferences that has been extensively exploited in the mech-

anism design, matching, equilibrium, and algorithmic literatures (e.g., Ausubel and

Milgrom, 2002; Roth, 1991; Gul and Stacchetti, 1999; Paes Leme, 2017). We estab-

lish that any monotone demand function defined on the domain of gross substitutes

is also cyclically monotone. We further extend the equivalence between monotone

and cyclically monotone conditions to the domain of generalized gross substitutes and

complements, the domain that allows for multiple objects of the same type and some

complementarities across objects (Sun and Yang, 2006; Shioura and Yang, 2015).

On the methodological side, we introduce some novel techniques to economics.

The proof of our main result uses a version of the Nerve theorem—a classical result

in algebraic topology (see Björner, 1995). To explain the result, let us consider a set

that is covered by a finite system of closed subsets. Nerve is then a special weighted

hypergraph associated with this system of subsets. The Nerve theorem helps to map

the geometrical properties of the set to the geometrical properties of the nerve. This

result could be of special interest to economists working in the areas of mechanism

design, social choice, network theory, and operations research.

3As explained later, we also require an additional technical condition.
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Related Literature. The cyclic monotonicity condition was introduced by Rock-

afellar (1966) to characterize the subdifferentials of convex functions. For mechanism

design applications, Rochet (1987) was the first to show that in quasi-linear environ-

ments an allocation rule can be implemented if and only if it is cyclically monotone.

He also drew a parallel between the cyclic monotonicity condition and the strong

axiom of revealed preferences (see also Brown and Calsamiglia, 2007; Makowski and

Ostroy, 2013). Saks and Yu (2005) simplified the characterization of implementable

allocation rules by establishing that any monotone function is cyclically monotone on

convex domains with a finite set of outcomes (see also Bikhchandani et al., 2006).4

Importantly, Ashlagi et al. (2010) showed that Saks and Yu’s characterization can-

not be extended beyond domains with convex closure if the equivalence is required

to hold for all finite-valued randomized allocation rules. For an infinite set of out-

comes, Müller et al. (2007), Archer and Kleinberg (2014), and Carbajal and Müller

(2015, 2017) provided various additional conditions to guarantee that the cyclical

monotonicity condition is satisfied.

For non-convex domains, the literature is scarce. For single-peaked preferences,

Mishra et al. (2014) showed the equivalence of monotone and cyclically monotone

conditions. Vohra (2011) provided an inspiring example of a simple domain with two

objects and the agent’s valuation of a bundle of objects equals the maximum value

of objects in the bundle. For the setting, he established that any monotone function

is also cyclically monotone. This is an example of a domain where every valuation

satisfies the gross substitutes condition. Ever since, it has been an open question as

to whether the equivalence between the monotone and cyclically monotone conditions

can be extended to the whole domain of gross substitutes.5

The gross substitutes condition was introduced by Kelso and Crawford (1982)

in the context of labor matching markets. Sun and Yang (2006, 2009) and Shioura

and Yang (2015) extended the gross substitutes condition to allow for some com-

4Jehiel et al. (1999) also contains the proof a geometric lemma that is the main step in Saks and
Yu (2005). See also Cuff et al. (2012) and Edelman and Weymark (2020) for the cases when every
monotone function is cyclically monotone.

5The only progress in that direction was made in a concurrent paper by Agarwal and Roy (2019),
who extended Vohra (2011)’s example to the case of an arbitrary number of objects.

Mishra and Roy (2013) also showed that the non-negativity of any three-cycle is sufficient for
implementability in dichotomous domains. The conditions of Carbajal and Müller (2015, 2017) also
apply formally to non-convex domains.
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plementarities and multiple objects of the same type, a domain they referred to as

generalized gross substitutes and complements. They also designed a dynamic auction

for efficiently allocating the objects to the agents. Our most general results in Section

4 apply to the latter domain.

Our main theorem exploits the local-to-global condition that relates local incentive

compatibility to global incentive compatibility constraints in convex and non-convex

domains. This condition is closely connected to the decomposition monotonicity con-

dition first proposed by Müller et al. (2007) to study Bayesian incentive compatible

allocation rules on convex domains.6 In a related paper, Archer and Kleinberg (2014)

considered convex domains and showed that if a function with a finite or infinite set

of outcomes is locally monotone and its loop is integral over every sufficiently small

triangle vanishes, then it is also incentive compatible. Carroll (2012) also thoroughly

studied local and global incentive compatibility constraints. He showed that local in-

centive compatibility always implies global incentive compatibility for convex domains

with transferable utility, the single-peaked preference domain, and the single-crossing

domain without transferable utility.7 Though Carroll (2012) did not study non-convex

domains with transferable utilities, one of his geometric characterizations has proved

to be very useful for our purposes (see Section 3).

One of our results (Proposition 1) is also closely related to the Helmholtz de-

composition of Jiang et al. (2011). Candogan et al. (2011) used these techniques to

decompose any finite game into potential, harmonic, and nonstrategic components.

In a recent paper, Caradonna (2020) also used the decomposition to analyze when the

weak axiom of revealed preferences implies the rationalizability of choice functions.

The paper proceeds as follows. Section 2 introduces notations and definitions.

Section 3 presents our main results. We use these results in Section 4 to study

functions defined on the domain of gross substitutes and the domain of generalized

gross substitutes and complements. Section 5 concludes the paper.

6See also Berger et al. (2009) and Berger et al. (2017). The condition is also related to the reverse
triangle inequality in Mishra et al. (2014).

7See also Gibbard (1977), Mishra et al. (2016), Pycia and Ünver (2015), and Sato (2013) for
related results.
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2 Notations and Definitions

We begin by introducing some notations and definitions. Then we motivate them

from the perspective of mechanism design. Consider a domain T ⊆ RN , a finite set

A ⊂ RN for N ≥ 1, and some function f : T → A. The vector product of t ∈ T and

a ∈ A is denoted as both t · a and ta. We consider two monotonicity conditions.

Definition 1. Function f : T → A is monotone if for all t, t′ ∈ T,

t (f(t)− f(t′)) + t′ (f(t′)− f(t)) ≥ 0. (1)

This is a generalization of the one-dimensional monotonicity condition to multi-

dimensional settings. We use the term monotone function following Rockafellar

(1966). Some recent papers also call such functions weakly monotone (see, e.g.,

Bikhchandani et al., 2006). Our second and more demanding condition defined as

follows.

Definition 2. Function f : T → A is cyclically monotone if for any integer M

and any points t0, t1, . . . , tM = t0 in T,

M−1∑
k=0

tk(f(tk)− f(tk+1)) ≥ 0. (2)

As we mentioned in the introduction, both definitions could be conveniently inter-

preted using graph theory. Consider a weighted graph with points t ∈ T being vertices

and directed edges from any point t to any other point t′. With each edge, we as-

sociate weight t(f(t) − f(t′)). Hence, if f is cyclically monotone, then the weight

of any cycle has to be non-negative. If f is monotone, then the above condition is

restricted to cycles of length two. Note that in order to check whether f is monotone,

we need to verify only inequality (1). At the same time, we need to verify a system

of inequalities (2) for all integers M to check whether f is cyclically monotone. The

latter is a much more demanding task.

For any f : T → A, we also consider a cover of T by a finite number of subsets.
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To define these subsets for any ordered pair a, b ∈ A, we define lower bound

`ab = inf
t∈T :f(t)=a

t(a− b).

Using the lower bounds, we construct a cover {T fa }a∈A of set T , where for each a ∈ A

T fa = {t ∈ T : t(a− b) ≥ `ab,∀b ∈ A}.

Note that T fa depends on the choice of function f and T =
⋃
a∈A T

f
a . In addition,

if outcome a /∈ f(T ), then we have `ab = +∞ and T fa is the empty set. For all

other outcomes, each set T fa is non-empty and contains the set of points that leads

to outcome a, i.e., {t ∈ T, f(t) = a} ⊆ T fa .

In our analysis, we study functions that lead to path-connected subsets T fa and

functions that are defined on a simply connected domain T . Set T fa is path-connected

if it is non-empty and any two points x ∈ T fa and y ∈ T fa can be connected with

a continuous curve lying inside T fa . A domain T is simply connected if it is path-

connected and any loop in T can be continuously contracted to a point.8 For example,

a triangle without an interior is not simply connected (see Example 1). At the same

time, any set with a point that can be connected to each of the set’s other points with

a line segment within the set is simply connected. Such a set is called star-shaped (or

star-convex ).

For a closed line segment connecting two points x, y ∈ RN , we use the standard

notation [x, y] = {z ∈ RN : z = αx + (1 − α)y, α ∈ [0, 1]}. We also employ

[x, y), (x, y], and (x, y) throughout the paper depending on whether the boundary

points are included. Finally, the following property will be helpful in our analysis.

Definition 3. Function f : T → A satisfies the local-to-global condition if for any

two outcomes a, b ∈ f(T ) with T fa ∩ T
f
b = ∅, there exists a path {a ≡ a0, ..., aM ≡ b}

such that T fam ∩ T
f
am+1

6= ∅, m = 0, ...,M − 1, and `ab ≥
∑M−1

m=0 `amam+1.

The local-to-global condition can be most accurately interpreted through the prism

of mechanism design and we slightly postpone its discussion (see p. 9). Here, we

8A formal definition of domain T being simply connected is as follows. Let S1 denote a circle (in
R2). Then, for any continuous function (a loop) γ : S1 → T , there must exist a continuous function
F : [0, 1]× S1 → T such that for all s ∈ [0, 1], F (0, s) ≡ γ(s) and F (1, s) ≡ t0 for some t0 ∈ T .
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mention only one of our results related to the condition. At first glance, verifying the

local-to-global condition might require a significant effort. However, we show that it

is not the case. We present a sufficient geometric property that ensures a monotone

function f satisfies the local-to-global condition (see Lemma A1). In particular, the

geometric property requires that for any a, b ∈ f(T ), any x ∈ T fa there should exist

type y ∈ T fb such that [x, y] ⊂ T . In Section 4, we show that the geometric property

is satisfied for any monotone function defined on some important economic domains.

Mechanism design. For mechanism design applications, one could think of N as the

number of outcomes, and T as the set of agent types. Type t ∈ T can be interpreted

as a vector of agent’s valuations for all possible outcomes. With each outcome, we

associate an indicator a ∈ {0, 1}N that has one component equal to 1 and all other

components equal to 0. The union of these indicators is then a finite set A ⊂ RN .

The agent’s utility from a ∈ A can conveniently be written then as u(t, a, p) = t ·a−p,
where p is the agent’s payment.

We consider direct mechanisms characterized by two functions: an allocation rule,

f : T → A, mapping an agent’s reported type to the set of possible outcomes, and a

payment rule, p : T → R, mapping an agent’s reported type to the set of real numbers.

We consider only deterministic allocation rules and do not allow randomizations over

outcomes.9 We can then write the agent’s utility as

tf(t′)− p(t′)

where t′ and t refer to the agent’s reported and true types, respectively. We call

allocation rule f implementable if there exists a payment rule p such that mechanism

(f, p) is incentive compatible; that is, if it satisfies the following constraints:

tf(t)− p(t) ≥ tf(t′)− p(t′) ∀t, t′ ∈ T.

Rochet (1987) proved an important result characterizing the set of implementable

allocations as stated in the following theorem.

9See Ashlagi et al. (2010) for the study of randomized mechanisms.
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Theorem (Rochet (1987)). An allocation rule is implementable if and only if it is

cyclically monotone.

Though the cyclic monotonicity condition characterizes the set of all implementable

allocation rules, this condition is often tedious to verify. Remarkably, Saks and Yu

(2005) showed that for convex domains it is enough to check that only two cycles

are non-negative. Saks and Yu (2005)’s characterization and its modifications have

been successfully used in several important applications (see Lavi and Swamy, 2009;

Mishra and Roy, 2013; Carbajal and Mu’alem, 2020; Shi et al., 2018). One of our

main results extends Saks and Yu (2005)’s result to important non-convex domains

including the domain of gross substitutes (see Section 4).

Before proceeding to our main results, we discuss the interpretation of the lower

bounds `ab and the local-to-global condition (Definition 3). Let us consider all agent

types that lead to outcome a ∈ A. Lower bound `ab then corresponds to the lowest

benefit from revealing its true type compared to lying when lying leads to outcome

b ∈ A (excluding transfers). For a monotone allocation, set T fa almost coincides with

the set of types that lead to outcome a ∈ A (up to the boundary points).

The local-to-global condition can then be interpreted as a condition that ensures

local incentive compatibility implies global incentive compatibility (see Archer and

Kleinberg, 2014; Carroll, 2012). Lower bound `ab is the lowest benefit from revealing

true type compared to lying when lying leads to outcome b. Hence, −`ab can be

regarded as the maximum gains from lying. We interpret −`ab, T fa ∩ T
f
b = ∅ as

the gains from global deviations and −`ab, T fa ∩ T
f
b 6= ∅ as the gains from local

deviations. Then, the local-to-global condition ensures that the gains from global

deviations are smaller than the total gains from deviations along the path connecting

t ∈ T fa and some type in T fb ; i.e., local incentive compatibility implies global incentive

compatibility. Similar conditions have been considered in the literature before (see

Müller et al., 2007; Mishra et al., 2014). The main difference is that our condition is

also applicable to non-convex domains.
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3 Main Result

The main result of this section, Theorem 1, provides a set of conditions on a domain T ,

a set A, and a function f : T → A that ensure that if f is monotone, it is also cyclically

monotone. These conditions are simplified in Corollary 1. The result of Corrollary 1 is

then used to analyze monotone demand functions on the domain of gross substitutes

and the domain of generalized gross substitutes and complements in Section 4.

Theorem 1 (Main result). Consider a domain T ⊂ RN , a finite set A ⊂ RN , and a

function f : T → A. Suppose that

1) T is simply connected,

2) T fa is either path-connected or empty for each a ∈ A, and

3) f satisfies the local-to-global condition.

Then if f is monotone, it is also cyclically monotone.

Discussion: The simply connected condition is satisfied for most economically rel-

evant models.10 It ensures that domain T does not contain “holes” of a certain

type. The condition on sets T fa is technical. For instance, any star-shaped set is

path-connected. To check that a monotone function f satisfies the local-to-global

condition, we will show that it is enough for f to satisfy the following geometric

property: for any a, b ∈ f(T ) and any x ∈ T fa there should exist type y ∈ T fb such

that [x, y] ⊂ T (see Lemma A1). This condition was originally proposed by Carroll

(2012) to show that local incentive compatibility implies global incentive compatibil-

ity in single-peaked preferences settings without transfers.

Proof. First, we establish that it is sufficient to prove the statement for f such that

f(T ) = A. Indeed, if we prove the statement under this assumption, then for an

arbitrary f : T → A satisfying the theorem conditions, we put A′ = f(T ) and apply

the established result for f : T → A′. Hence, without loss of generality, we assume

from this point on that f(T ) = A and, hence, T fa 6= ∅ for each a ∈ A.

The proof of Theorem 1 is based on graph theory and algebraic topology. We

associate two graphs with set A. The first graph Γ is the complete directed graph

10One exception is a circular domain in monopolistic competition models (Salop, 1979).
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with vertices corresponding to each outcome in A and directed edges connecting every

ordered pair of vertices. To distinguish vertices from outcomes, for each a, b, c ∈ A,
we denote the corresponding vertices in Γ by Gothic letters a, b, and c, respectively,

and the set of vertices by A0. Each directed edge a→ b in Γ has weight equal to `ab.

The second graph Γn is a subgraph of Γ with the same set of vertices A0, but

directed edges connecting only adjacent outcomes; i.e., a and b are connected (by

both directed edges) in Γn if and only if T fa ∩ T
f
b 6= ∅. The subgraph’s directed edges

still have weight `ab. We call graph Γn a neighborhood subgraph.

We first notice that Definitions 1 and 2 can be reformulated using the weights

of cycles in Γ.11 We say that Γ is cyclically monotone if any M -cycle a0 → a1 →
...aM−1 → aM ≡ a0 with ai ∈ A0 for i = 0, ...,M − 1 and M ≥ 2 has non-negative

weight, i.e.,
∑M−1

m=0 `amam+1 ≥ 0. On the other hand, we say that Γ is monotone if any

2-cycle has non-negative weight. It is straightforward to verify that f is monotone

(cyclically monotone) if and only if Γ is monotone (cyclically monotone) (e.g., Hey-

denreich et al., 2009). Therefore, in order to prove that f is cyclically monotone, it

is enough to establish that Γ is cyclically monotone.

To prove that Γ is cyclically monotone, we first establish that all cycles in the

neighborhood subgraph Γn have exactly zero weight using the conditions that domain

T is simply connected and sets T fa are path-connected for a ∈ A. Then, we will show

that the local-to-global condition implies that all cycles in Γ have non-negative weight.

Proposition 1. If conditions 1) and 2) are satisfied and f is monotone, then any

cycle in the neighborhood subgraph Γn has exactly zero weight.

Proof. We first establish two simple facts about subgraph Γn. Consider some directed

edge a → b in Γn. As f is monotone, graph Γ is also monotone and `ba + `ab ≥ 0.

At the same time, as a→ b is in Γn, there exists t ∈ T fa ∩ T
f
b and t(a− b) ≥ `ab and

t(b − a) ≥ `ba by definition of T fa and T fb . Hence, `ab + `ba ≤ 0. Overall, we have

`ba + `ab = 0. Hence, we obtain the following fact.

Fact 1. If T fa ∩ T
f
b 6= ∅, then `ab = −`ba and `ab = t(a− b) for any t ∈ T fa ∩ T

f
b .

Second, let us show that if T fa ∩ T
f
b ∩ T fc 6= ∅, then 3-cycle a → b → c → a in Γn

has 0 weight. Indeed, for t ∈ T fa ∩ T
f
b ∩ T fc we have `ab = t(a− b), `bc = t(b− c) and

11The weight of a cycle (or any path) in a graph is the sum of the weights of its directed edges.
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`ca = t(c− a) by Fact 1. Hence, `ab + `bc + `ca = 0. This result is summarized below.

Fact 2. If T fa ∩ T
f
b ∩ T fc 6= ∅, then `ab + `bc + `ca = 0.

We now investigate whether it is possible to “pave” any cycle in Γn by triplets

satisfying Fact 2. For example, if T fa ∩ T
f
b ∩ T fc 6= ∅ and T fa ∩ T

f
b′ ∩ T fc 6= ∅, then

4-cycle a→ b→ c→ b′ → a has zero weight. Indeed, Facts 1 and 2 imply that

`ab + `bc + `cb′ + `b′a = (`ab + `bc + `ca) + (`ac + `cb′ + `b′a) = 0.

For the general case, we consider a construction in topology called the nerve of a

cover ∪a∈AT fa .12 Nerve N = (A0, A1, A2, . . .) of the cover T =
⋃
a∈A T

f
a is formally

composed of vertices A0, edges A1, triangles A2, and their k-dimensional counterparts

Ak defined as follows:

� Set A0 consists of vertices a corresponding to sets T fa 6= ∅, a ∈ A.

� Set A1 consists of unordered pairs {a, b} (where a and b are different), such that

T fa ∩ T
f
b 6= ∅. The elements of A1 are called edges in N .

� Set A2 consists of unordered triples {a, b, c} (where a, b, and c are different)

such that T fa ∩ T
f
b ∩ T fc 6= ∅. The elements of A2 are called triangles in N .

� Set Ak for k ≥ 2 is defined similarly. The elements of Ak for any k are generally

called simplices in N .

Nerve N is usually identified with its geometrical realization, which is a polytope

P (N ) in RA0 , where the elements of A0 form a basis and linear space RA0 consists of

formal sums
∑

a∈A0
xa · a with xa ∈ R. The vertices of P (N ) are the end points of

the basis vectors in RA0 . Two vertices a and b in RA0 are connected by a segment in

P (N ) iff T fa ∩ T
f
b 6= ∅ (i.e., {a, b} ∈ A1). Three vertices a, b, and c are the extreme

points of a triangle face in P (N ) iff T fa ∩T
f
b ∩T fc 6= ∅ (i.e., {a, b, c} ∈ A2), etc. Overall,

P (N ) is contained in the standard simplex {
∑

a∈A0
xa = 1, xa ≥ 0}.

At this point, we are able to explain the main idea of the proof. We first show

that the geometrical properties of domain T imply that polytope P (N ) has a special

12The definition of the nerve goes back to Alexandroff (1928).
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structure. In particular, Lemma 1 below establishes that conditions 1) and 2) of

Theorem 1 imply that P (N ) is simply connected. We then prove that P (N ) being

simply connected ensures that any cycle in Γn can be “paved” by triples with zero

weight.13

To relate the geometrical properties of domain T to that of polytope P (N ), we

use a variation of the nerve theorem from algebraic topology. The nerve theorem has

multiple versions (see, e.g., Björner, 1995). The classical one requires each set T fa , a ∈
A, and each possible intersection T fa0∩T

f
a1
∩. . .∩T faM to be either empty or contractible.

If these conditions are satisfied, the nerve theorem says, roughly speaking, that the

geometrical properties of T and P (N ) coincide. We need to establish, however, a

weaker conclusion so that T being simply connected implies that P (N ) is simply

connected. Hence, we use a weaker requirement on sets T fa and no requirement on

their intersections.

We state and prove the formal result in Lemma 1 below. The result is new and

does not follow from the existing versions of the nerve theorem and, hence, requires

a separate proof. As the proof is technical, we postpone it to the Appendix.

Lemma 1. Let N be the nerve of the cover T =
⋃
a∈A T

f
a . If conditions 1) and 2)

are satisfied, then P (N ) is simply connected.

We now show that any cycle in Γn can be “paved” by triplets with zero weight.

For this purpose, we consider the following algebraic construction. Let us enumerate

the elements of finite set A in some way. We write a < b if a comes before b. Consider

now the linear space RA1 as follows:

RA1 =
{ ∑
{a,b}∈A1

a<b

xab · ab where xab ∈ R
}
.

We use the order on A to avoid counting ab and ba twice. For ba, we then write

ba = (−1) · ab = −ab ∈ RA1 . Any path p = (a0 → a1 → . . .→ aM) in Γn has then a

13The latter step is related to Theorem 4 in Jiang et al. (2011). However, they consider a more
restrictive setting where {a, b}, {b, c}, {c, a} ∈ A1 implies {a, b, c} ∈ A2. This assumption is natural
in their setting, but might not be satisfied in our environment.

13



representative in RA1 :

r(p) = a0a1 + a1a2 + . . .+ aM−1aM ∈ RA1 .

Having an order on A is important here, as p consists of directed edges in Γn, and an

order on A allows us to distinguish directed edges a→ b and b→ a in RA1 . Indeed,

r(a→ b) = ab and r(b→ a) = ba = −ab.

Slightly abusing the notation, we now define a linear function ` : RA1 → R as

`
( ∑
{a,b}∈A1

a<b

xab · ab
) def

=
∑

{a,b}∈A1

a<b

xab`ab.

Function ` measures the weight of any path p in Γn. Indeed, if ai < ai+1 then

`(aiai+1) = `aiai+1
, and if ai > ai+1 then Fact 1 implies `(aiai+1) = `(−ai+1ai) =

−`ai+1ai = `aiai+1
. Therefore,

`(r(p)) = `(a0a1) + `(a1a2) + . . .+ `(aM−1aM) = `a0a1 + `a1a2 + . . .+ `aM−1aM .

Using the above definitions, we need to prove that if path p = (a0 → a1 → . . .→
aM) in Γn is a cycle (i.e., aM = a0), then `(r(p)) = 0. We reformulate the last

statement using a linear map ∂1 : RA1 → RA0 (called a boundary operator):

∂1

( ∑
{a,b}∈A1

a<b

xab · ab
) def

=
∑

{a,b}∈A1

a<b

xab · (b− a).

Operator ∂1 maps edge ab in N to the difference between its tail and head b − a.

Hence, if path p is a cycle in Γn, we must have ∂1(r(p)) = 0 or r(p) ∈ ker ∂1 ⊂ RA1 .

It is then sufficient to show that ` vanishes on any r(p) ∈ ker ∂1.

To establish the latter result, we use Fact 2. According to Fact 2, function `

vanishes on the boundary of any triangle in A2. In addition, function ` is linear.

Hence, to show that any cycle in Γn has zero weight, it is sufficient to “pave” the

cycle with triangles in A2.

To give an exact algebraic meaning to the idea of “paving,” consider the linear

space RA2 (defined as a linear space of formal sums
∑
{a,b,c}∈A2

a<b<c

xabcabc with notation
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abc = bca = cab = −acb = −cba = −bac for a < b < c) and a linear map ∂2 : RA2 →
RA1 defined as

∂2

( ∑
{a,b,c}∈A2

a<b<c

xabc · abc
)

=
∑

{a,b,c}∈A2

a<b<c

xabc(ab + bc + ca).

Operator ∂2 maps a triangle abc to the sum of its boundary edges ab + bc + ca. For

example, for a < c < b, we have ∂2(abc) = ∂2(−acb) = −(ac+ cb+ba) = ab+bc+ ca.

Hence, if for cycle p we have r(p) ∈ Im ∂2, then p can be “paved” by triangles in

A2. More precisely, Fact 2 allows us to prove that ` vanishes on image Im ∂2. Indeed,

for any {a, b, c} ∈ A2, we have `(∂2(abc)) = `(ab + bc + ca) = 0. As maps ` and ∂2

are linear, ` also vanishes on Im ∂2.

We know that r(p) ∈ ker ∂1 for any cycle p. Hence, it remains to show that

ker ∂1 = Im ∂2. It is easy to see that Im ∂2 ⊂ ker ∂1, as ∂1(∂2(abc)) = ∂1(ab+bc+ca) =

(b−a)+(c−b)+(a−c) = 0 for any {a, b, c} ∈ A2. To measure the difference between

ker ∂1 and Im ∂2, we consider the first homology of N defined as

H1(N ,R) = ker ∂1/Im∂2.

Note that H1(N ,R) is a linear space with dimH1(N ,R) = dim ker ∂1 − dim Im ∂2.

Hence, Im ∂2 = ker ∂1 if and only if H1(N ,R) = 0. The latter is guaranteed by the

Hurewicz theorem, which ensures that if P (N ) is simply connected, then H1(N ,R) =

0 (see Hatcher, 2001). Hence, ker ∂1 = Im ∂2 by Lemma 1. In particular, r(p) ∈ Im∂2

for any cycle p in Γn and the weight of any cycle in Γn is 0.

Finally, to establish the statement of Theorem 1, we show that any cycle in Γ

has non-negative weight. Consider some cycle a0 → . . . aM−1 → a0 in Γ. The local-

to-global condition 3) then implies that for each j = 0, ...,M − 1 there exists a path

aj ≡ a0
j → ...a

M(j)
j ≡ aj+1 in Γn such that `ajaj+1

≥
∑M(j)−1

m=0 `amj a
m+1
j

. Therefore,

M−1∑
j=0

`ajaj+1
≥

M−1∑
j=0

M(j)−1∑
m=0

`amj a
m+1
j

= 0.

This implies that Γ is cyclically monotone. Hence, f is also cyclically monotone.
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Figure 1: An example of a function that is monotone, but not cyclically monotone.

We now illustrate that the conditions of Theorem 1 are indispensable. For this

purpose, we consider the following example.

Example 1. Consider a domain that is the boundary of a triangle with vertices

x = (0, 1,−1), y = (−1, 0, 1) and z = (1,−1, 0). Its sides are [x, z), [z, y), and

[y, x) (see Figure 1). Assume that A = {a, b, c} where a = (1, 0, 0), b = (0, 1, 0), and

c = (0, 0, 1). Function f is defined as

f(t) =


a if t ∈ [x, z)

b if t ∈ (x, y]

c if t ∈ [z, y)

.

A calculation shows that `ab = −`ba = `bc = −`cb = `ca = −`ac = −1; hence, f is

monotone. There is a negative cycle, `ab + `bc + `ca = −3; hence, f is not cyclically

monotone.

Example 1 presents a domain T = [x, z)∪[z, y)∪[y, x) that is not simply connected and

an allocation rule that is monotone, but not cyclically monotone.14 Note the local-to-

global condition is automatically satisfied for the allocation rule of Example 1 as each

pair of outcome sets intersects. To present an example of a function and a domain

that violates the local-to-global condition, cut a piece from the end of side [x, z). We

obtain simply connected domain T ′ = [x, z′)∪[z, y)∪[y, x) with z′ = (1/2, 0,−1/2). If

we keep the same allocation rule on the remaining parts of the domain, lower bounds `

do not change. At the same time, sets T fa and T fb cease to be neighbors. Hence, lower

bound `ab should satisfy the local-to-global condition. However, it is not the case, as

14Note that domain T = [x, z) ∪ [z, y) ∪ [y, x) is not simply connected as it is a loop that cannot
be continuously contracted within the domain to a point.
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Figure 2: An example of a star-shaped domain T and outcome sets corresponding to
f : T → {a, b, c, d, e, f} that satisfy the conditions of Corollary 1.

−1 = `ab ≤ `ac + `cb = 2. Finally, we illustrate the importance of sets T fa , a ∈ A,

being path-connected. Let us take a piece out of the middle of side [x, z) leading to

simply connected domain T ′′ = [x, x′) ∪ (z′, z) ∪ [z, y) ∪ [y, x), x′ = (1/4, 1/2,−3/4).

If we keep the same allocation rule, we obtain an example of an allocation rule that

satisfies the local-to-global condition, but with set T fa not path-connected. We again

observe a domain and a monotone function that is not cyclically monotone.

We now establish a corollary of Theorem 1 that provides easy to check sufficient

conditions on a domain T , a finite set A, and a monotone function f : T → A that

guarantees f is also cyclically monotone.

Corollary 1. Suppose domain T is star-shaped and f : T → A is a monotone

allocation rule that satisfies the following property: for every a ∈ f(T ), there exists

t ∈ T fa such that [s, t] ⊂ T for all s ∈ T . Then, f is cyclically monotone.

A star-shaped domain and sets T fa , a ∈ A, that satisfy the conditions of Corollary 1

are illustrated in Figure 2. In the figure, domain T is star-shaped because any point

in T ff can be connected to any point in T with a line segment. Moreover, for any

a, b ∈ A and for any x ∈ T fa , there exists y ∈ T fb such that line segment [x, y] lies in

T .

We now present a simple example of a star-shaped domain and a monotone al-

location rule that is not cyclically monotone. The example also illustrates that the

additional condition on sets T fa in Corollary 1 cannot be dropped.
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Example 2. Let us consider a modification of Example 1. We consider the domain

consisting of the union of two segments [x, z] and [x, y]. This is a star-shaped domain,

as x can be connected to any point in the domain with a line segment. There are three

alternatives A = {a, b, c} and allocation f ′ that coincides with allocation f in Example

1 on domain [x, z] ∪ [x, y]. Note that the only preimage of alternative c is point z.

The definition of lower bounds then implies that `ab, `ba, `ac, `bc remain unchanged. A

direct calculation also shows that `ca = zc− za = −1 and `cb = zc− zb = 1. Hence, f ′

is monotone, but there is a negative cycle, `ab + `bc + `ca = −3.

Remark 1. The result of Saks and Yu (2005) follows straightforwardly from Corol-

lary 1, as its conditions are trivially satisfied for convex domains.15 However,

Corollary 1 can be applied to more general settings when a domain can be repre-

sented as a union of convex sets Ci, T =
⋃I
i=1Ci, that have non-empty intersection

Tcore =
⋂I
i=1 Ci. In such a case, any point in Tcore can be connected to any point

of the domain with a line segment. To ensure that the conditions of Corollary 1 are

satisfied for a given monotone function, it remains to show that each non-empty set

T fa , a ∈ A contains a point in Tcore.

We use the conditions of Corollary 1 and the idea of Remark 1 to study the rela-

tionship between monotone and cyclically monotone functions on the domain of gross

substitutes and the domain of generalized gross substitutes and complements in the

next section.

4 Gross Substitutes and Complements

In this section, we apply our main results to study functions choosing among possi-

ble object bundles defined on two important economic domains: the domain of gross

substitutes and the domain of generalized gross substitutes and complements. The

concept of gross substitutes provides a sufficient condition that ensures the existence

of Walrasian equilibria in economies with indivisible objects. The domain of gross

substitutes has been explored extensively in the matching, auction, equilibrium, and

algorithmic literatures (see, e.g., Paes Leme (2017) and Murota (2016) for extensive

15In the working paper version (Kushnir and Lokutsievskiy, 2019), we also show how the result
for single-peaked preferences by Mishra et al. (2014) follows from Theorem 1.
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surveys). The domain of generalized gross substitutes and complements is a general-

ization of the first domain that also allows for multiple objects of the same type and

some complementarities across objects (see Shioura and Yang, 2015).

To define these domains, we consider a finite set of objects E and n = |E|. The

set of possible object bundles then equals 2E and N = 2|E|. For each bundle S ⊆ E,

we denote the agent’s value as t(S). Hence, vector t is an element of RN . Valuation

t is called modular if t(S) =
∑

e∈S t(e) for all S ⊆ E. Finally, we define the demand

correspondence for any price p ∈ Rn as

D(t, p) = arg max
S⊆E
{t(S)−

∑
e∈S

p(e)}.

We now consider the following condition (see Kelso and Crawford, 1982).

Definition 4. Valuation t satisfies the gross substitutes (GS) condition if for any

price p ∈ Rn and any S ∈ D(t, p), if p′ is a price vector with p′ ≥ p, then there exists

S ′ ∈ D(t, p′) such that {e ∈ S : p(e) = p′(e)} ⊆ S ′. The domain of all valuations

satisfying the GS condition is denoted by T gs.

In other words, an increase in the price of some goods does not cause a decrease in

the demand for other goods. Reijnierse et al. (2002) and Fujishige and Yang (2003)

showed that the GS condition can be formulated purely in terms of inequalities on

the agent’s values. The following example presents their characterization for the case

of three objects.

Example 3. For |E| = 3, t ∈ T gs if and only if for all distinct i, j, k ∈ E we have

t({i, j} ∪ {k}) + t({k}) ≤ t({i, k}) + t({j, k}),

t({i, j}) + t(∅) ≤ t({i}) + t({j}),

t({i, j}) + t({k}) ≤ max{t({i, k}) + t({j}), t({j, k}) + t({i})}.

Example 3 illustrates that domain T gs is not convex (because of the third set of in-

equalities). In general, domain T gs consists of several convex polytopes and, therefore,

can be quite complex.

For the domain of gross substitutes, it is natural to consider functions f : T gs →
2E. However, 2E is not a subset of RN , and, hence, neither Definitions 1 and 2 in
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Section 2 nor our results in Section 3 formally apply. To accommodate the subtlety,

with each set S ⊆ E we associate an indicator α(S) ∈ {0, 1}N , with a component

corresponding to set S equal to 1 and all other components equal to 0. Hence, for

any t ∈ T gs, we have t(S) = t · α(S). We denote then the union of these indicators

as A ⊂ RN and the constructed one-to-one function as α : 2E → A.16

This construction allows us to consider functions f : T gs → 2E within our frame-

work. Define f̃ = α ◦ f. Then, f : T gs → 2E is monotone (or cyclically monotone) if

and only if f̃ : T gs → A is monotone (or cyclically monotone) according to Definitions

1 and 2. We can then apply the result of Corollary 1 to obtain the following result.

Theorem 2 (Gross Substitutes). If a function f : T gs → 2E is monotone, then it is

cyclically monotone.

Proof. Let us consider a monotone function f : T gs → 2E. Function f is monotone if

and only if the associated f̃ = α ◦ f is monotone. We will show that every monotone

f̃ : T gs → A satisfies the conditions of Corollary 1. For this purpose, we establish

that domain T gs satisfies two important properties:

1) Any modular valuation m belongs to T gs;

2) For any modular m and β ∈ [0, 1], if t ∈ T gs then βt+ (1− β)m ∈ T gs.

The first property is well-known (e.g., Paes Leme, 2017) and follows from the defini-

tion of demand correspondence. Indeed, for any modular m and p ∈ Rn, we have

S ∈ D(m, p) ⇔ {e ∈ E : m(e) > p(e)} ⊆ S ⊆ {e ∈ E : m(e) ≥ p(e)}.

Therefore, an increase in the price of some goods does not cause a decrease in demand

for other goods.

To verify the second property, for any modular valuation m ∈ RN , we denote

m̃ ∈ Rn such that m̃(e) = m(e) for each e ∈ E. For any price p ∈ Rn and any

β ∈ (0, 1], we then have

D(βt+ (1− β)m, p) = arg max
S⊆E
{βt(S) + (1− β)m(S)−

∑
e∈S

p(e)} = D(t, p/β− m̃(1− β)/β).

16This construction is similar to the one used in our mechanism design interpretation (see p. 2).
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Therefore, if demand D(t, p) satisfies the GS condition for any p ∈ Rn, so does

D(βt+ (1− β)m, p). For β = 0, the second property follows from the first one.

Properties 1) and 2) stated above imply that domain T gs is star-shaped. To check

the requirement of Corollary 1 on sets T fa , a ∈ A, we need to establish that every

non-empty set T fa contains a point that can be connected to any point in T gs with a

line segment within T gs. Using the one-to-one correspondence α : 2E → A, consider

S ⊆ E such that a = α(S). We then have

T fa = {t ∈ T gs : t(S)− t(G) ≥ `SG,∀G ⊂ E},

where `SG = `α(S)α(G) for all G ⊂ E. If T fa is non-empty, we have `SG < +∞ for all

G ⊂ E. Consider a modular valuation

m(e) =

{
M if e ∈ S
−M if e /∈ S

. (3)

For sufficiently large M > 0, such modular valuation m satisfies inequalities m(S)−
m(G) ≥ `SG for all G ⊂ E. Therefore, m lies in T fa . Hence, property 2) implies that

each nonempty T fa contains a point that can be connected with a line segment to any

point in T gs. Overall, every monotone function f̃ : T gs → A satisfies the conditions

of Corollary 1. Hence, it is cyclically monotone. Therefore, every monotone function

f : T gs → 2E is cyclically monotone.

The proof of Theorem 2 has a nice geometric interpretation. As we mentioned

before Example 3, Reijnierse et al. (2002) and Fujishige and Yang (2003) showed that

domain T gs can be represented as a union of convex polytopes. We established that

the intersection of these convex polytopes is non-empty and contains all modular val-

uations and each non-empty T fa contains a modular valuation. Hence, all conditions

of Corollary 1 are satisfied (see Remark 1 on page 18).

We now extend the above result to the domain of generalized gross substitutes

and complements (GGSC). To define the GGSC condition, consider a finite set of

object types E and n = |E|. There can be several objects of each type, and we

denote the bundle of available objects as ω = (ω1, ..., ωn) ∈ ZE+, where ωe denotes

the available number of objects of type e ∈ E. The types can be divided into two
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classes E = E1 ∪ E2 with E1 ∩ E2 = ∅. We also denote Ec
j as the complement of set

Ej, j = 1, 2. The objects are substitutes within each class and complements across

the classes. For example, E1 could be considered the set of left shoes and E2 the set of

right shoes. A more practical example concerns the allocation of spectrum licenses.

There are two geographic regions and radio spectra. Radio spectrum licenses are

substitutes within each region, but complements across regions.

Denote the set of feasible object bundles as Ω = {z ∈ Zn+ : z ≤ ω} and N = |Ω|.
Each agent valuation is then t : Ω → R. A vector p = (p1, ..., pn) ∈ Rn indicates

the price for each type. For each price and agent valuation, we consider demand

correspondence

D(p, t) = arg max
z∈Ω
{t(z)− p · z}.

Denote χe ∈ Rn as the vector with all zeros except one on the place corresponding to

object type e ∈ E and χ0 = 0. We say also that C ⊆ Zn is a discrete convex set if

it contains all integer vectors in its convex hull. Shioura and Yang (2015) introduced

the following definition.

Definition 5. Valuation t satisfies the generalized gross substitutes and complements

(GGSC) condition if

(i) for any price p ∈ Rn, D(p,t) is a discrete convex set; and

(ii) for any price p ∈ Rn and any e ∈ Ej, j = 1, 2, δ > 0, and z ∈ D(p, t), there

exists z′ ∈ D(p+ δχe, t) such that

(∀l ∈ Ej\{e}) z′l ≥ zl, (∀l ∈ Ec
j ) z

′
l ≤ zl,∑

l∈Ej

zl −
∑
l∈Ec

j

zl ≥
∑
l∈Ej

z′l −
∑
l∈Ec

j

z′l.

The domain of all the valuations satisfying the GGSC condition is denoted by T ggsc.

The GGSC condition states that the objects of each type in each set Ej are substitutes,

but that goods across the two sets E1 and E2 are complements. In particular, let us

assume that bundle z is demanded for price vector p. If the price of type k ∈ Ej is

increased, then demand for objects of the other types in Ej will not decrease whereas
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demand for objects of each type in the other group Ec
j will not increase. In addition,

the difference in demand between the two groups at the new prices should not exceed

the difference at the old prices.

Note that when there is only one object of each type ω = (1, ..., 1), domain T ggsc

coincides with the domain of gross substitutes and complements introduced by Sun

and Yang (2006, 2009). Additionally, if ω = (1, ..., 1) and either E1 = ∅ or E2 = ∅,
domain T ggsc coincides with the domain of gross substitutes T gs (see Shioura and

Yang, 2015).

Furthermore, any function f : T ggsc → Ω can be put into our environment in a

similar way. For any z ∈ Ω, we again associate an indicator α(z) ∈ {0, 1}N with

a component corresponding to z equal to 1 and all other components equal to 0.

Therefore, t(z) = t · α(z). Denote the union of all these indicators as AΩ ⊂ RN and

f̃ = α ◦ f : T ggsc → AΩ. So f is called monotone (or cyclically monotone) if f̃ is

monotone (or cyclically monotone). We then establish the following result.

Theorem 3 (Generalized Gross Substitutes and Complements). If a function f :

T ggsc → Ω is monotone, then it is cyclically monotone.

Theorem 3 subsumes Theorem 2. At the same time, Theorem 3 requires a more

involved proof that uses the characterization of domain T ggsc in terms of the GM-

concave functions introduced in Shioura and Yang (2015). We postpone the details

until the Appendix.

5 Conclusion

In this paper, we provide sufficient conditions for a monotone function with a finite set

of outcomes to be cyclically monotone. Using these conditions, we established that

for the domain of gross substitutes and the domain of generalized gross substitutes

and complements, any monotone function that chooses among possible object bundles

is cyclically monotone.

The relationship between the monotone and cyclically monotone conditions has

implications beyond mechanism design. In revealed preference theory, Chambers and

Echenique (2018) used it to establish that a demand function is strongly rationalizable

with a quasi-linear utility if and only if it satisfies a continuity condition and the law
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of demand (i.e., the negative of the demand function is monotone) (see also Amir

et al., 2017). In producer choice theory, the working paper version (Kushnir and

Lokutsievskiy, 2019) shows that any weakly rationalizable supply functions with a

finite range that is positive homogeneous of degree zero is characterized by the law of

supply (i.e., the supply function is monotone). We also explain how the reduction of

cyclically monotonicity to the requirement of an allocation being monotone is helpful

in solving spatial allocation problems.

Finally, we want to highlight a limitation of our approach. Our approach is con-

fined to settings with a finite set of outcomes, because our main building block—the

Nerve theorem—does not hold when the set of outcomes is infinite (see Björner, 1995).

For those interested in an infinite set of outcomes, Carbajal and Müller (2015, 2017)

and Archer and Kleinberg (2014) provide conditions when a monotone function is

cyclically monotone.17 Understanding when these conditions are applicable to var-

ious convex and non-convex domains is an important direction for future research.

This extension will have invaluable implications for some identification problems in

econometrics (e.g., Shi et al., 2018).

17See also Berger et al. (2017).
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A Appendix

A.1 Proof of Lemma 1.

We call a subset of T closed if it is an intersection of T and some closed subset of RN .

This is a standard convention when one considers the closed subsets of some set.

Let us first prove that P (N ) is path-connected. For this purpose, consider the

union of all edges in P (N ) that we call 1-skeleton P 1(N ). We show that P 1(N ) is

path-connected. Indeed, if we were able to decompose A into two non-intersecting

sets A = A′ ∪ A′′ such that for any a′ ∈ A′ and a′′ ∈ A′′ vertices a′ and a′′ are

not connected in P 1(N ), then sets T ′ =
⋃
a′∈A′ T

f
a′ and T ′′ =

⋃
a′′∈A′′ T

f
a′′ would not

intersect. This contradicts set T being path-connected, as T = T ′ ∪ T ′′ and both T ′

and T ′′ are closed subsets of T . Hence, P 1(N ) is path-connected, which implies that

P (N ) is also path-connected.

Now, we prove that P (N ) is simply connected. The proof is based on the following

Carrier theorem, which is a standard tool to prove the nerve-type theorems (see

Nagórko, 2007; Björner, 1995). In Nagórko (2007), Carrier theorem is proved under

very general assumptions. We adopt his statements to our setting.

Definition A1. Let X =
⋃
a∈AXa and Y =

⋃
b∈B Yb where A and B are some sets

of indices. A carrier is a map C : A→ B such that if
⋂
a∈A′ Xa 6= ∅ for some A′ ⊂ A,

then
⋂
b∈C(A′) Yb 6= ∅. We say that a map f : X ′ → Y defined on a closed subset

X ′ ⊂ X is carried by C if f(Xa ∩X ′) ⊂ YC(a) for all a ∈ A.

Definition A2. A topological space Z is an absolute extensor for a topological space

W if each continuous map from a closed subset of W into Z extends over the entire

W .18

For example, two-point set {0, 1} is not an absolute extensor for interval [0, 1]. And

any space Z is an absolute extensor for {0, 1} as any map {0, 1} → Z is continuous.

Theorem A1 (Carrier theorem, Nagórko (2007)). Let X =
⋃
a∈AXa ⊂ Rn, Y =⋃

b∈B Yb ⊂ Rm and C : A → B be a carrier. If A and B are finite, Xa is a closed

18The definition is given for arbitrary topological spaces. Any subset of Rn is a metric space, and
any metric space is a topological space.
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subset of X for each a ∈ A, and for any non-empty B′ ⊂ B,
⋂
b∈B′ Yb is an absolute

extensor for X, then there exists a continuous map f : X → Y carried by C.

To use Carrier theorem, we need some covers of two spaces. We already have cover

T =
⋃
a∈A T

f
a , where T fa are closed subsets of T (since each T fa is an intersection of T

with a collection of closed half-spaces). The second space is the geometric realization

of nerve P (N ), and we consider its cover by barycentric stars that can be constructed

as follows. For any simplex σ ∈ N , we denote the corresponding face center of mass

by B(σ) ∈ P (N ), which is also called barycenter B(σ) = 1/|σ|
∑

a∈σ a. For a given

vertex a ∈ A0, we also consider new simplices with vertices in barycenters B(σ1), . . .,

B(σr) and such that a ∈ σ1 ⊂ . . . ⊂ σr ∈ N (including the case σ1 = {a}). The

union of all such simplices is called the barycentric star of a and denoted as

bst a =
⋃

a∈σ1⊂...⊂σr∈N

conv
{
B(σ1), . . . , B(σk)

}
.

Barycentric stars are closed star-shaped sets and P (N ) =
⋃

a∈A0
bst a.

Definition A3. A cover X =
⋃
a∈AXa with A being finite and Xa being closed subsets

of X is called regular for metric spaces if for any non-empty A′ ⊂ A set
⋂
a∈A′ Xa is

an absolute extensor for any metric space.

Lemma 3.2 in Nagórko (2007) shows that cover P (N ) =
⋃

a∈A0
bst a is a regular

cover for metric spaces. Therefore, for any non-empty A′0 ⊂ A0,
⋂

a∈A′0
bst a are

absolute extensors for T as T ⊂ RN .

Consider a carrier C : A → A0 for covers T =
⋃
a∈A T

f
a and P (N ) =

⋃
a∈A0

bst a

that sends each a ∈ A to the corresponding a ∈ A0. Note that both C and C−1 by

the definition of the nerve (see Lemma 3.2 in Nagórko (2007)). Moreover, for any

non-empty A′0 ⊂ A0,
⋂

a∈A′0
bst a is an absolute extensor for T as showed above. By

Carrier theorem, there exists a continuous map κ : T → P (N ) carried by C.
We construct a map λ : P 1(N )→ T carried by C−1 (see Figure 3). For any a ∈ A0,

we pick a point ta in T fa ; and for any {a, b} ∈ A1, we pick a point tab in T fa ∩ T
f
b .

Recall that the definition of nerve N implies that T fa 6= ∅ for a ∈ A0 and T fa ∩T
f
b 6= ∅

for {a, b} ∈ A1. We define λ sending each half of edge [a, B({a, b})] into a continuous

path connecting ta and tab (note that such path exists as T fa is path-connected). This
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Figure 3: Map λ : P 1(N ) → T carried by C−1, where C : A → A0 is a carrier for
covers T =

⋃
a∈A T

f
a and P (N ) =

⋃
a∈A0

bst a.

construction implies that for any x ∈ P 1(N ) ∩ bst a =
⋃
b∈A[a, B({a, b})], we have

λ(x) ∈ T fa . Hence, λ is carried by C−1.

Recall now some definitions from topology. A continuous map from circle S1 to

Y is called a loop in Y , i.e., η : S1 → Y . Loop η is called trivial if there exists

y0 ∈ Y such that η(S1) ≡ y0. Two continuous maps f0, f1 : X → Y are homotopic

if there exists a continuous map F : [0, 1] × X → Y such that F (0, x) ≡ f0(x) and

F (1, x) ≡ f1(x). Hence, Y is simply connected if it is path-connected and any loop

in Y is homotopic to some trivial loop.

Using continuous maps κ : T → P (N ) and λ : P 1(N )→ T , we can now prove that

P (N) is simply -connected. Consider a loop γ in P (N ). By the cellular approximation

theorem (see Hatcher, 2001), γ is homotopic to a loop γ′ in 1-skeleton P 1(N ), γ′ :

S1 → P 1(N ). We consider a loop λ ◦ γ′ in T , λ ◦ γ′ : S1 → T . Loop λ ◦ γ′ is

homotopic to a trivial loop in T as T is simply connected. Hence, there exists a

continuous map F [0, 1] × S1 → T such that F (0, s) ≡ λ(γ′(s)) and F (1, s) ≡ const.

We claim that γ′′ = κ◦λ◦γ′ is homotopic to a trivial loop in P (N ). Indeed, κ◦F is a

homotopy contracting γ′′ to a point, since κ(F (0, s)) ≡ γ′′(s) and κ(F (1, s)) ≡ const.

To establish that γ is homotopic to a trivial loop in P (N ), it remains to prove that

γ′ and γ′′ are homotopic as the homotopic property is transitive.

To prove that γ′ and γ′′ are homotopic, we first show that they have the following

property: for any s ∈ S1, there exists a ∈ A0 such that both γ′(s), γ′′(s) ∈ bst a.

Nagórko (2007) calls such loops {bst a}a∈A0-close. Indeed, for any s ∈ S1, there exists

a ∈ A0 such that γ′(s) ∈ bst a as P (N ) =
⋃

a∈A0
bst a is a cover. Since λ is carried

by C−1, we also must have λ(γ′(a)) ∈ T fa . Since κ is carried by C we also have
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γ′′(s) = κ(λ(γ′(s))) ∈ bst a. In addition, cover P (N ) =
⋃

a∈A0
bst a is regular for

metric space (see Lemma 3.1 in Nagórko (2007)) and S1 × [0, 1] is a metric space.

Therefore, Corollary 2.1 in Nagórko (2007) implies that γ′ and γ′′ are homotopic.

A.2 Proof of Corollary 1.

We first note that any star-shaped domain is simply connected. Indeed, take some

point x ∈ T that can be connected with a line segment to any point in T . Such x is

called a base point. Hence, any loop in T can be continuously contracted to x. Hence,

any star-shaped domain is simply connected.

Since any non-empty T fa contains a base point of T , the line segment connecting

the base point and a point in T fa lies in T . The line segment also lies in T fa as T fa is

an intersection of T with some half-spaces. Hence, T fa is path-connected.

Finally, we establish that any monotone function f that complies with the condi-

tions of the corollary also satisfies the local-to-global condition. In particular, if every

non-empty T fa contains a base point of T , function f satisfies the following geometric

property: for any a, b ∈ f(T ) for any x ∈ T fa there exists y ∈ T fb such line segment

[x, y] lies within T . The following lemma establishes that this geometric property

ensures that every monotone f also satisfies the local-to-global condition.

Lemma A1. Consider a domain T ⊂ RN , a finite set A ⊂ RN , and f : T → A.

Suppose that f is monotone and for any a, b ∈ f(T ) and x ∈ T fa , there exists y ∈
T fb such that line segment [x, y] lies within T . Then, f satisfies the local-to-global

condition.

Proof. Consider outcomes a, b ∈ f(T ) with T fa ∩ T
f
b = ∅. Take some x ∈ T fa and

y ∈ T fb such that line segment [x, y] lies within T . Denote the intersection of closed

half-spaces as T̃ fq = {t ∈ RN : t(q − c) ≥ `qc,∀c ∈ A}. Note T fq = T ∩ T̃ fq . Since

any set T̃ fq is closed and convex for any q ∈ A, intersection [x, y] ∩ T fq = [x, y] ∩ T̃ fq
is either a closed interval, a point, or an empty set. We claim that it is possible to

choose

1. a path {a ≡ a0, ..., aM ≡ b} such that T fam ∩ T
f
am+1

6= ∅, m = 0, ...,M − 1,

[x, y] ∩ T fam 6= ∅;
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2. points zm ∈ [x, y]∩T fam such that zm+1− zm 6= 0 and the vectors zm+1− zm and

x− y are co-directed for any m = 1, ...,M − 1.

This can be done in the following way. We put a0 = a and z0 = x. Then we denote

the right end of interval [x, y]∩T fa0 by z1. Point z1 must belong to some set T fq , q 6= a0.

We put a1 = q. The right end of interval [x, y] ∩ T fa1 we denote by z2. Point z2 must

belong to some set T fq′ , q
′ 6= a0, a1. We put a2 = q′. We repeat the process until we

cover the whole interval [x, y]. We will finish in a finite number of steps as set A is

finite and we pick at each step different points. Finally, we eliminate those zm and am

for which zm−1 = zm and update the numeration of am and zm preserving the order.

Note that T fam ∩ T
f
am+1

6= ∅ because both sets contain zm+1.

For each zm ∈ [x, y] ∩ Tam ,m = 1, ...,M we could write

x(a−b) =
M−1∑
m=0

x(am−am+1) = x(a0−a1)+
M−1∑
m=1

(x−zm)(am−am+1)+
M−1∑
m=1

zm(am−am+1).

Since all zm belong to the same interval [x, y] and zm 6= zm+1, there exists λm such

that x − zm = λm(zm − zm+1). Moreover, λm > 0 by the choice of zm. As zm ∈ T fam
and zm+1 ∈ T fam+1

, f being monotone implies

(x−zm)(am−am+1) = λm(zm(am−am+1)+zm+1(am+1−am)) ≥ λm(`amam+1+`am+1am) ≥ 0.

Taking into account that x(a0−a1) ≥ `a0a1 and zm(am−am+1) ≥ `amam+1 , we obtain

x(a − b) ≥
∑M−1

m=0 `amam+1 . Hence, `ab ≥
∑M−1

m=0 `amam+1 , where T fam ∩ T
f
am+1

6= ∅ for

each m = 1, ..,M − 1.

All three conditions of Theorem 1 are satisfied. Hence, f is cyclically monotone.

A.3 Proof of Theorem 3.

Similarly to how the domain of gross substitutes can be characterized in terms of

inequalities on the agent’s values (see Example 3; Reijnierse et al., 2002; Fujishige

and Yang, 2003), Theorem 3.3 in Shioura and Yang (2015) shows that t ∈ T ggsc if

and only if it is GM -concave.

To define GM-concave valuations, let U : Rn → Rn be a diagonal matrix U =

diag(1, . . . , 1,−1, . . . ,−1) that contains 1 as the first |E1| elements and −1 as the
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remaining |E2| elements. Denote supp(z) = {e : ze > 0} for z ∈ Zn. A valuation

t : Ω→ R is called GM -concave if

∀z, z′ ∈ Ω ∀e ∈ supp(U(z − z′)) ∃l ∈ supp(U(z′ − z)) ∪ 0 :

t(z) + t(z′) ≤ t(z − U(χe − χl)) + t(z′ + U(χe − χl)). (A.1)

In fact, each inequality (A.1) determines a half-space in RN . Hence, the set of all GM -

concave functions (and, hence, domain T ggsc) is the union of some convex polytopes.

Now we construct a generalization of modular valuations. Let ge : {0, 1, . . . , ωe} →
R be arbitrary concave functions for 1 ≤ e ≤ n. Put

m : Ω→ R, m(z) =
n∑
e=1

ge(ze) for z ∈ Ω.

Note that valuation m is linear in object types, but concave in the number of objects.

So we call such valuations modular-concave. We will show below that these valuations

satisfy inequalities (A.1) for each e ∈ supp(U(z−z′)) and each l ∈ supp(U(z′−z))∪0.

Hence, they belong to the intersection of the convex polytopes shaping domain T ggsc.

This will help us to establish that the conditions of Corollary 1 are satisfied (see also

Remark 1 on page 18).

Let us show that each modular-concave valuation satisfies inequalities (A.1) for

each e ∈ supp(U(z − z′)) and each l ∈ supp(U(z′ − z)) ∪ 0. Using the definition of

modular-concave valuation, we obtain that condition (A.1) is equivalent to

ge(ze)+ge(z
′
e)+gl(zl)+gl(z

′
l) ≤ ge(ze−Uχe)+ge(z

′
e+Uχe)+gl(zl+Uχl)+gl(z

′
l+Uχl).

Hence, it is sufficient to prove separately the following inequalities for each e ∈
supp(U(z − z′)) and each l ∈ supp(U(z′ − z)) ∪ 0:

ge(ze) + ge(z
′
e) ≤ ge(ze − Uχe) + ge(z

′
e + Uχe), (A.2)

gl(zl) + gl(z
′
l) ≤ ge(zl + Uχl) + gl(z

′
l − Uχl). (A.3)
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We begin with inequality (A.2). If e ∈ E1, then ze > z′e and (A.2) becomes

ge(ze)− ge(ze − 1) ≤ ge(z
′
e + 1)− ge(z′e),

which follows from the concavity of ge. If e ∈ E2, then ze < z′e and (A.2) becomes

ge(ze + 1)− ge(ze) ≥ ge(z
′
e)− ge(z′e − 1),

which follows from the concavity of ge. Hence, (A.2) holds for each e ∈ supp(U(z−w)).

Now we proceed to inequality (A.3). If l = 0, then (A.3) is obviously satisfied as

equality. If l ∈ E1, then zl < z′l and (A.3) becomes

gl(zl + 1)− gl(zl) ≥ gl(z
′
l)− gl(z′l − 1),

which follows from the concavity of gl. Finally, if l ∈ E2, then zl > z′l and (A.3)

becomes

gl(zl)− gl(zl − 1) ≤ gl(z
′
l + 1)− gl(z′l),

which follows from the concavity of gl. Hence, (A.3) holds for each l ∈ supp(U(z′ −
z)) ∪ 0.

Now we use modular-concave valuations to show that any monotone function

f̃ : T ggsc → AΩ satisfies the conditions of Corollary 1. First, let us show that any

modular-concave valuation m can be connected with an arbitrary t ∈ T ggsc by a

segment line within T ggsc. In other words, we need to show that for any β ∈ [0, 1],

(1 − β)t + βm ∈ T ggsc. Fix arbitrary z, w ∈ Ω and e ∈ supp(U(z − w)). Since

1 − β ≥ 0 valuation (1 − β)t satisfies (A.1) for some l = l0 ∈ supp(U(z′ − z)) ∪ 0.

At the same time, valuation βm is modular-concave and satisfies (A.1) for each l ∈
supp(U(z′− z))∪ 0, as we showed above. Therefore, (1− β)t+ βm satisfies (A.1) for

l = l0 and, hence, (1− β)t+ βm ∈ T ggsc. Therefore, domain T ggsc is star-shaped.

It remains to establish that any non-empty set T fa contains a modular-concave

valuation. Using the one-to-one correspondence α : Ω → AΩ, consider z ∈ Ω such

that a = α(z). We then have

T fa = {t ∈ T ggsc : t(z)− t(z′) ≥ `zz′ ,∀z′ ∈ Ω}.
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where `zz′ ≡ `α(z)α(z′) for all z′ ∈ Ω. If T fa is non-empty, then `zz′ < +∞ for all z′ ∈ Ω.

For a given z ∈ Ω, consider concave functions

ge(i) = −M |ze − i|,

for e = 1, ..., n, i = 1, ..., ωe, and M > 0. These functions define a modular-concave

valuation m∗. Let us show that m∗ ∈ T fa for sufficiently large M > 0. Indeed, for any

z′ ∈ Ω, we have

m∗(z)−m∗(z′) =
n∑
e=1

(ge(ze)− ge(z′e)) = M

n∑
e=1

|ze − z′e| ≥ `zz′ .

For z′ = z, the above inequality is satisfied as `zz ≡ `aa = 0. For z′ 6= z and the above

inequalities are satisfied as `zz′ < +∞ and M is large enough.

Therefore, m∗ lies in T fa . Hence, T fa contains a valuation that can be connected

with a line segment to any valuation in T ggsc. Overall, any monotone function f̃ :

T ggsc → AΩ satisfies the conditions of Corollary 1. Hence, it is cyclically monotone.

Therefore, every monotone function f : T ggsc → Ω is cyclically monotone.
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