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Abstract

We consider settings with transfers where agent preferences belong to either the

domain of multiple single-peaked preferences or the domain of multi-dimensional single-

peaked preferences on posets. For these two domains, we show that an allocation rule

is implementable if and only if it is monotone.
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1 Introduction

Situated at the intersection of the mechanism design and social choice literatures, this paper

contributes to the analysis of voting mechanisms with transferable utilities, an area that

has attracted considerable research attention recently (see, e.g., Goeree and Zhang, 2017;

Lalley and Weyl, 2018; Posner and Weyl, 2018). The major concern of the mechanism

design literature is to characterize implementable allocation rules. An allocation rule is

called implementable if it produces, when combined with a payment rule, a direct mechanism
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where truth-telling is in the best interest of each agent. Mishra et al. (2014) showed that for

an important voting domain, the domain of single-peaked preferences, an allocation rule is

implementable if and only if it is monotone.

The main result of this paper is to extend Mishra et al. (2014)’s characterization to

two important multi-dimensional environments: the domain of multiple single-peaked prefer-

ences and the domain of multi-dimensional single-peaked preferences on partially ordered sets

(posets). Each of these domains is an extension of the domain of single-peaked preferences

to settings where there is no natural linear order among alternatives.

An agent preference profile is called single-peaked if there is an order of alternatives and

an alternative, called a peak, such that agent preferences are increasing with respect to the

linear order before the peak and agent preferences are decreasing after the peak. In many

cases, voters’ preferences cannot be described as single-peaked in a common linear order over

alternatives (e.g., Niemi and Wright, 1987; Feld and Grofman, 1988; Pappi and Eckstein,

1998). The data are more consistent with the presence of multiple linear orders, where each

voter forms a single-peaked preference with respect to a particular order. This observation

led Reffgen (2015) to introduce the multiple single-peaked preference domain, which is the

union of single-peaked preference domains with respect to several linear orders.1

The multiple single-peaked preference domain also allows us to describe the typical pref-

erences of voters over multi-dimensional alternatives. Often, political parties take positions

on many issues such as trade policy and climate change. The multi-dimensional nature of

party positions does not allow for a complete order over alternatives. Instead, the set is only

partially ordered. The domain of multi-dimensional single-peaked preferences on a poset is

defined as consisting of all preference profiles that are single-peaked with respect to some

linear order consistent with the given partial order (see also Reffgen, 2015).

The paper proceeds as follows. Section 2 presents notations and definitions. The main

results are presented in Section 3. Finally, Section 4 concludes. The technical proofs are

given in the Appendix.

2 Notations and Definitions

Consider a setting with a finite set of outcomes A, N = |A| and the set of possible agent

types T ⊂ RN . Type t ∈ T is interpreted as a vector of the agent’s payoffs for all possible

outcomes. We consider settings with transferable utilities such that the agent’s utility from

1See also Barberà et al. (1993) and Barberà et al. (1997).
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outcome a ∈ A can be written as u(t, a, p) = ta − p, where p is the agent’s payment. For

convenience, we sometimes write this as ta = t(a).

We analyze deterministic direct mechanisms characterized by two functions: an allocation

rule f : T → A and a payment rule p : T → R. The agent’s utility from reporting type t′

when her true type is t can be conveniently written as

t(f(t′))− p(t′).

We consider the following definition of implementability:

Definition 1. Allocation rule f : T → A is implementable if there exists a payment rule

p : T → A such that mechanism (f, p) is incentive compatible; that is,

t(f(t))− p(t) ≥ t(f(t′))− p(t′) ∀t, t′ ∈ T.

The main contribution of this paper is to provide a characterization of implementable

allocation rules on the domain of multiple single-peaked preferences and on the domain of

multi-dimensional single-peaked preferences on posets. To define these domains, we begin

by introducing the domain of single-peaked preferences. Assume there is a linear order ≺
over set A.

Definition 2. The domain of single-peaked preferences T (A,≺) is defined as

T (A,≺) = {t ∈ RN : ∀p, q, r ∈ A, p ≺ q ≺ r, tq ≥ tp or tq ≥ tr}.

In other words, if p ≺ q ≺ r, then situation tp > tq < tr is forbidden. This definition, which

goes back to Sen (1966), is equivalent to a more standard definition: For each type, there is

an alternative, called a peak; the agent’s utility increasing in ≺ for alternatives that precede

the peak and decreasing in ≺ for alternatives that follow the peak (see Black, 1948).2

Let us denote the set of all possible linear orders over set A as ΣA. Then, we have the

following definition of the multiple single-peaked domain:

Definition 3. Let S = {≺1, ...,≺M} be a family of linear orders with ≺m∈ ΣA,m = 1, ...,M .

The multiple single-peaked domain with respect to (A,S) is defined as T (A,S) =
⋃M

m=1 T
(A,≺m).

A particular case of the domain of multiple single-peaked preferences is the domain of single-

peaked preferences on a poset. To define it, consider a partial order C and a poset (A,C).

2See Reffgen (2015) for an extended discussion of the relation between these two definitions.
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Definition 4. The domain of multi-dimensional single-peaked preferences on poset (A,C)

is defined as T (A,C) ≡ T (A,S(∆)), where S(∆) is the set of all linear orders on A that are

consistent with C.

Monotone allocation rules will play an important role in our analysis.

Definition 5. Function f : T → A is monotone if for all t, t′ ∈ T

t(f(t))− t(f(t′)) + t′(f(t′))− t′(f(t)) ≥ 0.3 (1)

The above definition provides a generalization of the one-dimensional monotonicity condition

to multi-dimensional settings. It has been extensively used in convex analysis (see Rockafel-

lar, 1966). The monotonicity condition appears also to be a relaxation of a more demanding

cyclic monotonicity condition.

Definition 6. Function f : T → A is cyclically monotone if for any integer M and any

points t0, t1, . . . , tM = t0 in T

M−1∑
k=0

tk(f(tk)− f(tk+1)) ≥ 0. (2)

The latter condition is important in light of Rochet (1987)’s result establishing that cyclic

monotonicity is necessary and sufficient for implementability in quasi-linear environments.

Theorem (Rochet, 1987). An allocation rule is implementable iff it is cyclically monotone.

Though the cyclic monotonicity condition characterizes the set of implementable allocation

rules, this condition is often tedious to verify. In an important contribution, Saks and Yu

(2005) showed that for convex domains the characterization of implementable allocation

rules with a finite set of outcomes can be greatly simplified. They established that an

allocation rule on a convex domain is cyclically monotone if and only if it is monotone.

Unfortunately, neither the domain of multiple single-peaked preferences nor the domain of

multi-dimensional single-peaked preferences on a poset is typically convex. Recently, Kushnir

and Lokutsievskiy (2020) provided sufficient conditions for non-convex domains to guarantee

that if f is monotone, it is also cyclically monotone. We will exploit these conditions together

with Rochet (1987)’s theorem to establish our main results in the next section.

3The definition considers monotonically non-decreasing functions. We call such functions monotone to
be consistent with the previous literature on convex analysis.
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3 Main Results

This section presents our main results on the characterization of the implementable allo-

cation rules on the domain of multiple single-peaked preferences and the domain of multi-

dimensional single-peaked preferences on a poset.

Theorem 1. Let A be a finite set of outcomes, S ⊂ ΣA be a family of linear orders, and

T (A,S) be the domain of multiple single-peaked preferences. Then, function f : T (A,S) → A is

implementable iff it is monotone.

The proof of Theorem 1 uses Rochet (1987)’s result together with the sufficient conditions

obtained by Kushnir and Lokutsievskiy (2020). To explain the latter conditions, we introduce

some notations. For allocation rule f : T → A, we consider a cover of T by a finite number

of subsets. To define these subsets for any ordered pair a, b ∈ A, we consider

`ab = inf
t∈T :f(t)=a

t(a− b).

Using these lower bounds, for each a ∈ A we consider a subset

T f
a = {t ∈ T : t(a− b) ≥ `ab,∀b ∈ A}.

System {T f
a }a∈A forms a cover of set T , T =

⋃
a∈A T

f
a . Using the above notation, we consider

the following property:

Definition 7. Function f : T → A satisfies the local-to-global condition if for any two

outcomes a, b ∈ f(T ) with T f
a ∩ T

f
b = ∅, there exists a path {a ≡ a0, ..., aM ≡ b} such that

T f
am ∩ T

f
am+1

6= ∅, m = 0, ...,M − 1 and `ab ≥
∑M−1

m=0 `amam+1.

Note that lower bound `ab can be interpreted as the minimum benefit to accrue to the

agent from revealing true type compared to lying when lying leads to outcome b ∈ A (ex-

cluding transfers). Hence, −`ab are the maximum gains from lying. We interpret −`ab,
T f
a ∩ T

f
b = ∅ as the gains from global deviations, and −`ab, T f

a ∩ T
f
b 6= ∅ as the gains from

local deviations. Then, the local-to-global condition ensures that the gains from global de-

viations are smaller than the total gains from deviations along some path connecting t ∈ T f
a

and some type in T f
b .4

We call set S path-connected if it is non-empty and any two points x ∈ S and y ∈ S can

be connected with a continuous curve lying inside S. A set S is called simply connected if

4See Carroll (2012) and Sato (2013) for related notions.
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it is path-connected and any loop on S can be continuously contracted to a point. We can

now state the following result:

Theorem (Kushnir and Lokutsievskiy, 2020). Consider a domain T ⊂ RN , a finite set A,

and a function f : T → A. Suppose that

1) T is simply connected,

2) T f
a is either path-connected or empty for each a ∈ A, and

3) f satisfies the local-to-global condition.

Then if f is monotone, it is also cyclically monotone.

Proof of Theorem 1. According to Rochet (1987), any implementable allocation rule is cycli-

cally monotone. Hence, any implementable allocation rule is also monotone as the mono-

tonicity condition is weaker than the cyclic monotonicity condition.

For the reverse implication that any monotone f : T (A,S) → A is implementable, we show

that (T (A,S), A, f) satisfies the conditions of Kushnir and Lokutsievskiy (2020)’s theorem.

Thus, f is cyclically monotone, and, hence, Rochet (1987) implies that it is implementable.

Denote family S as {≺1, ...,≺M} and domain T (A,S) =
⋃M

m=1 T
(A,≺m). To establish that

domain T (A,S) is simply connected, notice that if t ∈ T (A,≺m) for some m = 1, ...,M , then

αt ∈ T (A,≺m) ⊂ T (A,S) for α ≥ 0. Therefore, T (A,S) is path-connected, as any point can be

joined by a segment with 0 within T (A,S). Moreover, any loop on T (A,S) can be continuously

contracted to the origin 0. Hence, domain T (A,S) is simply connected.

The following two lemmas establish that every non-empty set T f
a is path-connected and

every monotone f : T (A,S) → A satisfies the local-to-global property.

Lemma 1. For any monotone function f : T (A,S) → A and a ∈ A, every non-empty set T f
a

is path-connected.

Proof. Take t, t′ ∈ T f
a . Let t −M be a type where we subtract constant M from all the

coordinates of t, and let t′+M be a type where we add M to all the coordinates of t′. Notice

that both t −M and t′ −M still belong to T f
a . Types t and t −M can be connected with

path t− λM, λ ∈ [0,−1]. Similarly, t′ and t′ −M can be connected with a path within T f
a .

Hence, it remains to show that t−M and t′−M can be connected by a continuous path

within T f
a . To do this, we now prove a convenient fact: If t1, t2 ∈ T f

a , then min(t1, t2) ∈ T f
a .
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Define a polygon T̃ f
a = {t ∈ RN : ta ≥ tb + `ab,∀b ∈ A}. As T f

a = T̃ f
a ∩ T (A,S), we have

t1a ≥ t1b + `ab ≥ min(t1b , t
2
b) + `ab and t2a ≥ t2b + `ab ≥ min(t1b , t

2
b) + `ab for any b ∈ A.

Hence, min(t1a, t
2
a) ≥ min(t1b , t

2
b) + `ab for any b ∈ A and min{t1, t2} ∈ T̃ f

a . To prove the

fact, we need to show that min{t1, t2} ∈ T (A,S). Consider linear order ≺m∈ S and domain

T (A,≺m). We claim that domain T (A,≺m) has a property that for any two types t1, t2 ∈ T (A,≺m)

their coordinate-wise minimum min{t1, t2} also belongs to domain T (A,≺m). Indeed, let us

consider any three alternatives p, q, r ∈ A with p ≺m q ≺m r. Assume that t1q = min{t1q, t2q}.
As t1 is single-peaked, we have that t1q ≥ t1p or t1q ≥ t1r. This implies that t1q ≥ min{t1p, t2p}
or t1q ≥ min{t1r, t2r}. Therefore, min{t1, t2} is also single-peaked with respect to order ≺m.

Hence, if t1, t2 ∈ T (A,S), then min{t1, t2} ∈ T (A,S). Overall, given T f
a = T̃ f

a ∩T (A,S), we obtain

that t1, t2 ∈ T f
a implies min{t1, t2} ∈ T f

a , which proves the fact.

As a consequence, we have that min(t − λ, t′ + λ) ∈ T f
a for all λ ∈ R. Notice that

min(t −M, t′ + M) = t −M and that min(t + M, t′ −M) = t′ −M when M > 0 is large

enough. Hence, t−M and t′−M are connected within T f
a by the path min(t−λM, t′+λM),

λ ∈ [−1; 1]. As pairs t and t−M , t−M and t′ −M , and t′ and t′ −M are each connected

with a path in T f
a , we obtain that t and t′ are also connected with a path in T f

a .

Lemma 2. A monotone function f : T (A,S) → A satisfies the local-to-global condition.

Proof. To establish that a monotone function f : T (A,S) → A satisfies the local-to-global

condition, we show that f satisfies the following geometric property:

For any pair a, b ∈ f(T (A,S)), any type x ∈ T f
a , and any type ε > 0, there exist xε ∈ T (A,S)

and yε ∈ T f
b such that ||xε − x||| ≤ ε and interval [xε, yε] lies in T (A,S).

In Lemma A1 in the Appendix, we prove that the above geometric property implies the

local-to-global condition.5

Let us take some outcome a ∈ A and some type x ∈ T f
a . We also set some linear order

≺ in S. We denote a weak version of the order as �. We first show that if f is monotone,

then we can always find a type in T f
b that has its peak at b according to ≺. Indeed, take

t′ = (−M, . . . ,−M, 0,−M, . . . ,−M), where 0 stays at position b. Type t′ is single-peaked

5A version of this property was first suggested by Carroll (2012) to study when local incentive compatibil-
ity implies global incentive compatibility in environments without transfers. Carroll (2012) also established
that every allocation rule defined on the domain of single-peaked preferences satisfies a version of the geo-
metric property. Though his result does not apply to our setting, the proof below follows some of the ideas
originally developed in his paper. See also Kushnir and Lokutsievskiy (2020).
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with respect to any linear order. For M ≥ maxq∈A `bq, type t′ satisfies inequalities t′b−t′q ≥ `bq

for any q ∈ A. Therefore, t′ ∈ T f
b .

Let us assume that x has its peak at p according to order ≺. We set ε and consider a

strict single-peaked type x′ ∈ T with the peak at p such that ||x′ − x|| ≤ ε. In particular,

x′q < x′q′ for any q, q′ satisfy q ≺ q′ � p or p � q′ ≺ q.

First, let us consider the case when b = p. Then put y′ = t′ ∈ T f
b . Hence, both x′q

and y′q are increasing for q � p and decreasing for q � p. Hence, for all β ∈ [0, 1] all types

(1−β)x′q +βy′q are increasing for q � p and decreasing for q � p. Hence, all types in interval

[x′, y′] are single-peaked and [x′, y′] ⊂ T (A,≺).

Now consider case b � p (a similar argument applies if b ≺ p). Both x′q and t′q are

increasing for q � p and decreasing for q � b together with their convex combination. For

p � q � b, type x′q is decreasing in q and t′q is increasing in q.

We now construct a new type y′ ∈ T f
b . We pick y′b arbitrarily and choose y′b−1 such that

y′b − y′b−1 > t′b − t′b−1. If p < b − 1, we then choose y′q for q = b − 2, ..., p satisfying the

inequalities
y′q+2 − y′q+1

x′q+1 − x′q+2

<
y′q+1 − y′q
x′q − x′q+1

(3)

t′q+1 − t′q < y′q+1 − y′q (4)

This can be done by choosing y′q at a low enough value at each step. Finally, for q ≺ p we

choose y′q such that t′q+1 − t′q < y′q+1 − y′q, and for q � b we choose y′q such that t′q−1 − t′q <
y′q−1 − y′q.

We now show that inequalities (3) and (4) ensure that (1 − β)x′ + βy′ is single-peaked,

i.e., (1− β)x′q + βy′q increases in q up to some peak and it decreases in q following the peak.

Note that both x′q and y′q are increasing for q � p and decreasing for q � b, as is the case

for their convex combination. Let us now consider p � q � b. Assume that there exists

q ∈ {p, ..., b− 2} such that

(1− β)x′q + βy′q > (1− β)x′q+1 + βy′q+1 (5)

and

(1− β)x′q+1 + βy′q+1 < (1− β)x′q+2 + βy′q+2. (6)

We can rearrange inequalities (5) and (6) to obtain

1− β
β

>
y′q+1 − y′q
x′q − x′q+1

1− β
β

<
y′q+2 − y′q+1

x′q+1 − x′q+2

8



where we used that x′ is strict single-peaked, i.e., x′q > x′q+1 > x′q+2. Note that β 6= 0;

otherwise, inequality (6) must be violated. The above two inequalities contradict (3). Hence,

[x′, y′] ⊂ T (A,≺). Note also that inequalities (4) (together with the choice of y′q for q ≺ p

and q � b) guarantee that for any outcome c 6= b we have y′b − y′c > t′b − t′c. Hence, if

outcome c was chosen for type y′ that would violate monotonicity. Hence, y′ ∈ T f
b . Overall,

any monotone function f : T (A,S) → A satisfies the geometric property and, hence, it also

satisfies the local-to-global condition (see Lemma A1 in the Appendix).

Overall, the result of Theorem 1 follows from Lemmas 1 and 2.

Taking into account that every domain of multi-dimensional single-peaked preferences

on poset (A,C) is also a domain of multiple single-peaked preferences, we also obtain the

following corollary:

Corollary 1. Assume T (A,C) ⊂ RN is the domain of multi-dimensional single-peaked prefer-

ences on poset (A,C). Then, f : T (A,C) → A is implementable if and only if it is monotone.

The corollary is an extension of Mishra and Roy (2013)’s result for the domain of single-

peaked preferences to multi-dimensional preference domains that have a similar structure.

This extension is a contribution to the literature at the intersection of mechanism design

and social choice that should advance research into implementable voting mechanisms in

multi-dimensional settings with transfers, an area that is drawing a lot of recent research

interest (see Goeree and Zhang, 2017; Lalley and Weyl, 2018; Posner and Weyl, 2018).

4 Conclusion

In this paper, we use insights offered by Rochet (1987) and Kushnir and Lokutsievskiy (2020)

to characterize the set of implementable allocation rules on the domain of multiple single-

peaked preferences and on the domain of multi-dimensional single-peaked preferences on a

poset. In particular, we establish that an allocation rule is implementable if and only if it is

monotone. This characterization adds the above domains to the previously established list

of only two other non-convex domains where such a characterization is possible: the domain

of single-peaked preferences (see Mishra and Roy, 2013) and the domain of gross substitutes

(see Kushnir and Lokutsievskiy, 2020).
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Appendix

Lemma A1. Suppose that f : T (A,S) → A is monotone and for any pair a, b ∈ f(T (A,S)),

any type x ∈ T f
a , and any ε > 0, there exist xε ∈ T (A,S) and yε ∈ T f

b such that ||xε− x||| ≤ ε

and interval [xε, yε] lies in T (A,S). Then, f satisfies the local-to-global condition.

Proof. Consider a monotone function f : T (A,S) → A and outcomes a, b ∈ A with T f
a ∩T

f
b = ∅.

Take some x ∈ T f
a . The geometric condition stated in the lemma then implies that there

must exist xε ∈ T (A,S) and yε ∈ T f
b such that ||xε − x||| ≤ ε and [xε, yε] lies in T (A,S).

Consider sets T̃ f
q = {t ∈ RN : t(q − b′) ≥ `qb′ ,∀b′ ∈ A}. Then, T f

q = T̃ f
q ∩ T (A,S). As any

set T̃ f
q is closed and convex, intersection [xε, yε] ∩ T̃ f

q = [xε, yε] ∩ T f
q is a closed interval, a

point, or an empty set. Therefore, we are able to choose

1) a path {a ≡ a0, ..., aK ≡ b} such that T f
ak
∩T f

ak+1
6= ∅, k = 0, ..., K−1, [xε, yε]∩T f

ak
6= ∅;

2) points zk ∈ [xε, yε]∩T f
ak

such that zk+1− zk 6= 0 and vectors zk+1− zk and yε−xε have

the same direction for any k = 1, ..., K − 1.

This can be done in the following way. We put a0 = a and z0 = xε. Then, we denote the

right end of interval [xε, yε] ∩ T f
a0

by z1. For point z1, there must exist a1 6= a0 such that

T f
a1
∩ [xε, yε] is a segment and z1 belongs to its interior. We denote the right end of the

segment by z2. Note that T f
a0
∩ T f

a1
6= ∅, as z1 belongs to both sets. Moreover, z2 6= z1 and

vectors z2 − z1 and xε − yε have the same direction by the choice of a1. For point z2, there

must exist a2 6= a0, a1 such that T f
a2
∩ [xε, yε] is a segment and z1 belongs to its interior. We

denote the right end of the segment by z3 and repeat the process until we cover the whole

interval [xε, yε]. We will finish in a finite number of steps as set A is finite and at each step

we pick points from different outcome sets. Hence, we establish properties 1) and 2) stated

above. Note that we do not exclude the case z0 = z1 as k ≥ 1 in 2).

The conditions of the theorem imply that x(a− b) ≥ xε(a− b)− ε||a− b||. In addition,

for each zk ∈ [xε, yε] ∩ T f
ak
, k = 1, ..., K, we can write

xε(a− b) =
K−1∑
k=0

xε(ak − ak+1) = xε(a0 − a1) +
K−1∑
k=1

(xε − zk)(ak − ak+1) +
K−1∑
k=1

zk(ak − ak+1).

As all zk belong to the same interval [xε, yε], there exists λk such that xε−zk = λk(zk−zk+1).

Moreover, λk > 0 by the choice of zk, k ≥ 1. Hence, weak-monotonicity implies

(xε − zk)(ak − ak+1) = λk(zk − zk+1)(ak − ak+1) ≥ 0.
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In addition, xε(a0−a1) ≥ `a0a1−ε||a0−a1|| and zk(ak−ak+1) ≥ `akak+1
for each k = 1, .., K−1.

Therefore,

x(b− a) ≥ xε − ε||a− b|| ≥
K−1∑
k=0

`akak+1
− ε(||a− b||+ ||a1 − a0||)

or

x(b− a) ≥
K−1∑
k=0

`akak+1
− 2εmax

c,d∈A
||c− d||.

Notice that path {a ≡ a0, ..., aK ≡ b} can generally depend on the choice of x and ε. However,

the number of such paths is finite because these paths contain no cycles by construction.

Taking infimum over all points x ∈ T f
a and taking ε → 0, we obtain that for some path

{a ≡ a0, ..., aK ≡ b} we have `ab ≥
∑K−1

k=0 `akak+1
.
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