
SAMPL: A Simple Aggregation and Message Passing
Layer for Sensor Networks

(Invited Paper)

Anthony Rowe Karthik Lakshmanan Ragunathan (Raj) Rajkumar
Electrical and Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA. USA.

{agr,klakshma,raj}@ece.cmu.edu

ABSTRACT
In recent years, wireless sensor networking has shown great
promise in applications ranging from industrial control, en-
vironmental monitoring and inventory tracking. Given the
resource-constrained nature of sensor devices and the dy-
namic wireless channel used for communication, a sensor
networking protocol needs to be compact, energy efficient
and highly adaptable. In this paper we present SAMPL, a
simple aggregation and message passing layer, aimed at flex-
ible aggregation of sensor information over a long period of
time, and supporting sporadic messages from mobile devices.
SAMPL is a compact network layer that operates on top of
a low-power CSMA/CA based MAC protocol. The proto-
col has been designed with extensibility in mind to support
new transducer devices and unforeseen applications without
requiring reprogramming of the entire network. SAMPL
uses a highly adaptive tree-based routing scheme to achieve
highly robust operation in a time-varying environment. The
protocol supports peer-to-peer data transactions, local stor-
age of data similar to what many RFID systems provide
as well as secure gateway to infrastructure communication.
SAMPL is built on top of the Nano-RK[1] operating sys-
tem that runs on the FireFly sensor networking platform.
Nano-RK’s resource management primitives are used to cre-
ate virtual energy budgets within SAMPL that enforce ap-
plication lifetimes. As of October 2008, SAMPL has been
operating as part of the Sensor Andrew project at Carnegie
Mellon University with battery powered sensor nodes for
over seven months and continues to be actively used as a re-
search testbed. We describe our deployment tools and net-
work health monitoring strategies necessary for configuring
and maintaining long-term operation of a sensor network.
Our approach has led to sustainable average packet success
rate of 94% across the entire network.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WICON 2008 November 17-19, 2008, Maui, Hawaii, USA.
Copyright 2008 ACM ICST 978-963-9799-36-3. ...$5.00.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Sensor
Networks

General Terms
Wireless Sensor Networks

Keywords
Sensor Networks, Tree Routing, Deployment, Network Man-
agement

1. INTRODUCTION
Wireless sensor networks have generated significant re-

search interest in recent years, due to their potential to
seamlessly study the physical world. Despite the wealth of
existing literature in the domain, very few real-world de-
ployments have lasted more than a few months. Limited
flexibility, energy constraints, lack of visibility, interaction
complexity and maintenance overheads, still pose significant
problems towards developing practical wireless sensor net-
work deployments. In this paper, we address these issues
and describe our simple aggregation and message passing
layer (SAMPL) for wireless sensor networks, which has been
operational for well over seven months, and still continues
to successfully serve as a large living testbed for sensor net-
works research at Carnegie Mellon University.

Energy-efficient MAC protocols and routing algorithms
have received considerable attention from the sensor net-
working research community. The underlying problem of
time-varying channels and unreliable nature of wireless com-
munication, continue to plague advances towards a practical
solution. One of our key goals is to overcome this issue, and
hence our design choices are towards developing a highly dy-
namic, flexible, yet energy-efficient solution to collect sensor
data from the environment. We are able to achieve these
properties by focusing our efforts on data aggregation, a first
class primitive for most long-term sensing deployments.

Reconfigurability is key to developing a successful sen-
sor networking deployment. Most wired sensor networking
deployments like video surveillance systems, fire monitor-
ing systems, building temperature control systems etc., have
operator consoles from which administrators can configure
the entire network operation. Similar requirements also ex-
ist for continuous sensing systems in the wireless domain.
The network update rates should be increased/decreased on

demand, and the system should re-configure on-the-fly to
adapt to such changing requirements. For instance during
a fire emergency, the operator may be interested in sensing
the increasing CO2 levels and temperature conditions at a
much higher rate, compared to normal operating conditions.
SAMPL is fully integrated with a complete configuration
and control layer, which enables on-demand updates to all
protocol parameters and participating sensor nodes.

Enabling out-of-the-box solutions to sensor networks in-
volves developing practical solutions to deploying large-scale
sensor networks. Although similar problems are regularly
faced in the 802.11 domain, the multi-hop nature of wireless
sensor networks, and their limited diagnostic capabilities,
pose significant challenges for novice users. We have there-
fore developed a portable deployment device with a LCD
display and easy-to-use user interface, to assist in deploy-
ing wireless sensor nodes. Our deployment strategy enables
the users to ensure sufficient coverage, and significant redun-
dancy, without getting involved in system details. Network
extensibility is a key feature of our solution. Since the net-
work was initially deployed, we have continued to add new
sensor nodes, support newer types of sensor nodes and de-
velop new applications, without requiring to modify any of
the underlying system-wide protocols.

Debugging large scale sensor network deployments is a
huge maintenance nightmare. This is one of the key reasons
for failure behind most long-term deployments. We have
therefore developed a continuous passive network monitor-
ing framework, to study the behavior of our network over
extended periods of time. We also instrumented some of
our nodes with additional higher bandwidth network inter-
faces like 802.11 and powered them, to collect significant
amounts of debugging information over our long period of
deployment. This information is vital to our understanding
of the protocol behavior, and helps guide future development
endeavors for newer versions of SAMPL.

1.1 Protocol Goals
The SAMPL protocol is a compact network layer that op-

erates on top of a low-power MAC layer to achieve robust
and economic aggregation of network-wide sensor informa-
tion. Although our current implementation uses a low-power
listen protocol similar to BMAC[2], the same approach is
also applicable to other energy-efficient MAC protocols. The
protocol has been designed with extensibility in mind to
support new transducer devices and unforeseen applications
without requiring reprogramming of the entire network. The
goals of the SAMPL protocol are as follows:

1. Efficiently collect sensor data using packet aggregation

2. Provide a control channel from the gateway to all nodes

3. Infrastructure support for mobile devices

4. Remote storage on each node similar to active RFID

5. Secure Communication

6. Built-in debugging for high visibility

1.2 Related Work
One of the early long-term wireless sensor network deploy-

ments was the Great Duck Island project [3]. This deploy-
ment of 43 motes lasted for about four months, and collected

more than a million data points. The network was deployed
in a remote island off the coast of Maine, to perform habitat
monitoring for biological research. Although the deployment
is comparable in duration to ours, we are concerned with an
indoor office environment, where there is significantly more
interference and time-variance in the environment. Our de-
sign choices, experiences and inferences are closely related
to the future challenges for deploying sensor networks in
buildings and work environments. Extensibility is also an-
other key distinction of our work. We have continued to add
sensor nodes, support newer types of sensors, and develop
applications, since our initial deployment, without having to
modify any part of our protocol infrastructure.

Zebranet [4] is another sensing project undertaken to
study wildlife behavior in Kenya. The underlying challenges
and solutions are very distinct from our scenario. Our nodes
are much smaller in size, and need to integrate seamlessly
with the environment. In Zebranet, the nodes are much
larger in size, however they have to deal with additional
challenges of mobility and wear-and-tear. Our deployment
goals are also much more longer term in nature, and hence
add additional constraints on our sensing infrastructure.

Significant efforts have been devoted to developing energy-
efficient MAC protocols [5, 6, 7, 8, 9, 10, 11]. We use a vari-
ant of the low-power listen MAC protocol, which resembles
the BMAC [2] protocol. Researchers have also attempted to
narrow the waist-line of sensor networks, and develop a stan-
dardized IP-style network protocol [12, 13]. A marked devi-
ation from such generalized approaches is to consider data
aggregation as a fundamental service of sensor networks.

The TAG [14] service represents one of the early endeavors
to restrict attention to sensor data aggregation. Although
our approach shares the same ideals, we are forced to pro-
vide more flexibility and extensibility in our network. We
support a varied set of services such as peer-to-peer mes-
saging, asynchronous upstream Internet traffic, secure com-
munication support, in-network re-configuration, and con-
tinuous diagnostics. It would be arbitrarily complex, if not
impossible, to support such a diverse set of services using
the SQL-like interface provided by TAG.

Researchers have also exclusively looked at developing mo-
bile sensor nodes [15, 16, 17, 18]. Our mobile node is built
specifically for aiding in network deployment, and enabling
an out-of-the-box solution. In the future, we would like to
extend the capabilities of this device, however maintaining
its primary purpose of acting as a deployment device. Pre-
vious research has also looked at understanding and char-
acterizing packet loss statistics [19, 20]. Our results are
based on long-term measurements from an actual deploy-
ment, and are hence expected to be a much more faithful
representation of the real-world conditions.

1.3 Paper Organization
The rest of the paper is organized as follows. Section

2 describes the SAMPL protocol. Section 3 outlines a de-
ployment strategy used to optimize the initial placement
of nodes. Section 4 shows a simple but effective statistical
monitoring technique that can identify problem areas in the
network. Finally, Section 5 provides concluding remarks and
future work.

2. SAMPL PROTOCOL DESIGN
SAMPL uses a tree-based routing scheme in which con-

trol messages are flooded from a gateway through the net-
work in order to establish routes and provides loose time
synchronization for reply messages. Each level in the tree
determined by the path of the flooding message has a delay
relative to the maximum depth of the tree (based on hop
count) such that sensor nodes contend for the channel only
with other nodes at the same depth. Figure 1 illustrates how
a tree is formed over a topology. The spanning tree created
by the downstream flooding message sets the routing tables
for reply messages to the gateway. Since lower branches in
the tree reply earlier, messages can be efficiently aggregated
together as they are passed up the tree. By default, the
aggregation phase of operation simply removes redundant
messages however this can be easily enhanced to do more
intelligent in network processing to reduce data. During the
upstream period of data collection, the Low-Power-Listen
(LPL) check rate (described in [2]) can be increased to al-
low for faster and more energy efficient collection since the
network is expecting data. Routes can potentially change on
each query making the network resilient to failures and able
to support a high degree of mobility. Routes can optionally
be reinforced over time to stop unnecessary re-routing. The
flooding messages contain multiple control parameters set-
ting attributes including: which nodes should reply, which
sensor or data values should be transmitted, nonce counter
values for CBC encryption, actuation control packets, net-
work allocation vector (NAV) indicating when mobile com-
munication is allowed. Control messages from the gateway
can optimize the construction of the network spanning tree
by applying various routing metrics or if need be set static
routes.

While performing data collection, SAMPL operates in a
push-pull cycle (see Figure 1) where queries are sent out
to all nodes in the subnet and data is aggregate back to
the gateway. In between requests, SAMPL operates in a
Peer-to-Peer (P2P) mode. P2P requests could originate
from mobile devices or infrastructure nodes in the form of
asynchronous messages. Since much of the infrastructure is
battery operated, network reservations are put in place to
protect static nodes from battery depletion. Infrastructure
nodes are allotted a fixed number of P2P transactions per
period of time. This enforcement mechanism is configurable
in the gateway’s control packets. Mobile nodes that over-
hear packets from the infrastructure can identify the type
of protocol, the version of the protocol and the next pe-
riod of free network access time based upon packet header
information. When the channel is clear, mobile nodes can
then perform operations like pinging for lists of neighbors
with corresponding RSSI values, or access nearby sensors.
We also provide mobile nodes with access to read and write
4KB of EEPROM on all infrastructure nodes. This can be
used to store various types of spatial information such as
node GPS coordinates; messages for a friend that is running
late; or conference room schedule information. By provid-
ing a general read and write interface, SAMPL leaves the
usage of the data up to the application developers. This
is extremely useful in scenarios such as maintenance, where
the technician can store information such as the last service
date, known issues, next scheduled service etc. on the device
itself.

SAMPL has the following built-in packet types:

• Transducer Packets are used to request sensor val-
ues and to send actuation commands. These pack-

ets are variable length and include device specific type
messages that allow requests to be heterogeneous.

• Network Configuration Packets are used to con-
figure static networking parameters that are not con-
figured during a gateway request. These currently in-
clude clear channel assessment thresholds, communi-
cation reservations, and debugging flags.

• Runtime Statistics Packets are used to report var-
ious properties at each node including; number of tx
packets, number of rx packets, number of tx retries,
number of rx failures, number of sensor samples, node
uptime, processor deep sleep time and processor idle
time. These parameters can be used to determine how
much energy the device is consuming as compared to
its energy budget.

• Trace-Route Packets are used to determine the route
to the gateway through flooding. These packets record
the MAC addresses as they are flooded across the net-
work, to gather the required route information.

• ACK/NACK Packets are general replies that can
be sent from any command that does not require re-
turn data.

• EEPROM Message Packets can be used to locally
store messages at each node. This is similar to the data
tags that can be stored on some RFID devices.

• Neighborhood Packets contain neighborhood in-
formation with associated link quality metrics. These
lists are generated over time as nodes overhear neigh-
bors.

• Static Routing Packets are used to configure static
routes in the network that have precedence over the
adaptive routes generated by the downstream routing
messages. Routes have timeout values associated with
them so that incorrectly configured nodes can eventu-
ally return to the default network state.

There is built-in support for CBC encryption, which is
seeded of a nonce value transmitted as a part of the network
configuration packets. The encryption is done in hardware
by the cc2420 transceiver chip used in the FireFly node.
Development efforts are underway for a public-key infras-
tructure setup for the establishment of encryption keys and
enabling secure authentication with the network.

2.1 Runtime Visibility
A key feature of SAMPL is transparent support for net-

work diagnostics. In Section 4 we describe a passive tech-
nique based on conditional probabilities of packet arrival for
determining if particular nodes are being detrimental to the
overall network. This approach does not expose informa-
tion about how much energy the CPU and other tasks in
the system are consuming. To support this information we
provide an extensive set of debugging counters in each node
that can be periodically requested through use of a runtime
statistics packet. This packet contains a counter on each
node for the number of packets transmitted, received, the
number of transmit retries, the number of receive packet
failures, the number of sensor sample requests, the node up-
time, the processor deep-sleep time and the processor idle

GW

0

1

0

1

1

2 2

3
2

2

GW GW

5

4

5

4

4

3 3

2
3

3

(a) (b) (c)

Figure 1: Retrieving sensor values using the SAMPL protocol. (a) example topology. (b) tree formed by the
gateway as it sends a control message. This control message contains instructions on what operations the
nodes should perform, which nodes should perform those operations as well as various parameters on how
the tree should propagate and respond. The number inside each node indicates the level in the tree at which
the message was received. The final figure (c) delay time before each node transmits based on the maximum
hop count (in this case 5) and the delay per level. Notice that the nodes at the bottom of the tree transmit
first allowing nodes higher up the tree to aggregate their data. During this collection mode of operation, the
LPL sampling rate can be increased since each node is expecting data.

Gateway
Node

Client

Client

Client

Client

SLIPstream
Server

SAMPL
SLIPstream

Client

Gateway Computer

RS232

SLIP

802.15.4

SAMPL

UDP
Datagrams

Sensor Nodes

Client

Figure 2: Location of various SAMPL protocol ele-
ments.

time. Runtime aggregation of such information leads to a
highly visible network, whose health status is continuously
monitored and archived over long durations of time.

2.2 Sensor Network to Server Interface
In order to interface desktop class applications with the

sensor network, we introduce the SLIPstream protocol. SLIP-
stream is composed of three components: the SLIPstream
server, the SLIPstream sensor node client and the SLIP-
stream UDP client (see Figure 2). The SLIPstream server
translates UDP packets into serial datagrams and vice-versa.
The SLIPstream server is designed to execute on an embed-
ded Linux device or PC that is acting as a bridge between an
IP network and the sensor network. UDP messages sent to
the SLIPstream server are forwarded onto the sensor node
using the Serial Line IP (SLIP) protocol. Unlike a simple
serial to socket forwarder, the SLIP protocol allows for fram-
ing and checksumming of datagram packets going into and
out of a sensor node. Since SLIP packets have special es-
cape characters, this data can co-exist with normal debug
messages that transmit as ASCII readable text. We provide
simple transmit and receive functions for both the SLIP-
stream sensor node client as well as the SLIPstream UDP
client.

The practical benefits of the SLIPstream infrastructure
are realized in our gateway design. We have developed our
own custom gateway (see Figure 4) device consisting of both
a gumstix node with 802.11 interface and a 802.15.4 FireFly
node, connected by a serial bus. The SLIPstream server
runs on the gumstix node, and any server in the Internet
can talk to the server using UDP packets over the WiFi
interface. This enables an ultra-flexible interface to collect
the aggregated data from the sub-network of sensors.

3. DEPLOYMENT
In this section we give a brief introduction to the Sensor

Andrew project as well as the hardware platform and the
operating system used to support SAMPL. We then discuss
our debugging infrastructure and deployment approach.

3.1 Sensor Andrew
Sensor Andrew is a multi-disciplinary campus-wide scal-

able sensor network that is designed to host a wide range
of sensing and low-power applications. The goals of Sen-
sor Andrew are to support ubiquitous large-scale monitor-
ing and control of infrastructure in a way that is extensible,
easy to use, and provides security while maintaining pri-
vacy. Target applications currently being developed include
infrastructure monitoring, first-responder support, quality
of life for the disabled, water distribution systems monitor-
ing and optimization, building power monitoring and con-
trol, social networking, and biometric sensors for campus
security. A large component to these applications is an un-
derlying wireless sensor network comprised of the Nano-RK
real-time operating system running on the FireFly sensor
networking platform.

3.2 Nano-RK
Nano-RK is a fully preemptive reservation-based real-time

operating system (RTOS) with multi-hop networking sup-

port for wireless sensor networks. It includes a light-weight
embedded resource kernel (RK) with rich functionality and
timing support capable of running on low-power micro-controllers.
Nano-RK supports fixed-priority preemptive multitasking
for ensuring that task deadlines are met, along with support
for CPU, network, as well as, sensor and actuator reser-
vations. Tasks can specify their resource demands and the
operating system provides timely, guaranteed and controlled
access to CPU cycles and network packets. Together these
resources form virtual energy reservations that allows the
OS to enforce system and task level energy budgets.

3.3 FireFly Hardware
The FireFly Sensor Networking Platform is a low-cost low-

power hardware platform shown above. In order to better
support real-time applications, the system is built around
maintaining global time synchronization. The main Fire-
fly board uses an Atmel ATmega1281 8-bit micro-controller
with 8KB of RAM and 128KB of ROM along with Chip-
conâĂŹs CC2420 IEEE 802.15.4 standard-compliant radio
transceiver for communication. The maximum packet size
supported by 802.15.4 is 128 bytes and the maximum raw
data rate is 250Kbps. The FireFly board supports various
external peripherals such as a sensor expansion card, high
voltage power monitoring and control board, and a firefly-
hardware-clock-sync hardware clock synchronization mod-
ule. The sensor expansion card provides light, temperature,
audio, passive infrared motion, dual axis acceleration and
voltage sensing. The high voltage power monitoring and
control board allows for sensing of current draw as well as
on/off actuation of 120VAC appliances. The base FireFly
platform provides an SDIO port which can be used for large
flash storage or as a universal interface to PC compatible
peripherals.

In our current Sensor Andrew deployment, the FireFly
nodes operate off of two D-cell sized batteries and communi-
cate over multiple hops to a powered gateway that has access
to the Internet. The sensor network is primarily designed
to efficiently collect sensing data, however it also provides
support for various mobile device interactions. We provide a
generic communication interface allowing nodes to directly
query infrastructure nodes as well as send messages to and
from the Internet via the gateway. Communication reser-
vations in Nano-RK provide a mobile node communication
budget preventing mobile devices from draining more than
their alloted system energy.

3.4 Debugging Infrastructure
Developing MAC protocols in sensor networks is challeng-

ing due to the physical separation of devices and the varia-
tions in wireless communication that hinders reproducibility.
In this section we describe a testbed designed to provide a
data back channel along with high precision local timing
capabilities. Figure 3 shows one of the testbed nodes that
consists of a gumstix based embedded Linux board, with a
FireFly programming node and a FireFly sensor node. The
embedded Linux box has an 802.11 interface that allows for
remote programming and facilitates a high-speed debugging
channel. A central server manages farming out firmware im-
ages as well as collecting and sorting debugging data. Each
programming board provides a utility called TimeScope that
allows for precise timing of GPIO pin toggling coming from
the attached sensor node. By running the Network Time

Gumstix Programmer

802.11

FireFly
Sensor Node

Figure 3: Testbed device with remote programming
and debugging support. The note on the box sum-
marizes the privacy policy of Sensor Andrew con-
forming to IRB regulations.

Figure 4: SAMPL gateway with an 802.15.4 and
802.11 interface.

Protocol [21] (NTP) on each Linux device and locally time-
stamping debugging as well as timing messages we can build
an account of what the network protocol is doing in a real-
istic topology.

The TimeScope utility built into all FireFly programming
interface boards allows logic analyzer style debugging with-
out interfering with serial output or bogging down the micro-
controller with the large blocking times required for serial,
SPI or I2C data transfers. Developers can assert and clear
four different debugging GPIO pins on the FireFly board
that are captured by the programmer board and can be used
to generate timing waveforms. Figure 5 shows an example of
timing output used to profile various sections of code. APIs
on the FireFly node can also use this interface to send 4 bits
of high speed debugging data back to your computer to track
state transitions. The connections from the FireFly debug-
ging board can even be linked to external logic devices that
you wish to probe. TimeScope will give you in the worst
case a 258 microsecond sampling period (3.875KHz) due to
the time it takes to send the three bytes of payload over the
UART. If signals do not occur back-to-back, then the fac-
tor limiting the resolution is the time-stamping period of 36

Figure 5: Timing output from TimeScope.

Figure 6: A mobile device, The-Radler, evaluating
the current position for deploying an infrastructure
node.

microseconds (27.7KHz).
One of the important motivations behind our project is

to serve as a live testbed for sensor networking research.
We therefore deployed a few nodes with support for re-
programmability. These nodes known as SAGs (Sensor An-
drew Gateways) comprise of a (i) gumstix, (ii) a program-
mer, and (iii) a FireFly (see Figure 3). This subset of nodes
can be reprogrammed on-the-fly, enabling us to evaluate the
co-existence of other protocols, and testing future applica-
tions to be integrated into SAMPL.

3.5 Our Deployment Approach
The placement of nodes in a sensor network is important

both for establishing reliable connectivity and to effectively
sample the target environment. In many cases, node place-
ment is governed by the application. For example if the
node is supposed to monitor the vibration of a machine, it
naturally needs to be physically place on the machine. In
many cases, fortunately, nodes are simply forwarding data
and/or can be placed practically any location within a large
region of space. In this section, we describe strategies we use
to effectively place nodes in the environment. We provide a
simple mathematical framework to identify problematic re-
gions of the network, that when adjusted, improve overall
performance. In these examples, we assume the underly-
ing sensor network MAC protocol is SAMPL. However, the
same principles can easily be applied to other protocols.

When deploying nodes in a new location, our goal is to
place the nodes covering as much area as possible while sat-

isfying the following two requirements: (a) each node must
have at least two disjoint and symmetric paths back to a
gateway and (b) each link along this path should be of a
sufficient link quality. We begin by placing a gateway in a
central location with respect to our planned area of cover-
age. This helps to minimize the depth of the network which
in turn reduces hop count and hence cumulative packet loss.
Online probing of the network is required to maintain mul-
tiple disjoint paths. Figure 6 shows The-Radler a sensor
node with three buttons and an LED screen. The deploy-
ment node sends round-trip trace route messages back to
the gateway displaying the results on the screen. The trace
route packets record node MAC addresses as it is flooded
across the network. This makes it possible for receivers of
multiple packets to determine if the route was disjoint or
not. On the screen in Figure 6 we see an example showing
the current position with three neighbors and their associ-
ated RSSI values. As an initial starting point, conservative
RSSI thresholds averaged over time provide a reasonable
indicator of link stability. The deployment node shows a
color-coded bar graph indicating the success rate of packets
reaching the gateway. This allows the deployment team to
experiment with various test locations before they fix the
node.

4. NETWORK ANALYSIS AND EVALUATION
Once a network has been deployed, we need to monitor

how efficiently it is operating. One approach is to require ac-
tive mechanisms so that the MAC protocol collects runtime
statistics. This would include information such as neigh-
bor lists and packet loss. For aggregation protocols, such as
SAMPL, we can gain insights about the network over time
using passive approaches. These techniques have the dual
advantage of being both non-intrusive and highly economical
from an energy perspective. In the following sub-section we
look at what information can be gained simply by recording
packet loss at the gateway.

4.1 Passive Analysis
Each time the network requests data, the lack of response

from certain nodes provides information about weak commu-
nication links or node failures. Given the multi-hop and dy-
namic nature of routes in sensor networks, it can be hard to
determine which nodes are most responsible for these packet
losses. We present a scheme to identify clusters of related
problem nodes that only requires keeping track of per-node
packet loss at the gateway. By collecting correlated packet
loss over time we can create a mapping of which nodes are
most responsible for other nodes dropping packets. Based on
the way we have deployed nodes, the sensor network should
have enough redundancy that packet loss should not be de-
pendent on any one particular node. Using the packet arrival
data at the gateway, we generate a matrix that captures the
inter-dependence of nodes throughout a subnet.

The packet loss matrix contains an NxN set of condi-
tional probabilities relating how each node performs given
the packet loss of all other nodes in the system. For each
node in the matrix we record the count of packets dropped
from node Ni as well as node Nj for each network request.

The total of packets Ni that are dropped in the same re-
quest as Nj divided by the total Ni gives us a sample prob-
ability that Ni drops packets given Nj dropped a packet.
Using a two-proportion z-test assuming unequal variance we

GW
7

11

3

16

13

6

5

14

42

10

8

15

9

12

First Floor

Second Floor

17

Figure 7: Firefly node placement in one of the Sensor Andrew building deployments.

can determine which nodes have packet loss that is statisti-
cally highly dependent on other nodes. This approach can
automatically identify routes that are losing packets due to
bottleneck nodes with poor links. Traversing the matrix can
identify the set of nodes that most contributes to any par-
ticular nodes performance. The test is performed as follows:
Assumption:

Pi: probability that node i drops its packet
Pi|j : probability that node i drops packet given node j

drops a packet
Hypothesis:

Pi − Pi|j = 0 (1)

(i.e. packet loss is independent)
Next, we perform a Two-Proportion z-test with unequal
variances on each node pair to determine packet loss inde-
pendence:

zi,j =
(P̂i −

ˆPi|j) − (Pi − Pi|j)
r

P̂i(1−P̂i)
ni

+
ˆPi|j(1− ˆPi|j)

nj

(2)

P̂i is the sampled packet loss for node Ni, ˆPi|j is the sam-
pled packet loss for node Ni given packet loss in node Nj ,

ni is the number of P̂i samples and nj is the number of ˆPi|j

samples. P̂i should be sampled randomly and independently
of ˆPi|j since they are assumed to be independent. The re-
sulting statistic for each z should be normally distributed.
Since we are doing multiple tests across the dataset, we set

a conservative z value threshold t, with t equal to an al-
pha of .05 divided by the number of nodes in the system
N choose 2. Any values in the resulting z-test matrix that
is above threshold t indicates that the node identified by
that column has experience packet loss correlated with the
row indexed node. In an ideal environment without cor-
related packet loss, the system will generate the identity
matrix where nodes only experience packet loss from them-
selves. Since nodes forward data on behalf of other nodes,
this is almost never the case. We will now show an exam-
ple of how we used this method to monitor and optimize a
deployment.

Figure 7 shows the layout of a deployment consisting of
17 sensor nodes with debugging facilities in one of our de-
ployments at Carnegie Mellon University. The nodes were
deployed using the strategy described in section 3 with the
exception of nodes 16 and 17. These were added later based
on information from our monitoring process. Figure 9 shows
a histogram of packet loss for each node in the network based
on over forty thousand packets collected every 30 seconds
for two weeks. A client subscribed to data coming from the
nodes continuously aggregates values for the packet loss ma-
trix. Figure 8 shows the z-test results with values above a
threshold of 3.5. Each column and row represents a node
from 1 to 15. One can clearly see the diagonal of the matrix
shows a high correlation since a node is always correlated
with its own packet loss. Each non-zero value found down a
column represents a node that is effectively failing to deliver
packets in a manner that is causing a bottleneck. If a node
is dropping packets, but that same packet is able to reach

77615

1548614

17213

47212

89181711

11610

989

12808

66677

926

41155

543094

2103

2822

891

151413121110987654321

Nodes Ni
N

o
d
e
s
 N

j

7 11 128 15 14 6

4

5

Figure 8: Thresholded z test packet loss matrix for
the topology in Figure 7. Problem clusters with
higher than normal node packet loss dependence are
shown below the matrix. Values used to construct
node 7’s cluster are circled insider the matrix.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Number

P
kt

. S
uc

ce
ss

 P
ro

ba
bi

lit
y

Figure 9: Packet success probability immediately af-
ter deployment.

the gateway through other means, this would not appear in
the matrix.

4.2 Network Fortification
The packet loss matrix along with the map of the building

shows examples of correlated packet loss which make sense
given the network layout. For example, in column 6 we see
that node 6’s packets are largely correlated with drops in
nodes 4 and 5. As can be seen on the map, nodes 4 and 5
are likely candidates to be forwarding node 6’s traffic. The
magnitude of the z value indicates the confidence of the cor-
relation based on the sample size. Below the matrix in Fig-
ure 8 we see three clusters of problem nodes. These clusters
are automatically generated by picking an initial starting
point and then recursing over all non-zero node references
in each column of the matrix.

These clusters indicate regions that need extra provision-
ing. We accomplish this by adding nodes 16 and 17 to the
network. We also investigated node 12 which had been
blocked by a barrier. Figure 10 shows the resulting his-
togram over the next two week period. The overall average
packet success rate increased from 0.82 to 0.94. In a large

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Node Number

 P
kt

. S
uc

ce
ss

 P
ro

ba
bi

lit
y

Figure 10: Packet success probability after optimiz-
ing the network. We see an overall increase in packet
success probability from 0.82 to 0.94.

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Active Mobile Nodes

P
ac

ke
t

S
u

cc
es

s

1 Update / Second
1 Update / 2 Seconds

Figure 11: Limits on active mobile node density
given a high demand on the infrastructure in a single
collision domain.

scale deployment, it is important to have automated mech-
anisms for detecting problems and grouping problem nodes
together.

4.3 Infrastructure Support for Mobile Devices
In order to evaluate the infrastructure support for mobile

devices, we studied the packet success probabilities with in-
creasing number of active mobile nodes (see Figure 11). It
can be seen that the current implementation supports up to
15 mobile nodes with an update rate of once every second.
As one would expect, increasing the mobile node update
rate leads to more collisions, and hence a lower packet suc-
cess probability as shown in the figure. These results are
acceptable for most real-world scenarios, since the mobile
devices are intelligent in nature, and use the infrastructure
only sporadically. For instance, when the device detects that
the user is moving around or that the environment is chang-
ing, it updates this new information to the infrastructure.

The design choices of SAMPL are inherently biased to-
wards ensuring a higher reliability of packet delivery within
the infrastructure than between the infrastructure and the
mobile node. The rationale behind such a design is the fact
that the battery-powered infrastructure nodes have to last
for years, whereas the battery-powered mobile devices are
typically charged every alternate night.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented SAMPL a practical, dy-

namic, and extensible protocol for data aggregation and
message passing in sensor networks. The protocol supports
flexible-yet-efficient collection of network-wide sensor data,
and provides infrastructure support for mobile devices. As
of October 2008, the infrastructure is in use for well over
seven months, and continues to be actively used as a re-
search testbed. As a part of the whole system infrastruc-
ture, we have developed a wide range of debugging tools for
continuously monitoring and collecting information about
the health of the network. In this paper, we have described
some of these tools like TimeScope and SAG in detail. In
order to efficiently archive data from the sensor network, we
also developed the SLIPstream service to enable communi-
cation over UDP. One of the key issues we faced during our
deployment phase is that of ensuring sufficient coverage and
redundancy. Our mobile deployment device with its graph-
ical user interface, was a significant aid in overcoming these
challenges. Finally, we have designed efficient statistical
tests to understand network-wide packet-loss patterns, and
demonstrated how they can be applied to improve network
reliability. Our system has achieved an average sustainable
packet success rate of 94% across the entire network.

Future work involves scaling to thousands of nodes with
multiple sub-networks, and integrating with numerous pre-
existing legacy protocols.

6. REFERENCES

[1] A. Eswaran, A. Rowe and R. Rajkumar. Nano-RK: an
Energy-aware Resource-centric RTOS for Sensor
Networks. IEEE Real-Time Systems Symposium, 2005.

[2] J. Polastre, J. Hill and D. Culler. Versatile low power
media access for wireless sensor networks. SenSys,
November 2005.

[3] Mainwaring A., Polastre J., Szewczyk R., Culler D.,
Anderson J. Wireless Sensor Networks for Habitat
Monitoring. ACM International Workshop on Wireless
Sensor Networks and Applications, 2002.

[4] Philo Juang, Hidekazu Oki, Yong Wang, Margaret
Martonosi, Li-Shiuan Peh, and Daniel Rubenstein.
Energy-Efficient Computing for Wildlife Tracking:
Design Tradeoffs and Early Experiences with
ZebraNet. ASPLOS-X, 2002.

[5] W. Ye, J. Heidemann and D. Estrin. An
energy-efficient mac protocol for wireless sensor
networks. INFOCOM, June 2002.

[6] Rowe A., Mangharam R., and Rajkumar R. RT-Link:
A Time-Synchronized Link Protocol for
Energy-Constrained Multi-hop Wireless Networks.
SECON, 2006.

[7] V. Rajendran, K. Obraczka and J. J.
Garcia-Luna-Aceves. Energy-efficient, collision-free
medium access control for wireless sensor networks.
Sensys, 2003.

[8] T. Dam and K. Langendoen. An adaptive
energy-efficient mac protocol for wireless sensor
networks. SenSys, November 2003.

[9] A. El-Hoiydi and J. Decotignie. Wisemac: An ultra
low power mac protocol for the downlink of
infrastructure wireless sensor networks. ISCC, 2004.

[10] L.F.W. van Hoesel and P.J.M. Havinga. A lightweight
medium access protocol for wireless sensor networks.
INSS, 2004.

[11] C. Guo and L. C. Zhong and J. Rabaey. Low power
distributed mac for ad hoc sensor radio networks.
Globecom, 2001.

[12] Culler D., Dutta P., Tien Ee C., Fonseca R., Hui J.,
Levis P., Polastre J., Shenker S., Stoica I., Tolle G.,
Zhao J. Towards a Sensor Network Architecture:
Lowering the Waistline. Proceedings of the Tenth
Workshop on Hot Topics in Operating Systems
(HotOS X), 2005.

[13] Heidemann J., Silva F., Intanagonwiwat C., Govindan
R., Estrin D., Ganesan D. Building Efficient Wireless
Sensor Networks with Low-Level Naming. SOSP, 2001.

[14] S. Madden, M. J. Franklin, J. M. Hellerstein and W.
Hong. TAG: A Tiny AGgregation Service for Ad-Hoc
Sensor Networks. Operating Systems Design and
Implementation (OSDI), 2002.

[15] Maurer, U., Rowe, A., Smailagic, A., Siewiorek, D.
eWatch: A Wearable Sensor and Notification
Platform. IEEE Workshop on Wearable and
Implantable Body Sensor Networks, 2006.

[16] Krumm, J., Williams, L., Smith G. SmartMoveX on a
Graph - An Inexpensive Active Badge Tracker.
UbiComp, 2002.

[17] Laibowitz M., Gips J., Aylward R., Pentland A.,
Paradiso J. A Sensor Network for Social Dynamics.
International Conference on Information Processing in
Sensor Networks (IPSN), 2006.

[18] Want, A., Jones, A., Hopper, A. A New Location
Technique for the Active Office. IEEE Personal
Comm., 1997.

[19] J. Zhao and R. Govindan. Understanding packet
delivery performance in dense wireless sensor
networks. Proc. ACM Sensys, 2003.

[20] Randolph D. Nelson and Leonard Kleinrock.
Maximum probability of successful transmission in a
random planar packet radio network. INFOCOM,
pages 365–370, 1983.

[21] Mills, D.L. Internet time synchronization: the
Network Time Protocol. IEEE Trans.
Communications COM, 1989.

	Introduction
	Protocol Goals
	Related Work
	Paper Organization

	SAMPL Protocol Design
	Runtime Visibility
	Sensor Network to Server Interface

	Deployment
	Sensor Andrew
	Nano-RK
	FireFly Hardware
	Debugging Infrastructure
	Our Deployment Approach

	Network Analysis and Evaluation
	Passive Analysis
	Network Fortification
	Infrastructure Support for Mobile Devices

	Conclusions and Future Work
	References

