
FireFly Mosaic: A Vision-Enabled Wireless Sensor Networking System

Anthony Rowe Dhiraj Goel Raj Rajkumar
Dept. of Electrical & Computer Engineering

Carnegie Mellon University, U.S.A.
{agr, dgoel, raj}@ece.cmu.edu

Abstract— With the advent of CMOS cameras, it is now
possible to make compact, cheap and low-power image sensors
capable of on-board image processing. These embedded vision
sensors provide a rich new sensing modality enabling new
classes of wireless sensor networking applications. In order to
build these applications, system designers need to overcome
challanges associated with limited bandwith, limited power,
group coordination and fusing of multiple camera views with
various other sensory inputs. Real-time properties must be
upheld if multiple vision sensors are to process data, com-
municate with each other and make a group decision before
the measured environmental feature changes. In this paper,
we present FireFly Mosaic, a wireless sensor network image
processing framework with operating system, networking and
image processing primitives that assist in the developmentof
distributed vision-sensing tasks. Each FireFly Mosaic wireless
camera consists of a FireFly [1] node coupled with a CMUcam3
[2] embedded vision processor. The FireFly nodes run the
Nano-RK [3] real-time operating system and communicate
using the RT-Link [4] collision-free TDMA link protocol. Us ing
FireFly Mosaic, we demonstrate an assisted living application
capable of fusing multiple cameras with overlapping views to
discover and monitor daily activities in a home. Using this
application, we show how an integrated platform with support
for time synchronization, a collision-free TDMA link layer,
an underlying RTOS and an interface to an embedded vision
sensor provides a stable framework for distributed real-time
vision processing. To the best of our knowledge, this is the
first wireless sensor networking system to integrate multiple
coordinating cameras performing local processing.

I. I NTRODUCTION

Wireless sensor networks (WSNs) provide a simple-to-
deploy and versatile platform for sensing and interacting
with physical environments. These devices can support multi-
hop communication forming mesh networks capable of
self-configuration, self-healing and automatic management.
These properties make WSNs suitable for various monitoring
and actuating application domains such as industrial control,
surveillance, asset tracking and assisted living. Currentsen-
sor networks focus on measuring low-bandwidth physical
properties such as light, sound, temperature, motion and
humidity. The inclusion of image processing sensor nodes
provides a rich new information source capable of enhancing
current applications as well as enabling new ones. More so
than with single camera systems, real-time properties must
be upheld if multiple vision sensors are to process data,
communicate with each other and make a group decision
before the measured environmental feature changes. In this
paper, we present FireFly Mosaic, a real-time distributed im-
age processing infrastructure built upon the FireFly wireless

sensor networking platform.
Distributed vision processing in a sensor network has

three main advantages over a stand-alone vision system.
Multiple cameras have greater coverage of a scene, can
address difficulties associated with view obstruction, andcan
increase decision confidence based on mutual information.
FireFly Mosaic is a framework with supporting hardware
platform that adds vision processing capabilities to the Fire-
Fly [1] sensor nodes with the addition of the CMUcam3 [2]
embedded vision processor.

The FireFly platform is designed around tight global
time synchronization which enables collision-free, energy-
efficient TDMA-based communication with bounded laten-
cies. Each node runs Nano-RK [3], a real-time resource
centric operating system, that provides hooks for globally
synchronized task processing. This framework enables cap-
turing synchronous images as well as scheduling appropriate
communications patterns while meeting system timing con-
straints. With deadline guarantees in place, it is possibleto
use the bounded time between consecutive frames to provide
video information about the velocity of objects in the scene.

This paper discusses the system design principles that
aid in the deployment of real-time vision-enabled sensor
networks. Through an example assisted living application,
we show how to apply these principles in the form of FireFly
Mosaic primitives. We describe the system hardware, soft-
ware and various operating system, networking and image
processing techniques which can be extended to develop
future vision based sensor networking applications.

We now describe an assisted living application built using
the core FireFly Mosaic designed primitives. According to
the 2000 US census [5], more than 10 million elderly over
the age of 65 live at home alone. Projections estimate that
the elderly population will more than double by the year
2050. Modern lifestyles have made it difficult to stay at home
and care for family members. Both from an economic and
a quality-of-living perspective our elders wish to remain in
their homes as long as possible. This brings the demand
for in-home monitoring systems that can provide accurate
feedback on daily activities, detect if family members are in
distress and at the same time maintain an appropriate level
of privacy. Though policy is very important with respect to
camera systems, it is outside the scope of this paper.

We illustrate an application using FireFly Mosaic to
monitor people’s daily activities in the home. The system
automatically combines information extracted from multiple

Fig. 1. Eight vision-enabled sensor nodes used to perform distributed
activity clustering in an active apartment. The node on the left side of the
image is a standalone FireFly node that can be used to forwardmessages
of connect the network to a PC.

overlapping cameras to recognize various regions in the
house where particular activities frequently occur. Examples
of such activities include washing dishes, preparing food,
eating dinner, sitting on the couch or sleeping.

Once these daily activity clusters are defined, the system
builds a model which tracks the duration and transition
frequency between various tasks. This information can be
monitored over time to detect changes in behavior, or it can
be used to give contextual clues to other in-home systems.
For example, a fall detection system could use this type of
context information to lower its probability of triggeringif
the user is sleeping or has a visitor in a nearby location.
We show a working prototype of this system running on
eight battery-operated embedded vision cameras in an active
apartment.

The organization of this paper is as follows. Section II
discusses related work. Section III presents FireFly Mosaic,
our vision-enabled sensor network platform. Section IV
evaluates various peformance aspects of this system. Section
V discusses the operation of our activity clustering algorithm
and Section VI provides concluding remarks.

II. RELATED WORK

Link and network support for real-time communications
over sensor networks has attracted much attention in recent
years. Constraints on computing power, bandwidth, memory
and energy supply in sensor networks make the problem of
delivering timeliness guarantees across multiple hops espe-
cially challenging. In [10], the authors present the capacity
bounds on how much real-time data a sensor network can
transfer by the imposed deadlines. They derive a sufficient
schedulability condition for a class of fixed-priority packet
scheduling algorithms and also provide a theoretical basis
for capacity planning. Several media access schemes have
been proposed for real-time communication over sensor
networks, with the goal of bounding the end-to-end delay. In
[9], the authors present velocity-monotonic scheduling that
accounts for both time and distance in large-scale networks.
Simulation studies show that such a scheme is effective
in minimizing the deadline-miss ratios in multi-hop sensor
networks. [8] and [11] present simulation studies on resource
reservation and routing protocols for applications with end-
to-end timeliness constraints. [4] shows how TDMA can
facilitate bounded latency in communication given an ap-
propriate schedule. We build upon this work by extending

the spanning tree aggregation-centric scheduling, through the
use of camera topology information, to support efficient local
group communication as well.

Various vision sensor nodes have been developed with
sensor networking in mind. However, these efforts have
focused on the development of image processors alone and
little is said about their integration with the sensor network.
The Stanford MeshEye [6] system was designed for use in
low-power sensor networks. The design uses two different
sets of image sensors, a low resolution pair of sensors is
used to wake the device in the presence of motion, while
the second VGA CMOS camera performs image processing.
The UCLA Cyclops [7] camera uses an 8-bit microprocessor
and an FPGA to capture and process images. The main
drawbacks to the Cyclops system are low image resolution
(128×128) due to limited RAM and slow processing of
images (1 to 2 FPS). FireFly Mosaic uses CMUcam3 [2],
an open-source programmable embedded vision processor.
CMUcam3 is accompanied by a suite of open-source image
processing libraries and sample applications that can be used
as templates for custom image-processing algorithms.

Multiple groups have addressed the problem of determin-
ing camera topologies and doing in-home activity clustering.
[13] uses stocastic sampling of plausable trajectories to
determine which cameras are correlated with each other. We
take a simpler approach by allowing a training period im-
mediately after installation to generate our camera topology
graphs (called camera network graphs). This system also uses
a reliable high speed wired network as a communication
medium, whereas we use a low speed wireless link. [14]
shows activity clustering computed from a single wide angle
camera attached to the ceiling. In our approach, both the
model and the image processing is done in a distributed
network containing multiple cameras. Both of these previous
papers focus on algorithmic development and hence use
desktop class computers that are rather expensive, power-
hungry and often too large for WSNs.

In [12], the authors present WiSNAP, a Matlab-based
platform for vision-enabled WSNs. The high-level Matlab
code can be deployed using TinyOS on MeshEye sensor
nodes. The authors mention that a major design limitation
they suffer from is insufficient real-time support with re-
spect to image processing. The combination of global time
synchronization, a collision-free link layer, and synchronized
task scheduling on each node, makes our system a stable
framework for real-time distributed vision processing.

III. SYSTEM DESIGN

The FireFly Mosaic framework relies on various system-
level principles which should be adopted as design guidelines
for multiple classes of sensor networking applications. These
key design principles include:

1) Physical Distribution of Sensors,
2) Tight Time Synchronization,
3) Integration of Multiple Sensing Perspectives,
4) High-Powered Local Processing to Reduce Data Trans-

mission,

5) Increased Decision Confidence Resulting from Group
Coordination, and

6) Efficient Communication in the Presence of Recurring
Events.

The physical distribution of sensors along with the inte-
gration of multiple sensor perspectives allows coverage of
large physical areas as well as the ability to correlate events.
In visual sensor networks, this can provide a simple means
to avoid problems associated with occlusion. Many complex
tasks like evaluating the well-being of a person in their home
require using a diverse set of sensors. Integrating deviceslike
body-worn accelerometers with cameras and audio sensors
provides a simple and reliable way of correctly classifying
events without relying on single sensing sources. In order
to maintain extensibility, a good sensor network needs to
support the communication needs of all of these devices.
Adding a light sensor to a sensor network designed around
real-time communication is conceptually simpler than adding
image streaming to a network without timing guarantees. The
key to efficiently supporting these guarantees in a wireless
multi-hop environment is time synchronization. Time syn-
chronization provides both event ordering and the ability
for nodes to efficiently coordinate communication as well
as processing. As a simple example, we show later that
object tracking in our network degenerates substantially as
synchronization drifts.

Contention based sensor networks perform better if data
are collected sporadically keeping the instantaneous load
on the network relatively low. Many sensors like smart
cameras require periodic and synchronous sampling of the
environment. This in turn generates periodic bursts of high-
load network traffic. They also require streaming large blocks
of data (e.g. images). These communication patterns require
efficiently scheduled messages. Over-provisioning bandwidth
will go only so far since cameras and other high-bandwidth
sensors will always be able to consume the additional re-
sources. Sophisticated local processing of data also helps
reduce communication requirements. Image sensors are an
example of where constantly sending images is not nearly
as efficient as local processing if possible.

Limited power and bandwidth are common problems
found in sensor networks that are made worse with the
addition of image processors. Cameras tend to consume
large amounts of energy because they often operate at high
frequencies and require the constant integrating and clearing
of charge as light enters a large array of pixels. Even more
problematic is that cameras have a much longer setup time
because of autogains and whitebalance (> 100ms) making
them harder to effectively run at low duty-cycles. Bandwidth
can be problematic if raw images are transmitted. However,
if images are processed locally, the meta-information sent
over the network can be as small as a few bytes.

From an image-processing perspective, group coordination
is a new challenge since now the cameras can communicate
with one another over a network. In dynamic environments,
if cameras are required to make group decisions, there needs
to be a common notion of time so that events in frames

can be correctly associated with one another. There also
needs to be a communication mechanism in place to allow
for efficient local message passing. Most previous image-
processing algorithms are also not designed to utilize addi-
tional sensor information collected from the environment.In
a sensor network, vision processing applications will likely
work closely with other sensors like audio, temperature and
body-worn accelerometers.

Detection of moving objects, such as people, in a scene
is typically achieved using passive infrared (PIR) motion
detectors. PIR devices can be thought of as single pixel
cameras viewing infrared light. These types of sensors are
good at detecting motion, however they are not able to
localize motion within their field of view, distinguish be-
tween multiple sources of motion and they provide little
information that can be used to intelligently filter readings.
Cameras on the other hand can very easily locate and filter
data based on various image features such as object size
or location in the scene. Cameras also provide information
like the color, shape and texture of objects which is lost
in single pixel sensors. These properties can be used for
smart filtering of moving machinery or small pets in a house.
The cost and power consumption of cameras is rapidly being
improved by the thriving cellular camera-phone market. With
increased processing possible in cameras, they will soon
become a more generic replacement for many current sensing
devices like PIR detectors. Currently, PIR sensors consume
less power than cameras by up to two orders of magnitude.
In order to get the best of both worlds, PIR sensors can be
used as a low-power wakeup mechanism for cameras.

A. FireFly Mosaic System Primitives

FireFly Mosaic provides the following system primitives
to aid in system construction of distributed wireless sensor
networks with vision-processing capabilities:

1) Efficient Camera Communication Layer:Communica-
tion of camera information involves two parts. The camera
needs to communicate locally with the sensor node, and
then the sensor nodes need to relay the data multiple hops
over the network. The network communication relies on a
TDMA-based link layer [4] with schedules and routing tables
constructed based on how the cameras are deployed. The
local communication between the camera and the sensor
node currently uses a protocol based loosely on the Serial
Line IP (SLIP) protocol. An application running on each
FireFly node facilitates message passing between cameras
acting as a transparent transport layer. This allows a camera
to query the network for other cameras, send messages
addressed to other cameras or the gateway without being
aware of the underlying sensor network. This layer of
abstraction simplifies the prototyping of distributed image
processing algorithms by largely isolating the cameras from
the underlying networking concerns.

2) Time Synchronization:Nano-RK running RT-Link pro-
vides sub-millisecond time synchronization. This is crucial
for TDMA-based network packet transmission, and can also
be used by tasks. With a camera operating at 30 frames per

second, even if the nodes are perfectly time synchronized
the frame capture could experience a worse-case jitter of
33ms. Once synchronization deviates beyond that point in a
distributed system, there will likely be a decrease in system
quality.

We use the hooks provided by Nano-RK for global task
synchronizion to synchronize camera frame capturing. As
the system executes, each FireFly node increments a global
frame counter based on its globally synchronous wall clock
time and passes this to the camera. The camera then blocks
until the next globally synchronized frame by calling the
wait until next frame() function. This function re-
turns the current global frame counter number shared among
all nodes in the system. If the time synchronization is known
to be not operational, the function returns an error code.

3) Camera Network Graph:A Camera Network Graph
(CNG) captures the relationships between camera fields of
view. FireFly Mosaic uses the CNG to optimize commu-
nication routes. Given a set of cameras, we create a CNG
G = {V, E}, whereV represents the camera nodes andE

represents the set of edges between any two nodes if the
cameras share information. Edges can be established in one
of two ways, either based strictly on overlapping camera field
of view, or based on the sequence at which nodes would be
activated as an object moves through the scene. Figure 2
illustrates the two classes of CNGs generated for the camera
topology shown in (a). Figure 2 (b) shows the resulting
non-overlapping CNG where edges are added in relation
to how cameras could be triggered by a moving object in
the scene. An object moving fromcam-1 to cam-3 would
passcam-2and hence be detected. In this case, thecam-2
followed bycam-3transaction warrents an edge. Figure 2 (c)
shows the CNG resulting when edges are added only when
camera views overlap. In this case, there is no link from
cam-2 and cam-3 because they do not share any common
image regions. Unlike the non-overlapping camera graph,
this graph may be disconnected. The non-overlapping CNGs
are useful in security applications where the system must
determine which cameras are nearby an event. For example,
a surveillance application where the system tracks people
moving from one camera zone to another. Overlapping CNGs
are important for algorithms that correlate events viewed
by multiple cameras from different perspectives like in our
assisted living application. In many systems, one would use
both graphs for different purposes.

4) Image Processing Tools:CMUcam3 comes with nu-
merous open-source example applications and libraries in-
cluding JPEG compression, frame differencing, color track-
ing, convolutions, histogramming, edge detection, connected
component analysis, and a face detector. Since the entire
system is open-source, these basic libraries can easily be
extended to support custom applications.

5) Image Transfer:One of the most basic functions of
a vision sensor is the ability to capture images. In battery-
operated networks, transmitting these images takes a heavy
toll on nodes generating or forwarding the data. A JPEG-
compressed 176x144 (QCIF) image requires 7KB of memory

cam-1

cam-3

cam-2
1

2

3

1

2

3

a) b) c)

Fig. 2. This figure shows the two classes of Camera Network Graphs
(CNG). (a) shows a scene with three cameras. (b) shows a non-overlapping
CNG. (c) shows a shared view CNG.

Fig. 3. A CMUcam3 mounted on top of a four cell AA battery back with
a FireFly wireless sensor node connected on the back.

which is more than 50 128 byte 802.15.4 packets. However,
in many situations, the option to transmit an image may be in
response to a crucial situation in which the network decides
that it is worth the energy. For example, visual confirmation
of a fire in room, or an image verifying that an elderly person
is in distress would in most cases be worth the energy.

Using the camera communication layer, we provide
a transfer jpeg frame(ss x,ss y, x0, y0,
x1, y1, quality) function. This function allows the
user to configure the amount of sub-sampling in theX

and Y direction, the image window clip as well as the
jpeg quality level. In section IV-B, we discuss balancing
I/O overhead as well as CPU consumption to tune these
parameters for transfer of the best perceived image quality
in the least amount of time.

B. Hardware Components

The FireFly Mosaic hardware is composed of three main
components; the CMUcam3 vision processing board, the
FireFly sensor networking node and the FireFly gateway to
PC interface board. Figure 3 shows the front and back of a
battery-operated FireFly Mosaic node. The largest centrally
located board is CMUcam3, the smaller board with the
antenna is the FireFly node and the battery pack is located
at the bottom.

The bottom section of Figure 4 shows the hardware archi-
tecture of CMUcam3. It consists of three main components:
a CMOS camera chip, a frame buffer, and a microcontroller.
The CMOS sensor is an OmniVision OV6620 camera ca-
pable of producing fifty 352x288 color images per second.
These images are buffered using an Averlogic AL440b FIFO
chip that effectively decouples pixel-level timing details from
the micro-controller. Once a frame capture is enabled by the
main processor, on-board logic manages loading the image

Fig. 4. FireFly Mosaic Vision-Enabled Node Hardware

into the FIFO. Processing of images is done using a low-
cost 32-bit LPC2106 ARM7TDMI micro-controller running
at 60MHz with 64KB of on-chip RAM and 128KB of on-
chip FLASH memory. CMUcam3 has a serial boot-loader
allowing executables to be flashed onto the board using
the serial port without external downloading hardware. The
interface between the FireFly node and CMUcam3 includes
an in-circuit programming interface, making wireless updates
of the camera software over the sensor network possible.
CMUcam3 also has four built-in servo controller outputs
which can be used to actuate a pan-tilt head.

The FireFly sensor nodes have a low-power Atmel At-
mega1281 8-bit processor coupled with a Chipcon CC2420
802.15.4 radio. The main processor has 8KB of RAM
and 128KB of FLASH memory. The radio is capable of
transmitting at 250Kbps for up to 100 meters. The FireFly
sensor nodes have a mini-SD slot which can be used for
data storage as well as a hardware expansion. Any device
designed to use this expansion slot can then also be tested
on a PC given appropriate SDIO drivers. Unique to the
FireFly sensor networking platform is the ability to add
external time synchronization hardware. As described in
[4], this support is provided by an out-of-band AM carrier
current radio transmitter and on-board AM radio receiver.
This time synchronization hardware provides as good as
20µS global time synchronization without the use of any in-
band message passing. The FireFly boards can be interfaced
with a sensor card that senses multiple variables including

FireFly
Node

Activity
Reporting

Sensing

CMUcam3

Network
Mgmt.

CMOS
Camera

ARM7

MCU

CC3
Image
Libs

Activity
Clustering

ATmega1281 8-bit MCU 802.15.4

FIFO

Nano-RK RTOS

RT-Link Layer

Fig. 5. FireFly Mosaic Vision-Enabled Sensor Node block diagram.
Hardware components are shown in rectangles while softwarecomponents
are shown in ovals.

light, temperature, acceleration and audio.
The primary communication channel between CMUcam3

and the FireFly node is over TTL serial, with various extra
GPIO pins that can be used for signalling. Using a 4 AA
battery split voltage supply, the FireFly node can operate on
an unregulated 3 volts, while CMUcam3 can use its onboard
regulator to step the 6 volt output down to 5 volts. When
AC wall power is available, CMUcam3 can use its internal
regulator to power the FireFly board.

C. Wireless Sensor Network Setup

We now briefly describe the wireless sensor network
and software infrastructure running on the FireFly Mosaic
system.

As shown in Figure 5, each FireFly node uses the Nano-
RK operating system [3], and runs the RT-link communi-
cation protocol [4]. Nano-RK is a real-time multi-tasking
priority-driven reservation-based power-aware OS specifi-
cally designed for sensor nodes. RT-Link is a globally
time-synchronized link layer protocol that communicates
using scheduled TDMA slots. Mobile nodes communicate
in a slotted aloha contention period or can be temporarily
leased scheduled slots. Nano-RK with RT-link supports a
nrk wait until tdma slot() syscall which suspends
a task until a particular TDMA time slot. Since the link
layer is globally time-synchronized, it offers a simple and
powerful means for running distributed tasks and taking
(near-)simultaneous image snapshots across multiple nodes.

D. Communication Scheduling

Given a network of cameras, our goal is to schedule
communication such that each adjacent camera in the camera
network graph (CNG) can communicate with all adjacent
cameras before reporting data back to the gateway. This
communication pattern allows all cameras with overlapping
views to share them with one another before returning a
final result. This can be achieved using a statically computed
TDMA communication schedule. Reducing the number of
slots in the schedule increases transmission concurrency and
allows for a higher number of frames to be processed.

Table

Couch

Bed

TV

S
in

k

cam-1 cam-2

cam-3

cam-4

cam-5

cam-6cam-7

cam-8

Table

Table

Fridge

Fig. 6. Testbed Topology with eight cameras mounted in an apartment.
The dotted lines denote communication links.

13

28

5

4

7

6

1 2

3

4

5

6

7

8

a) b)

Fig. 7. Network Connectivity graph (a) and CNG (b) for the apartment
deployment. Node 2 is bold indicating that it is the gateway.

Figure 6 shows the position and radio connectivity of eight
cameras deployed in an apartment. Figure 8 (a) shows the
wireless network topology where each node in the graph is
connected to nodes that are within communication range.
Figure 8 (b) shows the overlapping field of view CNG.
Adjacent links connecting nodes indicate that the cameras
share at least a portion of their field of view with each
other. Previous methods for allocating TDMA slots given
a network topology formed a spanning tree over the network
graph, which is colored such that nodes within two-hops
of each other have unique values. The spanning tree en-
sures total network connectivity while the two-hop coloring
guarantees collision-free communication in the presence of
hidden terminals. With vision nodes, we have the additional
requirement of facilitating camera group communication.
In order to accommodate camera flows, we specially mark
links from the camera network graph found in the network
topology graph. These will be used first when building a
spanning tree to connect the network. Figure 2 (a) shows

1 2

3

4

5

6

7

8

2

81 3

5

4

7

6

a) b)

Fig. 8. This figure shows how the Camera Network Graph is used to
construct the primary links in the scheduled communicationgraph.

Node TX RX
Node 1 1 | 17 0,2 | 16
Node 2 0 1,2 | 15,16,17
Node 3 2 | 16 0,6 | 14,15
Node 4 9 1,7
Node 5 7 | 11 4,6,9
Node 6 10 5
Node 7 5 | 13 3,4,8,10| 12
Node 8 3,4,6,8| 12,14,15 0,2,5,7| 11,13

TABLE I

THIS TABLE SHOWS THE TRANSMIT AND RECEIVE SCHEDULE FOR EACH

NODE IN THE APARTMENT DEPLOYMENT. THE SCHEDULE USES18 OF

THE 32 TOTAL TDMA SLOTS PER CYCLE.

the network connectivity graph with bold links that denote
required camera communication. The next step requires
adding additional links to ensure full network connectivity
as well as including any CNG links that did not exist in
the communication graph. Figure 2 (b) shows the network
rooted at the gateway (Node 2) which is now ready to be
scheduled. The dotted links between nodes 3,7 and 5 show
instances where the cameras shared an overlapping view, but
the radios cannot communicate directly. The schedule must
accommodate message forwarding between these nodes.

Once a tree with all required connections has been es-
tablished, we perform a two-phase scheduling heuristic.
First, a breadth-first search schedules nodes starting from
the root of the tree downwards. Any nodes that require
message forwarding to share adjacent camera information
are scheduled immediately after their adjacent partner in the
camera graph is scheduled. For example, after Node 3 is
scheduled to transmit, Node 8 is scheduled to receive and
then forward the data to Node 7 on the next time slot. Once
all nodes have been scheduled in this manner, the second
phase of scheduling begins assigning slots in the reverse
order to facilitate upstream communication. By the time the
leaf nodes have been reached on the first pass of scheduling,
all cameras should have heard from their neighbors. The
second pass of scheduling data allows each node, if they
require, to send data back to the gateway. Table I shows the
complete schedule used in our apartment experiments. The
vertical lines show the separation between the upstream and
the downstream scheduling phases.

IV. SYSTEM PERFORMANCE

In this section, we evaluate the performance of FireFly
Mosaic with respect to timing jitter, the trade-offs associated
with CPU and network bandwidth when transferring images,
and the energy of various system components.

A. Timing Jitter

Nano-RK running RT-Link maintains a network-wide
time-synchronization of less than 100µS. CMUcam3 has a
continuously running asynchronous clock which generates
image data. Since the camera captures frames at a maximum
of 30Hz, this means that in the worst case, the timestamps
between two images differ by as much as 33ms.

To demonstrate the effects of jitter in our system, we
conducted a simple multi-camera tracking experiment. We
mounted four cameras on each wall of a 10 meter x 10
meter room that were setup to track the location of a bright

0 50 100 150
0

50

100

X (pixels)

Y
 (

p
ix

el
s)

(a)

0 50 100 150
0

50

100

X (pixels)

Y
 (

p
ix

el
s)

(b)

0
50

100
150

0

100

0

50

100

X (pixels)Y (pixels)

Z
 (

p
ix

el
s)

(c)

0 5000 10000 15000
0

2000

4000

6000

8000

10000

Jitter (ms)

E
rr

o
r

(T
o

ta
l P

ix
. D

is
t.

)

(d)
Fig. 9. This figure illustrates how jitter in camera samplingcould affect tracking accuracy. (a) and (b) show the result of tracking a bright object in a
room from two cameras placed orthogonal to one another. (c) shows how these two images can be combined to determine the 3-dimensional location of
the object. (d) shows how the tracking error increases with added timing jitter between when the cameras sample data and communicate.

Fig. 10. Detail of a section of an image at different JPEG quality levels.

light. Each camera was placed 1 meter off the ground and
facing directly towards the center of the room. The light was
mounted on a wheeled cart that could be pushed along tape
marks on the floor. The cameras used the FireFly Mosaic
API call to load time-synchronized frames into their buffers
followed by CMUcam3’strack-color API call. Each
camera returned theX andY location of the light back to
a gateway. Figure 9(a) and Figure 9(b) show the view from
two orthogonal cameras. Figure 9(c) shows that using theX

and Y axis of the two orthogonal cameras it is possible to
plot the 3-dimensional location of the object being tracked. In
this plot, the triangle path that the light followed can be seen.
Such information cannot be determined from a single camera
alone. After collecting the data, we compared the tracking
performance of the system while adding random jitter to the
time when points were sampled. Figure 9(d) shows how the
total error increases as the timing jitter increases. The error
eventually levels off as the timing is so skewed that the object
could be in any location bounded by its path.

B. CPU and Network Bandwidth

The various processing stages involved in communication
and processing must be well-understood in order to achieve
the peak performance from the system. For example, in some
cases, it might be advantageous to offload processing to a
gateway machine if it takes longer or consumes more energy
than transferring the raw data. To illustrate this point, we
show the design space trade-offs associated with sending
JPEG-compressed images over multiple hops to a gateway.

JPEG compression is a common technique for reducing
the size of an image for transmission over a network. JPEG
provides control over image size using a quality parameter
given a particular resolution. Unfortunately, the popular
version available does not have a mechanism to change the
resolution and quality to match a particular network bit-rate.
These features are now emerging in compression schemes

like JPEG 2000. However, as shown in [16], these algorithms
are typically too CPU-intensive for the class of devices used
in wireless sensor networks. Figure 12 shows the size of
a CIF resolution image with respect to the JPEG quality
parameter as compressed by CMUcam3. Figure 10 shows
a detail of the resulting images as the quality changes. We
see that image quality is maintained below quality level 85
with a significantly smaller image size. Figure 13(a) shows
the image transfer times given different quality levels and
image resolutions required by an ideal MAC protocol using
an 802.15.4 radio over multiple hops. This transfer time
is calculated by using the size of the compressed image
and the maximum 802.15.4 data rate divided by three to
remove hidden terminals. Real protocols will have additional
overheads as well as packet loss making these values the
minimum transfer time.

Figure 13(b) shows the processing time taken by a node
when capturing and compressing images at different quality
levels and resolutions. We see that JPEG’s processing time
varies little with the quality level, but greatly with the resolu-
tion of the image. This is partially due to the increased CPU
time, but largely an effect of the increased I/O transfer time
between the camera and the main CPU. At lower resolutions,
the camera skips reading pixels from the image buffer greatly
decreasing the overall I/O bottleneck. Figure 13(c) shows the
combination of the network transfer time with the CPU and
I/O time. Since the I/O and CPU bottleneck can be on the
same order as the network transfer time, it is important to
understand how the perceived quality of an image changes as
it is down-sampled to lower resolutions. Figure 11 shows two
images of equal memory size. Image (a) shows a 352x288
(CIF) JPEG compressed at quality 25, while image (b) shows
a 140x115 resolution image at quality 85 that has been scaled
to equal the size of the first image. We see that images of the
same size tend to be of nearly the same perceived quality.
Due to the computation and I/O overhead of reading and
compressing a larger image, the image on the left would
take 2.5 times longer to transmit over the network. This
notion of equal perceived image quality based on image size
is captured by the dotted lines in Figure 13(c).

Based on Figure 13(c), if the objective is to achieve a
particular frame rate, one should pick the lowest solid curve
at the desired time interval. For example, to stream frames at
2 fps, one should pick the 0.3 resolution operating point on
the quality 85 line. If instead, the objective is to transferan
image with the same perceived quality as a full resolution
image at a particular JPEG quality level, then one should
pick the farthest left point along the dotted line starting from

Fig. 11. Two equally sized images with similar perceived quality. The
image on the left is a 352x288 JPEG compressed at quality 25. The image
on the right is a 140x115 at quality 85. Due to the computationand I/O
overhead of reading a larger image into memory, the image on the left would
take 2.5 times longer to transmit over the network.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Image Size (KB)

JP
E

G
 Q

u
al

it
y

Fig. 12. This figure shows the image size with respect to JPEG quality.

your desired quality level. For instance, to transmit a full-
sized quality 50 image, it is better to down-sample to .6 the
original size and compress at quality 85. This reduces the
computing bottleneck while maintaining image information,
thereby decreasing the image transfer time from 1.9 seconds
to 1.25 seconds. With different camera architectures, the
particular values associated with these curves will change,
but the notion of balancing CPU, I/O transfer times and
networking throughput will always apply.

C. Energy

Table II shows the energy consumption of various com-
ponents in the system during different power states. During
our assisted living experiments, the nodes were operating
at approximately a 20% duty cycle. At this load, FireFly
Mosaic will run for just over five days from AA batteries.
There are many simple optimizations that can be made to
improve system lifetime. For example, at night or during
periods of inactivity, the system could lower the rate of frame
processing. One could use the CNG along with a predictive

Active(mW) Idle(mW) Sleep(mW)
CPU core 108 10 .25

CPU peripherals 49.5 2 .01
Frame Buffer 171 52 n/a

Camera 125 5 n/a
MMC 13.2 1 n/a

Atmega1281 6.6 .02 .02
CC2420 66.0 15 .01

Total 572.3 132.52 .29

TABLE II

THIS TABLE SHOWS A BREAKDOWN OF THE POWER CONSUMPTION OF

VARIOUS COMPONENTS WHILE THE SYSTEM IS IN DIFFERENT STATES OF

OPERATION. WHEN THE CAMERA IS DISABLED BY THE FIREFLY NODE,

THE ONLY POWER CONSUMED IS LEAKAGE CURRENT FROM THE MAIN

VOLTAGE REGULATOR.

wakeup scheme that only activates nearby nodes when it sees
motion about to enter the field of view. In most practical
deployments, the effort should focus on optimizing the
network power consumption since in long-term surveillence
applications, cameras still require too much power and would
need wall-outlet sources. This may not necessarily be the
case for network forwarding nodes.

V. HOME ACTIVITY CLUSTERING

In this section, we briefly describe the home activity
clustering application deployed using FireFly Mosaic. The
system automatically combines information extracted from
multiple potentially overlapping cameras to recognize vari-
ous regions in the house where particular activities frequently
occur. The final output of the system is a Markov model
that shows regions of activity with transition probabilities
based on the collected data. In a full system, these activity
states could easily be fused with other sensors to more accu-
rately determine the context of occupants in a living space.
Once the context of the user is accurately determined, an
elderly monitoring system could notify authorities or family
members if they are in distress. The system could also log
how their activities are changing over time in order to detect
declines in activity or other more subtle problems. Beyond
simply activity clustering, embedded vision-processing could
begin to recognize more detailed events in the environment
such as a person falling or a pot being left on a lit stove for
several hours.

We now describe an experiment where we deployed eight
cameras in an active apartment. During these tests, the vision
nodes exchanged messages over multiple hops wirelessly.
Figure 14 shows a timeline of different processing and
communication transactions that occur between the sensor
node and the camera. Each TDMA communication cycle
completes every 192ms. During each cycle, all cameras
capture and processing a single frame which is then used
by the sensor network in the next TDMA cycle. Pipelining
the processing in this way yields an overall frame rate
of 5.2 frames per second. Each camera initiates a frame
capture at the start of the TDMA cycle. Figure 14 shows
the timeline with various stages required to capture and
process the image. Block (a) shows the jitter time between
the start of the cycle and the start of the next frame. As
previously mentioned, at 30FPS this can be as long as
33ms. Block (b) shows a fixed 20ms required for the image
to load into the FIFO before it can be processed. Block
(c) shows approximately 80ms of image processing time
required by our application. We see that the camera requires
in the worst case 133ms out of the 192ms available in a
TDMA cycle. The longest latency between when a frame is
captured and when data is returned over multiple hops to
the gateway corresponds to the 102ms critical path in the
TDMA schedule.

We now describe the various image processing stages of
the algorithm used to build the final activity model. Many
of the image processing details are beyond the scope of this
paper and can be found in [15].

0 500 1000 1500 2000 2500 3000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Image Transfer Time (ms)

F
ra

ct
io

n
 o

f
C

IF
 Im

ag
e

(%
)

Q5 Q25 Q50 Q75 Q85

(a)

0 500 1000 1500 2000 2500 3000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Processing Time (ms)

F
ra

ct
io

n
 o

f
C

IF
 Im

ag
e

(%
)

Q5
Q25
Q50
Q75
Q85

(b)

0 500 1000 1500 2000 2500 3000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Image Transfer Time (ms)

F
ra

ct
io

n
 o

f
C

IF
 Im

ag
e

(%
)

Q5 Q25 Q50 Q75 Q85

(c)

Fig. 13. This figure shows how the CPU, I/O and network affectsthe transmission of JPEG-compressed images. (a) shows the minimum possible time
to transfer an image at different resolutions and qualitiesgiven an ideal MAC protocol running on 802.15.4 hardware. (b) shows the processing and I/O
waiting time required to load and compress a JPEG image at different resolutions and qualities. (c) shows the end to end image transfer time including
the compression and network transmission of an image. The dotted lines indicated where the perceivable image quality isidentical.

Sensor

Node

Image

Processor b ca b ca

image n

image data n-1 image data n

image n+1

Fig. 14. This figure shows a timeline of the transactions thatoccur between
the sensor node and the image processor. The time-slices on the sensor node
timeline represent TDMA slots. The dark vertical lines showthe seperation
between TDMA cycles. Darker time-slots denote when that particular node
communicates data.Block (a) on the image processor timeline shows the
jitter associated with grabbing a frame. Block (b) shows thetime take to
capture a frame before processing can begin. Block (c) showsthe image
processing time followed by a communication of the result back to the
sensor node.

The activity clustering algorithm consists of five main
steps:

1) Generate CNG and Correlate Image Regions
2) Gaussian Mixture Model Activity Detection
3) Local Activity Clustering
4) Global Activity Cluster Merging
5) Generate Model

The first step in the process takes place during an initial
setup phase. After the cameras have been placed in the
house, a single person wearing a brightly colored outfit
walks around the environment. Using time-synchronized
frame differencing, simple correlation can be used between
cameras to build the CNG as well as determine overlapping
regions of the cameras. Each camera builds two four-by-four
matrices capturing the image overlap between any moving
regions during the training phase. Images from eight different
cameras deployed as shown in Figure 6 can be seen in the
first row of Figure 15. The resulting network, CNG and
communication schedule are shown in Figure 8 and Table I.

After the training phase, the system switches into an
observation mode where it begins to monitor the location
of occupants over time. To separate the foreground from
the background, we use a Gaussian Mixture Model (GMM)
approach. Unlike a passive infrared motion detector, the
GMM has the advantage of using memory to detect the
presence of an object even if the object remains still. For
example, if a person sits on a couch or lays in a bed, they
may not move, but they should still be detected. Only after a
person remains completely motionless for a very long period
of time will they merge into the background. Practically

speaking we very rarely saw this happening, even while
occupants were sleeping. The second row of Figure 15 shows
the output of the GMM averaged over the duration of the
experiment. Lighter regions in the image represent more
activity. At this point in the system’s operation, multiple
people can be in the environment. This causes problems
with activity transition probabilities, but does not affect the
performance of the clustering or the generation of activity
histograms. Any higher-level processing should be able to
accommodate multiple active states due to more than one
person in the environment. As future work, it may be possible
to track multiple occupants using both motion and feature
matching such as color or texture of moving objects.

The next step in the algorithm is to cluster activity regions
and merge regions viewed by multiple cameras. In order to
cluster the activity groups, we first down-sample the GMM
to a 16x12 pixel matrix and then remove any unconnected
components that are smaller than two blocks. Row three of
Figure 15 shows the clustered output. Any connected blob
remaining in the image is considered an activity region for
that single camera. Finally, we merge activity clusters on
different cameras that are located in the same region in space.
This can be done using the CNG and overlapping regions
of the camera derived during the training period. The final
row in Figure 15 shows a single instance of the overlapping
regions matrix where each blob is uniquely identified. The
numbers in each cell represent the global number of each
activity cluster. Notice that the 17 blobs detected in all
cameras are reduced to seven activities.

Figure 16 shows the seven main activity states detected
during the apartment experiment. The transitions on the
model represent probabilities that were greater than 60%
when looking at the activity sequence. Each activity was
labeled offline by a person using images captured by the
system while a particular activity was occurring. As can be
seen by activities likea3, an oscillating bag hanging on the
door, some moving objects in the scene confused the system.
These can be removed when the states are labeled. For the
most part, the system detected only core occupant activities
that with additional sensor information could be even more
finely categorized.

Fig. 15. This figure shows various steps of the activity clustering algorithm. The first row shows the view from the eight cameras mounted in the
apartment. The second row shows the average result of the Gaussian Mixture Model. Lighter regions indicate more presence of foreground objects. The
third row shows the clustered and thresholded activity regions. The final row shows the global set of activities that havebeen merged together based on
the CNG and overlapping camera view matrices extracted during the camera setup phase.

a1

a2

a3 a4

a5

a6

Sleeping in Beda6

Checking Gateway CPUa7

Bag Moving on Doora5

Working at Sinka4

Televisiona3

Working at Tablea2

Sitting on Coucha1

Labeled ActionState

a) b)

a7

Fig. 16. Activity State Model extracted from observing 24 hours in an
apartment.

VI. CONCLUSIONS

With new CMOS camera sensors emerging, many useful
computer vision techniques can now execute on smaller, low-
cost embedded packages. In the WSN domain, this enables
a rich new sensing modality that can benefit a wide range
of applications from security and process monitoring to
smart spaces and assisted living. This paper presents FireFly
Mosaic, a framework for integrating vision processing into
WSNs. To the best of our knowledge, this is the first fully in-
tegrated wireless sensor network with mulitiple coordinating
camera nodes performing local processing.

FireFly Mosaic builds upon the FireFly real-time sensor
networking platform by integrating a sensor node with a pro-
grammable embedded image processer. We address various
design principles that are applied to an assisted living appli-
cation where occupant activities are automatically discovered
and clustered using multiple cameras with overlapping views.
This system was successfully deployed in an active apartment
where eight vision-enabled nodes communicated in a mesh
network identifying various activities such as washing the
dishes or sitting on the couch. In the future, we also plan to
extend this work to support detection of particular types of
activities. This could be used in the home to detect events
such as an elderly person falling or in surveillance systems
to isolate suspicious events.

REFERENCES

[1] R. Mangharam, A. Rowe, R. Rajkumar, ”FireFly: A Cross-Layer
Platform for Wireless Sensor Networks”,Real Time Systems Journal,
Special Issue on Real-Time Wireless Sensor Networks, Nov. 2006.

[2] A. Rowe, A. Goode, D. Goel, I. Nourbakhsh, ”CMUcam3: An Open
Programmable Embedded Vision Sensor”,International Conferences
on Intelligent Robots and Systems, Oct. 2007.

[3] A. Eswaran, A. Rowe, R, Rajkumar, ”Nano-RK: an Energy-aware
Resource-centric RTOS for Sensor Networks”,IEEE Real-Time Sys-
tems Symposium, Dec. 2005.

[4] A. Rowe, R. Mangharam, R. Rajkumar, ”RT-Link: A Time-
Synchronized Link Protocol for Energy-Constrained Multi-hop Wire-
less Networks”,Third IEEE International Conference on Sensors,
Mesh and Ad Hoc Communications and Networks (IEEE SECON),
Sep. 2006.

[5] “US Census Bureau”,http://www.census.gov, Viewed on
March 25, 2007.

[6] S. Hengstler and H. Aghajan, “A Smart Camera Mote Architecture
for Distributed Intelligent Surveillance”,ACM SenSys Workshop on
Distributed Smart Cameras, Oct. 2006.

[7] M. Rahimi, R. Baer, O. Iroezi, J. Garcia, J. Warrior, D. Estrin, M.
Srivastava, “Cyclops: In Situ Image Sensing and Interpretation in
Wireless Sensor Networks”,ACM SenSys, Nov. 2005.

[8] T. He and J. A. Stankovic and C. Lu, T. F. Abdelzaher, ”SPEED: A
Stateless Protocol for Real-Time Communication in Sensor Networks”,
ICDCS, 2003.

[9] C. Lu and B. M. Blum and T. F. Abdelzaher and J. A. Stankovicand T.
He, ”RAP: A Real-Time Communication Architecture for Large-Scale
Wireless Sensor Networks”,RTAS,2002.

[10] T. F. Abdelzaher and S. Prabh and R. Kiran, ”On Real-TimeCapacity
Limits of Multihop Wireless Sensor Networks”,RTSS,2004.

[11] T. Facchinetti and L. Almeida and G. C. Buttazzo and C. Marchini,
”Real-Time Resource Reservation Protocol for Wireless Mobile Ad
Hoc Networks”,RTSS, 2004

[12] S. Hengstler, H. Aghajan, ”Application Development inVision-
Enabled Wireless Sensor Networks”,International Conference on
Systems and Networks Communications, 2006.

[13] D. Marinakis, G. Dudek, ”Topology Inference for a Vision-Based
Sensor Network”,Canadian Conference on Computer Vision and
Robotics, 2005.

[14] T. Teixeria, D. Lymberopoulos, E. Culurciello, Y. Aloimonos, A.
Savvides, ”A Lightweight Camera Sensor Network Operating on
Symbolic Information”,ACM SenSys Workshop on Distributed Smart
Cameras, 2006.

[15] D. Goel, A. Rowe, R. Rajkumar ”Sensor Network Activity Cluster
using Embedded Vision Processors”,Carnegie Mellon ECE Technical
Report, 2007.

[16] G. Pekhteryev, Z. Sahinoglu, P. Orlik, G. Bhatti ”ImageTransmis-
sion over IEEE 802.15.4 and ZigBee Networks”,Mitsubishi Electric
Research Labs Technical Report, Nov. 2004.

http://www.census.gov

	Introduction
	Related Work
	System Design
	FireFly Mosaic System Primitives
	Efficient Camera Communication Layer
	Time Synchronization
	Camera Network Graph
	Image Processing Tools
	Image Transfer

	Hardware Components
	Wireless Sensor Network Setup
	Communication Scheduling

	System Performance
	Timing Jitter
	CPU and Network Bandwidth
	Energy

	Home Activity Clustering
	Conclusions
	References

