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The modified-offered-load approximation can be used to choose a staffing function
(the time-varying number of servers) to stabilize delay probabilities at target levels in
multi-server delay models with time-varying arrival rates, with or without customer aban-
donment. In contrast, as we confirm with simulations, it is not possible to stabilize blocking
probabilities to the same extent in corresponding loss models, without extra waiting space,
because these probabilities necessarily change dramatically after each staffing change.
Nevertheless, blocking probabilities can be stabilized provided that we either randomize
the times of staffing changes or average the blocking probabilities over a suitably small
time interval. We develop systematic procedures and study how to choose the averaging
parameters.

1. INTRODUCTION

Since service systems typically have arrival rates that vary strongly over the day, there is
considerable interest in developing effective time-varying staffing strategies (dynamically
controlling the number of servers) to stabilize performance at target levels in face of time-
varying demand. For shorter service times common in many telephone call centers, it is
possible to set staffing levels to stabilize performance at target levels using stationary models
in a non-stationary way, for example, via variants of the pointwise stationary approximation
(PSA), as reviewed in [5]. However, for longer service times, the PSA is not effective. Nev-
ertheless, as shown in [4,9,11,15–17,27], it is possible to apply modified-offered-load (MOL)
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approaches to stabilize delay probabilities and abandonment probabilities at target levels in
multi-server delay models with time-varying rates, with or without customer abandonment.
Other methods have been proposed in [2,4,22,23].

Thus it is natural to ask if the same conclusions can be made for multi-server loss
models, without any extra waiting space. Of course, in many loss systems, such as commu-
nication systems, there is limited capability for dynamically changing the service capacity
(e.g., number of circuits) in real time or even near real time. When staffing should be
regarded as fixed, it is natural to consider controlling the demand instead, for example, by
dynamic pricing, as has been considered in [7,8] and references therein. The dynamic pricing
approaches can exploit the literature on the time-varying performance of the non-stationary
loss model with fixed staffing [6,10,18,21].

However, staffing often can be considered flexible in loss systems. For example, an
ambulance base serving several hospitals may have a fixed number of ambulances, but the
number of ambulances may be changed by scheduling transfers from one ambulance base to
another at certain specified times. Moreover, these ambulances can only be sent out if the
supporting medical personnel are available. Thus, there is a dynamic staffing question for
the medical personnel in this setting, which translates to the ambulances. Similarly, a hotel
has a fixed number of rooms, but the number of rooms that are available for customers at
any given time is likely to be variable, because some are being renovated or cleaned, which
requires various service personnel. Thus, there is a dynamic staffing question for the service
personnel in this setting, which translates to the available hotel rooms.

Given that we do consider dynamic staffing, we need to carefully specify what happens
when the service capacity is scheduled to decrease when all servers are busy, as discussed
in the introduction of [14]. Do we require that customers in service stay in service with
the same server until their service is complete? Our analysis here applies to the case in
which we allow the service in progress to be handed off to another available server. Even
with such server-assignment switching, there are issues: Do we alter the prescribed staffing
function to avoid forcing a customer out of service? Here in our simulations we release the
first server that becomes free after the time of scheduled staffing decrease, and perform
service switching at that instant.

2. A FIRST LOOK

It may be surprising, but it is not possible to stabilize blocking probabilities in loss models
with time-varying arrival rates as well as the delay probabilities have been stabilized in
corresponding delay models. To quickly illustrate the difficulty, we show a simple example
in Figure 1.

The model in Figure 1 is the stationary Erlang (M/M/s/0) loss model with arrival rate
λ = 100, individual mean service time μ−1 = 1 and thus offered load α ≡ λ/μ = 100. With a
blocking probability target of B ≡ B(s, α) = 0.1, the target staffing level is s = 96. Figure 1
shows the consequence of switching the staffing level between 95 and 96 three times over the
time interval [0, 40]. At the left in Figure 1, we see the usual startup effect associated with
starting the system empty. It is evident that the steady state is achieved here in about three
mean service times. However, there are dramatic changes in the blocking probabilities at
the time of each staffing change, decreasing sharply at each staffing increase, and increasing
sharply at each staffing decrease.

In retrospect, it is evident that the blocking probability function should behave this
way. It is evident that the blocking probability necessarily drops to 0 immediately after each
staffing increase. (It can be proved that the right limit of the blocking probability function
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Figure 1. (Colour online) Simulation estimates of the time-varying blocking probabilities
(left axis) with time-varying staffing (right axis) in an Erlang loss model with arrival rate
λ = 100 and service rate μ = 1, starting empty, in response to six staffing changes.

has to be 0.) The first arrival after that time of increase necessarily will not be blocked
because there is new capacity that will be available. Nevertheless, from a practical point
of view, we see that it makes sense to seek staffing functions that appropriately stabilize
blocking probabilities in face of time-varying arrival rates when the flexibility exists.

3. TWO RESOLUTIONS TO THE PROBLEM

In this paper, we propose two resolutions to the difficulty above. First, we show that the
blocking probability can indeed be stabilized if we appropriately randomize the times of
these staffing changes, and measure the blocking probability at each time by its average
value (thus estimating the expected value with respect to the randomization, as opposed to
conditional on any given realization).

Second, we show that the blocking probabilities associated with deterministic staffing
rules can be stabilized if we look at appropriate average blocking probabilities, averaging in a
short interval about each staffing change. The initial randomized timing might be preferred
to prevent customers from discovering the staffing policy and trying to take advantage of
it. For example, customers might deliberately schedule their arrivals immediately after a
known staffing increase. If there were multiple customers competing for access, then a fixed
change schedule could induce even more complicated behavior (which we do not study
here).

In the first randomization approach, we randomize according to a mean-0 Gaussian
random variable, centering at the time of the scheduled deterministic staff change. With
that simple Gaussian approach, we are left with only one parameter: the standard deviation
σ. With the second averaging approach, we average the blocking probabilities over a fixed
interval of width Δ, again centered at the time of the scheduled staff change. We conclude
that both methods can be effective, provided that Δ and σ are chosen properly.

3.1. Randomized Staffing Change Times

To describe our proposed randomization algorithm in detail, suppose that we have a non-
stationary loss model over a time interval [0, τ ] and an integer-valued staffing function s(t)
chosen to stabilize the blocking probability; we indicate how s(t) can be chosen in Section
4. Naturally, s(t) should be piecewise-constant and right-continuous, implying that there
exists a sequence of staffing values {si, i ≥ 1} and a strictly increasing sequence of staffing
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change times {ti : 0 ≤ i ≤ n, t0 = 0, tn = τ} such that

s(t) = si, ti−1 ≤ t < ti, 1 ≤ i ≤ n. (3.1)

We randomize by adding a small random time shift to each of the scheduled staffing
change times. More specifically, let {εi, i ≥ 1} be a sequence of independent and identically
distributed (i.i.d.) Gaussian random variables with mean 0 and variance σ2. In the first
step, the sequence of scheduled staffing changes {ti} is replaced with a random sequence
{t̃i}, where

t̃0 = 0 and t̃i = ti + εi, for all i ≥ 1. (3.2)

We are not done because the sequence of randomized staffing change times {t̃i} con-
structed in (3.2) may fail to be non-decreasing or be contained in the time interval [0, τ ]. In
the second step, we remedy that deficiency. We do so by truncating t̃i, that is, by replacing
t̃i by (t̃i ∨ t̃i−1) ∧ ti+1 for each i successively, 1 ≤ i ≤ n − 1, where a ∨ b ≡ max {a, b} and
a ∧ b ≡ min {a, b}. As a consequence, we have

t̃i−1 ≤ t̃i ≤ ti+1 for all 1 ≤ i ≤ n − 1, (3.3)

so that the sequence {t̃i} is non-decreasing. (The parameter σ should be chosen small enough
so that truncation rarely occurs.) We can then make the sequence {t̃i} strictly increasing
by including only the last from each group of tied elements.

This procedure produces a random staffing function

s̃(t) = si, t̃i−1 ≤ t < t̃i, 1 ≤ i ≤ n. (3.4)

We estimate the blocking probability by performing many independent replications. Assum-
ing that the randomization is successful, we can use previously developed performance
approximations to analytically determine the performance, ignoring these complications.

3.2. Average Blocking Over Time Intervals

In the second averaging approach, we consider the blocking probability in intervals of fixed
length, rather than the instantaneous blocking probability at a given moment. Given an
interval length Δ ≥ 0, let BΔ(t) be the time-average blocking probability in the interval
of length Δ centered at t, that is, the probability that an arrival in the time interval [t −
Δ/2, t + Δ/2] is blocked. Let B0(t) be the instantaneous blocking probability, which we saw
in the previous section can exhibit wild jumps when staffing changes occur. Fortunately, for
appropriate interval lengths Δ, we expect the averaging to smooth out these discontinuities.

As motivation for this approach, note that it coincides with the way blocking prob-
abilities are measured from system or simulation data. Since the instantaneous blocking
probability at any time generally cannot be measured directly, it is estimated by the pro-
portion of the arrivals that occur in a small interval around that time that are blocked.
This procedure is exactly the same as what we are proposing. In the model, BΔ(t) is the
time-average blocking probability over the interval [t − Δ/2, t + Δ/2].

3.3. The Relevant Time Scale for σ and Δ

From the perspective of customer performance, usually the most relevant time scale is a
single mean service time, which we have taken to be 1. However, there are two other time
scales that are relevant for the choice of σ and Δ. The first is determined by the rate at
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which the system state tends to change and the second, closely related to the first, is the
rate at which staffing levels change.

The time scale at which the state (number in system) changes typically is of order equal
to a mean interarrival time. For many-server queues, that tends to be much shorter than
the time scale of individual service times. With mean service time 1 and arrival rates of
order of 100, arrivals and departures both tend to occur at about rate 100. Thus the time
scale for state changes is about 0.01.

Of course, the rate of staffing changes is related to the rate of state changes, but it also
depends on the rate at which the time-varying arrival rate changes. Typically, the rate of
staffing changes is significantly less than the rate of state changes. Fortunately, it often can
be estimated directly. For periodic arrival rate functions, the number of staffing changes
per cycle can be estimated by ν ≡ 2(sU − sL), where sU (sL) is the maximum (minimum)
staffing level in the cycle. The rate of staffing changes is then approximately ν/T , where T
is the mean cycle length.

We estimate that the relevant values of σ and Δ should be larger than one mean
interarrival time, but less than one mean service time, and about the same order as the
average time between successive staffing changes.

3.4. Application of the Two Methods to the Example in Figure 1

We first apply the two methods to the example reported in Figure 1. We applied the two
methods for a range of σ and Δ, measuring the blocking probability every 0.001 time units
over each of 10,000 independent replications. Thus each estimated blocking probability has
approximately mean 0.1, variance 0.1(0.9)/10, 000 = 0.000009 and standard deviation 0.003.
Results from the randomization and averaging methods are given in Tables 1 and 2. The
unusual extreme values in Figure 1 are seen in the minimum (maximum) for the staffing

Table 1. The randomization method as a function of the standard deviation σ for the
model in Figure 1: the minimum, average, and maximum estimated blocking probabilities
from simulations over a unit interval centered at the time of the staffing change. The
steady-state performance of the stationary model with each staffing level is given below
for comparison.

Staff change from 95 to 96 at time 13 Staff change from 96 to 95 at time 18

Std. Dev. Min. Average Max. Min. Average Max.

0.00 0.0087 0.1022 0.1154 0.0961 0.1106 0.2012
0.02 0.0698 0.1018 0.1162 0.0960 0.1120 0.1557
0.04 0.0782 0.1014 0.1175 0.0955 0.1103 0.1379
0.06 0.0846 0.1020 0.1184 0.0979 0.1119 0.1320
0.08 0.0879 0.1018 0.1152 0.0973 0.1114 0.1293
0.10 0.0881 0.1006 0.1141 0.0972 0.1113 0.1291
0.15 0.0937 0.1006 0.1135 0.0937 0.1109 0.1257
0.20 0.0959 0.1013 0.1160 0.0959 0.1092 0.1213

Steady state: 96 servers at time 10 Steady state: 95 servers at time 16

Min. Average Max. Min. Average Max.

0.0936 0.1005 0.1100 0.0979 0.1072 0.1186
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Table 2. The averaging method as a function of the interval length Δ for the model
in Figure 1: the minimum, average, and maximum estimated blocking probabilities
from simulations over a unit interval centered at the time of the staffing change. The
steady-state performance of the stationary model with each staffing level is given
below for comparison.

Staff change from 95 to 96 at time 13 Staff change from 96 to 95 at time 18

Δ Min. Average Max. Min. Average Max.

0.00 0.0087 0.1005 0.1154 0.0961 0.1106 0.2012
0.04 0.0588 0.1005 0.1124 0.0958 0.1092 0.1641
0.10 0.0753 0.1005 0.1115 0.0983 0.1092 0.1382
0.20 0.0855 0.1005 0.1109 0.0997 0.1092 0.1271
0.40 0.0909 0.1005 0.1099 0.1006 0.1092 0.1199

Steady state: 96 servers at time 10 Steady state: 95 servers at time 16

Min. Average Max. Min. Average Max.

0.0936 0.1005 0.1100 0.0979 0.1072 0.1186

increase (decrease) with σ = Δ = 0.00; the improvements are seen in the other elements of
those columns (highlighted in bold).

We conclude, first, that even a small amount of randomization or averaging helps a lot
and, second, that both methods are effective and roughly comparable in their performance if
we let Δ ≈ 2.5σ; for example, we might select σ = 0.08 and Δ = 0.2, for which the minimum
and maximum pairs are (0.088, 0.129) and (0.086, 0.127), respectively. These values of σ and
Δ lie between the mean interarrival time 0.01 and the mean service time 1.0, without being
near either one.

4. STABILIZING WITH A TIME-VARYING ARRIVAL RATE

We now introduce a specific MOL approximation to specify the staffing function s(t) in order
to stabilize the blocking probability. We will be brief because it combines two well-studied
components: (i) an accurate heavy-traffic approximation for stationary loss systems [13,25]
and (ii) the MOL approximation for non-stationary systems [10,18] and its application to
stabilize performance [4,5,9,11,15–17,27]. We refer to [5,13] for more background.

For the general stationary loss system G/G/s/0, an approximation for the blocking
probability B based on a heavy-traffic limit by Borovkov has been shown to be accurate
for general arrival and service distributions, even with independence assumptions relaxed
[13,25]. These are based on the offered load and peakedness (the mean and the ratio of
the variance to the mean, respectively, of the number of busy servers in an associated
infinite-server model). Let B(s, α, z) be the approximate stationary blocking probability
as a function of the offered load α ≡ λ/μ and the peakedness z. As in [13], we would use
the heavy-traffic limit of the peakedness, just as in [13], but we do not dwell on that here
because we will focus on the special case of Poisson arrival processes, where z = 1.

We will use the approximation

B ≈ B(s, α, z) ≡
√

z

α

(
φ ((s − α)/

√
αz)

Φ ((s − α)/
√

αz)

)
, (4.1)
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where Φ and φ are the cdf and pdf, respectively, of the standard (mean 0, variance 1)
Gaussian distribution. (We remark that this Gaussian heavy-traffic approximation could be
replaced by the Hayward approximation B(s, α, z) = B(s/z, α/z, 1) ≡ B(s/z, α/z), where
B(s, α) is the exact Erlang blocking formula for the M/M/s/0 model [13], but that is
somewhat more computationally demanding.)

To approximate the blocking probability in a non-stationary system with a given staffing
function s(t), we make the standard MOL adjustment to (4.1). Let B(t) denote the blocking
probability at time t. Then

B(t) ≈ B(s(t),m(t), z), (4.2)

where m(t) is the time-varying mean number of busy servers in the infinite-server model with
the same arrival and service processes. This procedure for non-Markovian models follows
Section 5 of [9,11].

Now if we have a target blocking probability B∗, we simply set the staffing func-
tion s(t) by inverting the previous approximation and rounding to the nearest integer.
More specifically, at a given time t, let s be the (possibly non-integral) value that satisfies
B(s,m(t), z) = B∗. Then we set s(t) = int(s), where int(s) is the integer closest to s.

5. SIMULATION EXPERIMENTS

5.1. The Model

To evaluate our stabilization approaches, we conducted a series of simulation experiments
for the time-varying Mt/GI/st/0 system with a non-homogeneous Poisson process as an
arrival process (the Mt) with the sinusoidal arrival rate function

λ(t) = λ̄ + β sin(γt), t ≥ 0, (5.1)

with average arrival rate λ̄, amplitude β, and cycle length (or period) T (or equivalently,
frequency γ = 2π/T ). We let the mean service time be 1 time unit. We started by considering
the Markovian Mt/M/st/0 special case and then considered variations of that model. We
specify the model by the four-tuple (λ̄, β, T,B), where B is the blocking probability target.

For the Mt/M/st/0 model, the heavy-traffic peakedness z equals 1, and formula (15)
in [3] gives the time-varying offered load:

m(t) = λ̄ +
β

1 + γ2
(sin γt − γ cos γt). (5.2)

and formula (18) in [3] gives the difference between the maximum and minimum offered
load:

mU − mL =
2β√
1 + γ2

. (5.3)

We considered two values of the scale, λ̄ = 100 (large) and 20 (moderate), and two
cycle lengths, T = 100 (long) and T = 10 (short), so that γ = 0.0628 and γ = 0.628. We
let the amplitudes be β = 25 for λ̄ = 100 and β = 5 for λ̄ = 20. We consider two blocking
probability targets: B = 0.1 (heavier loading) and B = 0.01 (lighter loading).

5.2. The Staffing Functions

We start by showing the arrival rates and the MOL staffing functions based on (5.2) and
(4.2) for blocking probability targets B = 0.1 and 0.01 in the four cases. First, Figure 2
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Figure 2. (Colour online) The MOL staffing functions and the sinusoidal arrival rate func-
tion in (5.1) for the Mt/M/s/0 model with μ = 1, average arrival rate λ̄ = 100, amplitude
β = 25, and two blocking probability targets B = 0.1 and 0.01: for long cycles T = 100 (top)
and short cycles T = 10 (bottom).

shows the cases with large scale λ̄ = 100 over a single periodic cycle. The staffing shown is
appropriate for dynamic periodic steady state, as if the system started empty in the distant
past. Consistent with previous research, the staffing plots in Figure 2 show that the PSA is
effective for T = 100, but not for T = 10. A significant time lag and space shift is seen for
T = 10. For T = 100, the staffing at time t depends primarily on the arrival rate at time t.
Figure 3 shows the corresponding cases with scale λ̄ = 20.

In order to judge what would be appropriate averaging parameters σ and Δ for the
Mt/M/st/0 model with the sinusoidal arrival rate function in (5.1) as a function of the
model parameters (λ̄, β, T,B), using the MOL staffing before any averaging, we calculate
the minimum and average distances between successive staffing changes in Table 3. We
also show the minimum distance between successive pairs of staffing changes. We see that
the minimum interval between successive pairs of staffing changes is nearly two times the
minimum for a single change. We also see that the average is in between those two.

In Table 3, we also show our final choice of the averaging parameters σ and Δ. As
should be expected, it turns out that there is greater freedom of choice when the arrival rate
changes slowly, as in the case T = 100, than there is when the arrival rate changes rapidly,
as for T = 10. Indeed, we find that there is a relatively narrow range for the parameters
for T = 10. Based on our results to be shown, we give one good parameter for T = 10 and
a range for T = 100. In both cases, it is appropriate to use the minimum distance between
successive staffing changes as a guide for what are appropriate parameters. (Recall that a
mean interarrival time is 0.01 for λ̄ = 100 and 0.05 for λ̄ = 20.)
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Figure 3. (Colour online) The MOL staffing functions and the sinusoidal arrival rate
function in (5.1) for the Mt/M/s/0 model with μ = 1, average arrival rate λ̄ = 20, amplitude
β = 5, and two blocking probability targets B = 0.1 and 0.01: for long cycles T = 100 (top)
and short cycles T = 10 (bottom).

We remark that we can estimate the time between successive staffing changes from
(5.3) without performing the detailed calculations in Table 3. For λ̄ = 100 and β = 25, the
distance in (5.3) equals 42.3 for T = 10 and 49.9 for T = 100. Thus, a rough estimate of
the number of staffing changes per cycle is 84.6 for T = 10 and 99.8 for T = 100. The mean
time between staffing changes should thus be about 0.12 for T = 10 and 1.0 for T = 100.
That is consistent with the cases with λ̄ = 100 in Table 3. Since the mean interarrival time
is 0.01 for λ̄ = 100, we infer that the “averaging halfwidths” Δ/2 and 2σ should be of order
of 0.1 in the difficult case with λ̄ = 100 and T = 10, because 0.10 is just below 0.12, the
mean time between successive staffing changes. Indeed, our experiments show that too close
to the lower value 0.01 is not good, but increasing much above the higher value 0.10 is not
good either.

5.3. Simulation Methodology

In all models, we consider the arrival process is a non-homogeneous Poisson process (Mt)
with intensity function λ(t). We generated arrivals over a time interval [0, T ] in the usual
way by thinning. We first choose a constant λU such that 0 ≤ λ(t) ≤ λU for all t ≤ T . We
then generated potential arrivals using a Poisson process with rate λU by generating the
successive interarrival times as i.i.d. exponential random variables with mean 1/λU . Finally,
each potential arrival is treated as an actual arrival with probability λ(t)/λU .
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Table 3. The distance between successive staffing changes for the Mt/M/st/0 model
with the sinusoidal arrival rate function in (5.1) as a function of the model parameters
(λ̄, β, T,B) using the MOL staffing before any averaging. The minimum and average
distances are shown along with the minimum of two successive changes.

Distance between successive staffing changes

Model parameters Distance measure Ave parameters

λ̄ β T Target B Minimum Average Minimum of two σ Δ

100 25 10 0.001 0.067 0.106 0.135 0.08 0.20
100 25 10 0.01 0.071 0.109 0.142 0.08 0.20
100 25 10 0.1 0.082 0.133 0.164 0.08 0.20

20 5 10 0.001 0.290 0.517 0.583 0.32 0.80
20 5 10 0.01 0.319 0.561 0.641 0.32 0.80
20 5 10 0.1 0.391 0.723 0.789 0.32 0.80

100 25 100 0.001 0.571 0.926 1.142 0.08–0.96 0.20–2.40
100 25 100 0.01 0.604 0.979 1.208 0.08–0.96 0.20–2.40
100 25 100 0.1 0.700 1.142 1.400 0.08–0.96 0.20–2.40

20 5 100 0.001 2.461 4.016 4.940 0.32–3.84 0.80–9.60
20 5 100 0.01 2.702 4.367 5.425 0.32–3.84 0.80–9.60
20 5 100 0.1 3.302 5.376 6.670 0.32–3.84 0.80–9.60

We specify the staffing levels and the times of successive staffing changes without any
averaging using the MOL approach, as indicated in Sections 4 and 5.2. To estimate the
blocking probabilities using the σ parameters, in each replication we randomize the staffing
times, getting new staffing times, as indicated in Section 3.1. Thus, with both methods we
start with the staffing levels and staffing change times for each replication.

For both methods, we keep the time of every arrival and departure in a matrix, and
the number of people in the system at that time in another matrix. We then updated the
two matrices depending on whether an arrival would happen first or a departure would
happen first. At the end of each replication, we used these matrices to decide whether the
system was full at each sampling time. We constructed a matrix and incremented the value
by 1 if the system was full at the sampling time (which was 0.001). The final blocking
probability at each sampling time was then calculated by dividing the value by the number
of replications. To estimate the blocking probabilities using the Δ parameters, in the final
step we recorded the total number of arrivals that were blocked in an interval of length Δ
around each sampling time. The final blocking probability at each sampling time was then
calculated by dividing the value by the total number of arrivals in the interval.

For estimating the blocking probabilities with the parameter σ, we are estimating the
probability that the system is full at the designated time, which is often referred to as
the time congestion; see Sections 1.2 and 6 of [13]. That alternative approach is justified
because we have a Poisson arrival process; see [20] and Proposition A.1 on p. 567 of [19]. For
non-Poisson arrival processes, the time congestion and call congestion can be very different;
see [13]. We performed separate simulation experiments to verify that the time congestion
and the call congestion indeed coincide for the models in this paper.

For estimating the blocking probabilities, we used a discrete time grid of 0.001 (the
sampling time), but in order to make smaller-sized plots, we reduced the time grid to 0.01
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for T = 10 and 0.1 for T = 100. We discuss the statistical precision of our estimators in
Section 5.4.1.

5.4. Long Cycles (T = 100) and Heavy Loading (B = 0.1)

5.4.1. The corresponding stationary models. We start by considering the long cycles
with T = 100 and the higher blocking probability target B = 0.1. All our simulations are
based on multiple i.i.d. replications of the model over the fixed time interval [0, 100], start-
ing empty. We start by showing the statistical precision of our estimators and the impact
of a single server in the performance of the associated (λ̄, β, T,B) = (100, 0, 100, 0.1) and
(20, 0, 100, 0.1) stationary models. Figure 4 shows simulation estimates of the blocking prob-
abilities in the stationary M/M/s/0 model for arrival rate λ = 100 (left) and λ = 20 (right)
with four different staffing levels yielding blocking above and below 0.10. The plot for
λ = 100 is cut in the middle so that the width of the estimates can be seen. Figure 4 shows
how much the blocking probabilities should change when we change the staffing level by a
single server. We see that a single server changes the blocking probability by about 10%
(20%) of the target B = 0.1 when the scale is λ = 100 (λ = 20).

Figure 4 also shows the statistical precision of all our experiments. It can be seen from
the thickness of the plot for each fixed staffing level. Given that our estimates are based on
n i.i.d. replications, we can apply the binomial distribution to estimate the variance of each
estimate of the blocking probability when it is p. The variance is p(1 − p)/n. For p = 0.1,
the variance is approximately 0.1/n, so that five standard deviations are about 1.5/

√
n. For

n = 10, 000 used for λ = 100, that is, 0.015. For n = 50, 000 used for λ = 20, that is, about
0.007 (explaining the thinner plots).

5.4.2. Without any averaging. We now consider the staffing algorithm without any form
of averaging, that is, the analog of Figure 1 for the Mt/M/st/0 model. Figure 5 shows the
corresponding performance of the Mt/M/st/0 model with parameter triples (100, 25, 100)
(left) and (20, 5, 100) (right), using the staffing algorithm without any form of averaging.
Figure 5 clearly shows that the algorithm is not effective without either form of averaging.
The blocking probability varies from about 0 to 0.18 (which is about right on average). We
see excursion up (down) from the target when the staffing is decreasing (increasing).

Figure 4. (Colour online) Simulation estimates of the blocking probabilities in the sta-
tionary M/M/s/0 model for arrival rate λ = 100 (left) and λ = 20 (right) with four different
staffing levels yielding blocking above and below 0.10, showing the impact of a single server.
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Figure 5. (Colour online) Simulation estimates of the blocking probabilities in the
non-stationary Mt/M/st/0 model with the staffing algorithm without any averaging,
for the sinusoidal arrival rate in (5.1) and parameter triple (100, 25, 100, 0.1) (left) and
(20, 5, 100, 0.1) (right).

5.4.3. The two forms of averaging: large scale. We now consider the performance with
the two forms of averaging for the first (λ̄, β, T,B) = (100, 25, 100, 0.1) case. Figure 6 shows
the performance using randomization with σ = 0.08 (left) and averaging with Δ = 0.2
(right). This choice is based on our experience in Tables 1 and 2. Note that Δ here is
about one half the minimum distance between successive staffing changes. As before, we
see excursions up (down) from the target when the staffing is decreasing (increasing), but
these are very minor.

The performance gets smoother and closer to the target as we increase the interval
length. We illustrate the impact of the parameters σ and Δ by showing the performance
for two values of each in Figure 7. Table 4 gives a different view of the performance of
the two averaging approaches for the base model with parameter four-tuple (λ̄, β, T,B) =
(100, 25, 100, 0.1) and randomization parameter σ = 0.08 and averaging parameter Δ = 0.2.
Here we carefully look at the minimum, average, and maximum blocking probabilities over
four separate intervals of length 1.

Next, Figure 8 shows that the parameters σ and δ can be made larger without penalty;
they are increased from Figure 6 by a factor of 12 to (0.96, 2.4). Indeed, given that
stabilization is achieved for Δ = 0.20, as shown in Figure 6, higher values of Δ can only

Figure 6. (Colour online) Simulation estimates of the blocking probabilities in the
non-stationary Mt/M/st/0 model with parameter triple (100, 25, 100) having average arrival
rate λ̄ = 100 with the staffing algorithm for target B = 0.1 using randomization with
σ = 0.08 (left) and averaging with Δ = 0.2 (right).
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Figure 7. (Colour online) A careful examination of the time interval [39.5, 40.5] in the
setting of Figure 6: randomization for σ = 0.04 and 0.08 (left) and averaging for Δ = 0.2
and 0.4 (right).

Table 4. Simulation estimates of the blocking probabilities over four unit intervals each
containing one staffing change, for the Mt/M/st/0 model with μ = 1, λ(t) in (5.1) with
parameter four-tuple (λ̄, β, T,B) = (100, 25, 100, 0.1) (γ = 0.0628) using the MOL staffing
and randomization (left) and averaging (right). The minimum, average, and maximum values
over a unit interval are shown.

Estimated blocking probabilities over intervals of length 1

Staffing change Randomization: σ = 0.08 Averaging: Δ = 0.2

Time From To Min. Average Max. Min. Average Max.

40.0 112 111 0.082 0.095 0.110 0.089 0.096 0.112
60.2 85 84 0.082 0.097 0.114 0.087 0.096 0.112
90.2 82 83 0.081 0.094 0.107 0.082 0.096 0.105
100.3 95 96 0.079 0.096 0.106 0.085 0.097 0.105

smooth out the estimate, giving less fluctuation. But we do not achieve that benefit for
randomizing the staffing times over wider intervals. Nevertheless, since the cycles are so
long, the larger value of σ does not hurt. Indeed, the performance in Figure 8 is even better.
We might nevertheless want more localized control of the blocking.

5.4.4. The two forms of averaging: smaller scale. We now shift to the smaller scale
with λ̄ = 20 (and β reduced proportionally). We find that the randomization and averag-
ing interval lengths need to increase as the scale decreases. Paralleling Figure 6, Figure 9
shows the performance for the smaller scale model with parameter four-tuple (λ̄, β, T,B) =
(20, 5, 100, 0.1) and randomization parameter σ = 0.32 and averaging parameter Δ = 0.8.
These parameters are 4 times larger than for parameter four-tuple (100, 25, 100, 0.1) in
Table 4. The average performance in Figure 9 falls somewhat below the target B = 0.1, but
Figure 4 shows that is consistent with the greater importance of a single server with the
smaller scale, based on λ̄ = 20.

Paralleling Table 4, Table 5 shows the performance of the two averaging approaches for
the smaller scale model.

Next, Figure 10 shows that the parameters σ and δ can be made larger without penalty;
they are increased from Figure 9 by a factor of 12 to (3.84, 9.6). Indeed, given that stabi-
lization is achieved for Δ = 0.8, as shown in Figure 9, higher values of Δ can only smooth
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Figure 8. (Colour online) Simulation estimates of the blocking probabilities in the non-
stationary Mt/M/st/0 model with parameter triple (100, 25, 100) having average arrival rate
λ̄ = 100 with the staffing algorithm for target B = 0.1 using randomization with σ = 0.96
(left) and averaging with Δ = 2.4 (right).

Figure 9. (Colour online) Simulation estimates of the blocking probabilities in the non-
stationary Mt/M/st/0 model with parameter four-tuple (20, 5, 100, 0.1) having average
arrival rate λ̄ = 20 using randomization with σ = 0.32 (left) and averaging with Δ = 0.8
(right).

Table 5. Simulation estimates of the blocking probabilities over four unit intervals
each containing one staffing change, for the Mt/M/st/0 model with μ = 1, λ(t) in
(5.1) with parameter four-tuple (λ̄, β, T,B) = (20, 5, 100, 0.1) (γ = 0.0628) using the
MOL staffing with randomization (left) and averaging (right). The minimum, average,
and maximum values over a unit interval are shown.

Estimated blocking probabilities over intervals of length 5

Staffing change Randomization: σ = 0.32 Averaging: Δ = 0.8

Time From To Min. Average Max. Min. Average Max.

41.485 26 25 0.079 0.091 0.105 0.080 0.091 0.108
58.892 21 20 0.075 0.087 0.104 0.077 0.087 0.109
89.149 19 20 0.075 0.090 0.102 0.070 0.090 0.100
100.079 22 23 0.076 0.090 0.100 0.074 0.090 0.101
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Figure 10. (Colour online) Simulation estimates of the blocking probabilities in the non-
stationary Mt/M/st/0 model with parameter triple (20, 5, 100) having average arrival rate
λ̄ = 20 with the staffing algorithm for target B = 0.1 using randomization with σ = 3.84
(left) and averaging with Δ = 9.6 (right).

out the estimate, giving less fluctuation. But we do not achieve that benefit for randomizing
the staffing times over wider intervals. Nevertheless, since the cycles are so long, the larger
value of σ does not hurt.

5.5. Long Cycles (T = 100) and Lighter Loading (B = 0.01)

In this section, we repeat the experiments just done in Section 5.4 for the lower blocking
probability target B = 0.01 instead of B = 0.1, that is, for the models (100, 25, 100, 0.01)
and (20, 5, 100, 0.01). To produce this lower blocking probability, the staffing has to be
significantly higher, but we find that the averaging parameters σ and Δ can be the same as
before.

5.5.1. The corresponding stationary models with target B = 0.01. Corresponding to
Figure 4 for target B = 0.1, Figure 11 shows four staffing levels in the stationary case
for the lower blocking probability target B = 0.01. From these figures, we see that one
server matters relatively more (compared to the blocking probabilities, which are ten times
smaller) at these higher staffing levels.

Figure 11. (Colour online) Simulation estimates of the blocking probabilities in the sta-
tionary M/M/s/0 model for arrival rate λ = 100 (left) and λ = 20 (right) with four different
staffing levels yielding blocking above and below 0.01, showing the impact of a single server.
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5.5.2. Without any averaging for B = 0.01. We now consider the time-varying arrival
rate again, but with lower blocking probability target B = 0.01. Figure 12 shows the perfor-
mance of the direct staffing algorithm without any form of averaging for the lower blocking
probability target B = 0.01. The figure looks just like Figure 5 except the realized blocking
probabilities are now ten times smaller.

5.5.3. The two forms of averaging with large scale and target B = 0.01. We now consider
the performance with the averaging. Paralleling Figure 6, Figure 13 shows the performance
of the base model with the staffing algorithm for target B = 0.01 using randomization with
σ = 0.08 (left) and averaging with Δ = 0.2 (right), the same as in Figure 6.

We examine the two subintervals [39.5, 40.5] and [99.5, 100.5] in Figure 13 more care-
fully in Figures 14 and 15. Paralleling Table 4, we also report the minimum, average, and
maximum values over subintervals where there is at least one staffing change in Table 6.

Next, paralleling Figure 8, Figure 16 shows that the parameters σ and δ also can be
made larger without penalty for blocking probability target B = 0.01; just as before, they
are increased from (0.08, 0.20) in Figure 13 by a factor of 12 to (0.96, 2.40). Indeed, given
that stabilization is achieved for Δ = 0.20, as shown in Figure 13, higher values of Δ can
only smooth out the estimate, giving less fluctuation. The larger (relatively) fluctuation at

Figure 12. (Colour online) Simulation estimates of the blocking probabilities in the
non-stationary Mt/M/st/0 model with the staffing algorithm without any averaging, for
the sinusoidal arrival rate in (5.1) and parameter triple (100, 25, 100, 0.01) (left) and
(20, 5, 100, 0.01) (right).

Figure 13. (Colour online) Simulation estimates of the blocking probabilities in the non-
stationary Mt/M/st/0 model with parameter four-tuple (λ̄, β, T,B) = (100, 25, 100, 0.01)
using randomization with σ = 0.08 (left) and averaging with Δ = 0.2 (right).
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Figure 14. (Colour online) A careful examination of the time interval [39.5, 40.5] for the
case (100, 25, 100, 0.01) in the setting of Figure 13: randomization for σ = 0.08 (left) and
averaging for Δ = 0.2 (right).

Figure 15. (Colour online) A careful examination of the time interval [99.5, 100.5] for the
case (100, 25, 100, 0.01) in the setting of Figure 13: randomization for σ = 0.08 (left) and
averaging for Δ = 0.2 (right).

Table 6. Simulation estimates of the blocking probabilities over four intervals of length
1 each containing at least one staffing change, for the Mt/M/st/0 model with μ = 1, λ(t)
in (5.1) with parameter four-tuple (λ̄, β, T,B) = (100, 25, 100, 0.01) using the MOL staffing
with randomization (left) and averaging (right). The minimum, average, and maximum
values over a unit interval are shown.

Estimated blocking probabilities over intervals of length 1

Staffing change Randomization: σ = 0.08 Averaging: Δ = 0.2

Time From To Min. Average Max. Min. Average Max.

40.148 134 133 0.0084 0.0098 0.0116 0.0090 0.0100 0.0116
60.201 103 102 0.0084 0.0101 0.0119 0.0089 0.0103 0.0121
89.617 99 100 0.0082 0.0099 0.0113 0.0083 0.0100 0.0113
90.396 100 101 same same same same same same
99.592 114 115 0.0083 0.0099 0.0117 0.0084 0.0098 0.0113
100.197 115 116 same same same same same same
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Figure 16. (Colour online) Simulation estimates of the blocking probabilities in the non-
stationary Mt/M/st/0 model with parameter triple (100, 25, 100) having average arrival rate
λ̄ = 100 with the staffing algorithm for target B = 0.01 using randomization with σ = 0.96
(left) and averaging with Δ = 2.4 (right).

time 80 is consistent with Figure 13. But we do not achieve that benefit for randomizing
the staffing times over wider intervals. Nevertheless, since the cycles are so long, the larger
value of σ does not hurt.

5.5.4. The two forms of averaging with smaller scale and target B = 0.01. We now shift
to the smaller scale with λ̄ = 20 (and β reduced proportionally). Just as for target B = 0.1
before, we find that the randomization and averaging interval lengths need to increase
as the scale decreases. Paralleling Figures 13–15 and Table 6, Figures 17–19 and Table 7
show the performance for the smaller scale model with parameter four-tuple (λ̄, β, T,B) =
(20, 5, 100, 0.01) and randomization parameter σ = 0.32 and averaging parameter Δ = 0.8,
the same as for blocking target B = 0.1.

Next, paralleling Figures 13 and 16, Figures 17 and 20 show that the parameters σ
and δ can be made larger without penalty; they are increased from (0.32, 0.80) in Figure 17
by a factor of 12 to (3.84, 9.60). Indeed, given that stabilization is achieved for Δ = 0.8,
as shown in Figure 17, higher values of Δ can only smooth out the estimate, giving less
fluctuation. As before, the relatively large fluctuation at time 80 is consistent with Figure 17
for the smaller averaging parameters. But we do not achieve that benefit for randomizing

Figure 17. (Colour online) Simulation estimates of the blocking probabilities in the
non-stationary Mt/M/st/0 model with parameter four-tuple (20, 5, 100, 0.01) using ran-
domization with σ = 0.32 (left) and averaging with Δ = 0.8 (right).
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Figure 18. (Colour online) A careful examination of the time interval [37.5, 42.5] for the
case (20, 5, 100, 0.01) in the setting of Figure 17: randomization for σ = 0.32 (left) and
averaging for Δ = 0.8 (right).

Table 7. Simulation estimates of the blocking probabilities over four intervals of length 5
each containing at least one staffing change, for the Mt/M/st/0 model with μ = 1, λ(t) in
(5.1) with parameter four-tuple (λ̄, β, T,B) = (20, 5, 100, 0.01) using the MOL staffing with
randomization (left) and averaging (right). The minimum, average, and maximum values
over a unit interval are shown.

Estimated blocking probabilities over intervals of length 5

Staffing change Randomization: σ = 0.32 Averaging: Δ = 0.8

Time From To Min. Average Max. Min. Average Max.

38.6450 34 33 0.0091 0.0108 0.0130 0.0089 0.0108 0.0134
42.1380 33 32 same same same same same same
59.1260 27 26 0.0092 0.0109 0.0133 0.0090 0.0109 0.0141
62.3710 26 25 same same same same same same
89.7040 25 26 0.0090 0.0115 0.0135 0.0085 0.0115 0.0135
98.6320 28 29 0.0091 0.0110 0.0130 0.0086 0.0110 0.0133
101.3350 29 30 Same Same Same Same Same Same

Figure 19. (Colour online) A careful examination of the time interval [97.5, 102.5] for the
case (20, 5, 100) in the setting of Figure 17: randomization for σ = 0.32 (left) and averaging
for Δ = 0.8 (right).
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Figure 20. (Colour online) Simulation estimates of the blocking probabilities in the non-
stationary Mt/M/st/0 model with parameter triple (20, 5, 100) having average arrival rate
λ̄ = 20 with the staffing algorithm for target B = 0.01 using randomization with σ = 3.84
(left) and averaging with Δ = 9.60 (right).

the staffing times over wider intervals. Nevertheless, since the cycles are so long, the larger
value of σ does not hurt.

5.6. Short Cycles: T = 10

We now consider the more challenging case of shorter cycles of length T = 10 instead of
T = 100. Now the arrival rate changes ten times more quickly. Table 3 shows that the
corresponding times between staffing changes are now much less. Evidently, the parameters
σ and Δ need to be reduced. We find that the initial smaller parameters used for T = 100
continue to work for T = 10, but we no longer have the freedom to increase these parameters.
Indeed, the range of good averaging parameters is significantly less.

5.6.1. Larger scale. We first show the good performance for the non-stationary
Mt/M/st/0 model with parameter triple (100, 25, 10) with blocking probability targets
B = 0.1 and 0.01. Figures 21 and 22 show plots of the time-varying blocking with the
same parameters σ = 0.08 and Δ = 0.20 as before in Figures 6 and 13.

Figure 21. (Colour online) Simulation estimates of the blocking probabilities in the non-
stationary Mt/M/st/0 model with parameter triple (100, 25, 10) having average arrival rate
λ̄ = 100 with the staffing algorithm for target B = 0.1 using randomization with averaging
parameters σ = 0.08 (left) and Δ = 0.20 (right).
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Figure 22. (Colour online) Simulation estimates of the blocking probabilities in the non-
stationary Mt/M/st/0 model with parameter triple (100, 25, 10) having average arrival rate
λ̄ = 100 with the staffing algorithm for target B = 0.01 using randomization with averaging
parameters σ = 0.08 (left) and Δ = 0.20 (right).

Figure 23. (Colour online) Simulation estimates of the blocking probabilities in the non-
stationary Mt/M/st/0 model with parameter triple (100, 25, 10) having average arrival rate
λ̄ = 100 with the staffing algorithm for target B = 0.01 using randomization with too small
averaging parameters σ = 0.01 (left) and σ = 0.02 (right).

Figure 24. (Colour online) Simulation estimates of the blocking probabilities in the non-
stationary Mt/M/st/0 model with parameter triple (100, 25, 10) having average arrival rate
λ̄ = 100 with the staffing algorithm for target B = 0.01 using randomization with too small
averaging parameters Δ = 0.04 (left) and Δ = 0.08 (right).
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Figure 25. (Colour online) Simulation estimates of the blocking probabilities in the non-
stationary Mt/M/st/0 model with parameter triple (100, 25, 10) having average arrival rate
λ̄ = 100 with the staffing algorithm for target B = 0.01 using randomization with too large
averaging parameters σ = 0.20 (left) and σ = 2.0 (right).

Figure 26. (Colour online) Simulation estimates of the blocking probabilities in the non-
stationary Mt/M/st/0 model with parameter triple (20, 5, 10) having average arrival rate
λ̄ = 20 with the staffing algorithm for target B = 0.1 using randomization with averaging
parameters σ = 0.32 (left) and Δ = 0.80 (right).

Figure 27. (Colour online) Simulation estimates of the blocking probabilities in the non-
stationary Mt/M/st/0 model with parameter triple (20, 5, 10) having average arrival rate
λ̄ = 20 with the staffing algorithm for target B = 0.01 using randomization with averaging
parameters σ = 0.32 (left) and Δ = 0.80 (right).
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We now illustrate the performance degradation for much smaller or large parameters in
the case with target B = 0.01. Figure 23 shows the performance degradation if σ is reduced,
while Figure 24 shows the performance degradation if Δ is reduced.

As noted before, there is no difficulty if we increase Δ above 0.20, but there is a
problem if we increase σ above 0.08. Figure 25 shows the performance degradation with
increased σ.

5.6.2. Smaller scale. We now show the performance for the smaller scale cases with
parameter triple (20, 5, 10) and blocking probability targets B = 0.1 and 0.01. We use
σ = 0.32 and Δ = 0.80, just as we did for T = 100 before. Figures 26 and 27 show the
performance.

6. EXPERIMENTS FOR NON-EXPONENTIAL SERVICE-TIME DISTRIBUTIONS

Just as in [13], the staffing method here extends to non-Markov models, as we confirmed in
several experiments with non-exponential service-time distributions. To illustrate, we discuss
the cases of hyperexponential and deterministic service times. In this section, we consider
the same model except that we change the service-time distribution from exponential (M)
to hyperexponential (H2) and deterministic (D), keeping the mean at 1. We know that the
stationary M/GI/s/0 has the insensitivity property, implying that the steady-state number
in system and the blocking probability depend on the service-time distribution only through
its mean. However, as shown by Davis, Massey, and Whitt [1], this insensitivity property is
not inherited by the non-stationary Mt/GI/s/0 model.

First, we consider H2(1, 4, bm) service times, which are mixtures of two exponential dis-
tributions, having mean 1, scv c2 = 4 and balanced means; see (3.7) on p. 137 in [24]. The two
means are 4.437 and 0.563 with probability 0.1127 on the first. The staffing formula is given
in [3] with corrections on p. 506 of [12]. Figure 28 shows the performance of our algorithm for
the non-stationary Mt/H2(1, 4, bm)/st/0 model with parameter triple (100, 25, 10) having
average arrival rate λ̄ = 100 with the staffing algorithm for target B = 0.1 using random-
ization with σ = 0.08 (left) and averaging with Δ = 0.2 (right). We should expect that the
approach to steady state with H2 service takes about four times longer than for M service

Figure 28. (Colour online) Simulation estimates of the blocking probabilities in the non-
stationary Mt/H2/st/0 model with parameter triple (100, 25, 10) having average arrival rate
λ̄ = 100 with the staffing algorithm for target B = 0.1 using randomization with σ = 0.08
(left) and averaging with Δ = 0.2 (right).



208 A. Li, W. Whitt and J. Zhao

because one of the component mean service times is 4.437. That expectation is confirmed
by Figures 21 and 28.

We next consider the Mt/D/st/0 model with the same arrival rate function and the
same staffing algorithm in two cases: a long cycle with T = 100 and a short cycle with
T = 10. Paralleling previous figures, Figure 29 examines the performance of the Mt/D/st/0
model with parameter triple (λ̄, β, T ) = (100, 25, 10) (γ = 0.628) using the MOL staffing
with target 0.10 and randomization with σ = 0.08 (left) and averaging with Δ = 0.2 (right).
Figure 29 shows that the time-varying blocking probability is again stabilized after an initial
transient that is over at about time 3. We see that the initial transient is quite different,
but after it is over, the blocking is stable, just as before.

Paralleling previous tables, Table 8 examines the performance in the case of the
Mt/D/st/0 model with parameter triple (λ̄, β, T ) = (100, 25, 100) (γ = 0.0628) using the
MOL staffing with target 0.10 and randomization with σ = 0.08 (left) and averaging with
Δ = 0.2 (right).

Figure 29. (Colour online) Simulation estimates of the blocking probabilities in the non-
stationary Mt/D/st/0 model with parameter triple (100, 25, 10) having average arrival rate
λ̄ = 100 with the staffing algorithm for target B = 0.1 using randomization with σ = 0.08
(left) and averaging with Δ = 0.2 (right).

Table 8. Simulation estimates of the blocking probabilities over four unit intervals each
containing one staffing change, for the Mt/D/st/0 model with μ = 1, λ(t) in (5.1) with
parameter triple (λ̄, β, T ) = (100, 25, 100) (γ = 0.0628) using the MOL staffing with tar-
get 0.10 and randomization with σ = 0.08 (left) and averaging with Δ = 0.2 (right). The
minimum, average, and maximum values over a unit interval are shown.

Estimated blocking probabilities over intervals of length 1

Staffing change Randomization: σ = 0.08 Averaging: Δ = 0.2

Time From To Min. Average Max. Min. Average Max.

39.5260 112 111 0.0820 0.0975 0.1137 0.0856 0.0960 0.1090
40.4311 111 110 same same same same same same
59.7200 85 84 0.0838 0.0948 0.1079 0.0849 0.0929 0.1058
89.6330 82 83 0.0818 0.0962 0.1130 0.0790 0.0944 0.1025
99.5230 95 96 0.0817 0.0955 0.1097 0.0819 0.0932 0.1025
100.2210 96 97 Same Same Same Same Same Same



STAFFING TO STABILIZE BLOCKING 209

Figure 30. (Colour online) The difference between the staffing functions for the
Mt/M/st/0 and Mt/D/st/0 models with the sinusoidal arrival rate in (5.1) and
mean-1 exponential and deterministic service-time distributions and parameter four-tuples
(λ̄, β, T,B) = (100, 25, T, 0.1) for T = 10 (top) and T = 100 (bottom).

The service-time distribution can make a significant difference in the staffing with the
Mt/GI/st/0 model having mean service time 1. Figure 30 shows that it makes a big dif-
ference with parameter four-tuple (λ̄, β, T,B) = (100, 25, 10, 0.1) having a short cycle with
T = 10, but it makes hardly difference at all for the corresponding case with T = 100.
Because the PSA performs well for long cycles, there is almost insensitivity for long cycles.
The maximum difference is seven servers with T = 10, but only a single server for T = 100.

As observed in [1,26], counter to conventional queueing wisdom, decreasing the variabil-
ity of the service-time distribution from M to D tends to increase the maximum required
staffing. It also decreases the minimum required staffing. The lower variability in the service-
time distribution tends to amplify the impact of the time-varying arrival rate on congestion.
Similarly, the higher variability of the H2 service-time distribution tends to reduce the
impact of the time-varying arrival rate on congestion. The greater service-time variability
tends to “smooth” or average the impact of the fluctuations in the deterministic arrival-rate
function.

7. CONCLUSIONS

In this paper, we first used simulation to show that it is not possible to dynamically set
staffing levels (specify the number of servers) to stabilize the blocking probability in face of
time-varying demand the same way as for delay models. However, we showed that stabiliza-
tion can be achieved by the MOL approach, just as for delay models, using one of two forms
of averaging, either averaging the times of staffing changes using a mean-zero Gaussian
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distribution with standard deviation σ or averaging the blocking probabilities over suitably
time small intervals of width Δ. We conducted extensive simulation experiments to study
how to set the two averaging parameters σ and Δ. We found that these averaging parame-
ters tend not to depend strongly on the target, by showing that the same parameters work
for target blocking probabilities B = 0.1 and 0.01. We showed that the parameters need to
increase as the scale decreases by considering average arrival rates 100 and 20. We showed
that there is more freedom in the choice of the parameters when the arrival rate changes
relatively slowly, as when a sinusoidal cycle is T = 100, than when the arrival rate function
changes relatively rapidly, as when a sinusoidal cycle is T = 10. Table 3 shows the param-
eter ranges for our main examples. These show that the two parameters should be related
approximately by Δ = 2.5σ. Overall, stabilization is achieved when one of these forms of
averaging is combined with the MOL approach.
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