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Summary

Reducing preventable hospital re-admissions in Sickle Cell Disease (SCD)

could potentially improve outcomes and decrease healthcare costs. In a

retrospective study of electronic health records, we hypothesized

Machine-Learning (ML) algorithms may outperform standard re-admis-

sion scoring systems (LACE and HOSPITAL indices). Participants

(n = 446) included patients with SCD with at least one unplanned inpa-

tient encounter between January 1, 2013, and November 1, 2018.

Patients were randomly partitioned into training and testing groups.

Unplanned hospital admissions (n = 3299) were stratified to training and

testing samples. Potential predictors (n = 486), measured from the last

unplanned inpatient discharge to the current unplanned inpatient visit,

were obtained via both data-driven methods and clinical knowledge.

Three standard ML algorithms, Logistic Regression (LR), Support-Vector

Machine (SVM), and Random Forest (RF) were applied. Prediction per-

formance was assessed using the C-statistic, sensitivity, and specificity. In

addition, we reported the most important predictors in our best models.

In this dataset, ML algorithms outperformed LACE [C-statistic 0�6, 95%
Confidence Interval (CI) 0�57–0�64] and HOSPITAL (C-statistic 0�69,
95% CI 0�66–0�72), with the RF (C-statistic 0�77, 95% CI 0�73–0�79)
and LR (C-statistic 0�77, 95% CI 0�73–0�8) performing the best. ML

algorithms can be powerful tools in predicting re-admission in high-risk

patient groups.

Keywords: 30-day unplanned hospital readmission, machine learning, pre-

diction, retrospective study, sickle cell disease.

Sickle Cell Disease (SCD) is the most common inherited

haemoglobinopathy worldwide and carries high morbidity and

mortality.1,2 Complications related to SCD have resulted in

prolonged hospitalisations and high frequency of 30-day hos-

pital re-admissions.3-9 For example, in the largest retrospective

multistate study of 21 112 adult patients with SCD in the

United States, 33�4% of patients had 30-day re-admission with

22�1% re-admitted within 14 days.6 Other studies found that

50% of adult patients with SCD were re-admitted within

30 days, and those who returned within one week had the

poorest overall prognosis.10,11 As policymakers are mandating

the implementation of evidence-based quality improvement

interventions, the frequency of 30-day hospital re-admissions

becomes an important clinical metric to assess the quality of

care amongst chronic diseases, including SCD.12

Hospital re-admission risk has been traditionally calculated

using simple scoring systems (such as the LACE and HOSPI-

TAL indices) with limited features,13,14 and not specific to

high-risk groups such as patients with SCD, where socioeco-

nomic factors may play an important role in hospital re-ad-

missions.15-19 For instance, the LACE index was validated on a

Canadian middle-age population with few comorbidities,13

and therefore it does not capture the demographics and dis-

ease-specific complexities that are inherent in the SCD popula-

tion. In fact, the predictors of hospital re-admission in patients

with SCD are currently not being evaluated in clinical practice.
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One limitation of standard models to predict hospital re-ad-

missions is that they are hypothesis-driven; they use a fixed set

of predictive features and may ignore disease-specific factors

that can impact clinical outcomes. Machine-Learning (ML)

algorithms—a class of algorithms that can be used in detecting

underlying patterns in high-dimensional datasets—can poten-

tially be a useful tool in predicting hospital re-admission risks

in the SCD patient population. In many healthcare applica-

tions, the performance of ML algorithms has dominated that

of traditional statistical methods,20-26 and several studies have

employed ML algorithms to predict 30-day hospital re-admis-

sions.27-33 However, none of them has been conducted on the

high-risk SCD patient population.

The objective of this research is to explore the value of

ML algorithms, combined with domain knowledge, in pre-

dicting hospital re-admission risk for a SCD patient popula-

tion using a real-world data source.34 Specifically, we used

both clinical knowledge-driven and hypothesis-free data fea-

tures extracted from Electronic Health Records (EHR) data

to guide our ML models. We hypothesized that ML algo-

rithms would: (i) outperform traditional risk-scoring sys-

tems; (ii) find a richer set of predictors that can better guide

clinical practice; and hence (iii) be a more suitable tool in

predicting hospital re-admission risk among the SCD patient

population. We report study results using the Transparent

Reporting of a multivariable prediction model for Individual

Prognosis Or Diagnosis (TRIPOD) guidelines.35

Materials and methods

Design and sample

The University of Pittsburgh Medical Center (UPMC) Insti-

tutional Review Board approved this study. The R3 Services

through the Department of Bioinformatics served as an hon-

est data broker to ensure all patient health information was

de-identified and Health Insurance Portability and Account-

ability Act-compliant throughout the research cycle, includ-

ing but not limited to data extraction, data management,

analytical and machine-learning processes. All analyses were

conducted on de-identified patient data. Our SCD patient

cohort was selected from five hospitals across the UPMC

hospital system, where patients with SCD are followed by the

adult UPMC Sickle Cell Program’s inpatient consult service.

The UPMC Sickle Cell Program is the only provider of spe-

cialised care for SCD in the region, and thus only a negligible

number of patients with SCD is admitted to hospitals where

the UPMC Sickle Cell Program staff has no clinical privi-

leges. The raw data contain the EHR data of 2, 824 patients

selected by the principal diagnosis of SCD using the Interna-

tional Classification of Diseases (ICD)-9 and ICD-10 codes

listed in Table I36,37 between January 1, 2013, and November

1, 2018. The preprocessed dataset contains 446 patients and

3 299 unplanned inpatient visits, and Fig 1 summarises the

patient inclusion criteria of this study.

Outcome variables

An admission was defined as an unplanned inpatient hospital

admission, identified by a non-elective hospital admission

type as indicated by the EHR data. A re-admission was

defined as an admission within 30 days of the discharge date

of the last admission. We excluded any admission to a

maternity unit, skilled nursing facility, and rehabilitation

unit. In our study, a case was defined as an admission that

resulted in a re-admission, while a control was indicated by

an admission that did not result in a re-admission.

Predictor candidates

All the analyses were conducted on the de-identified patient

dataset, and patients who were admitted to other hospitals

not defined above were not captured. The preprocessed fea-

tures (n = 481), including labs, demographics, the number

of outpatient visits prior to the current visit, and the num-

ber of Emergency Department (ED) visits prior to the cur-

rent visit,15,16,38 were extracted from the EHR data using

both data-driven methods and clinical knowledge (Table II).

The dataset also included 21 variables extracted according

to the LACE13 and HOSPITAL14 indices: the length of stay,

the number of ED visits in the past six months, the num-

ber of (unplanned) hospital admissions in the past year,

whether any procedure was performed during the hospitali-

sation, and 17 ICD-9/ICD-10 code groups to calculate the

Charlson comorbidity index score in the LACE index. The

remaining features included 340 ICD-9/ICD-10 diagnosis

codes, two demographic features, four healthcare insurance

provider types, 42 medication groups, 13 lab categories, 25

procedures, two zip codes, five smoking status features,

seven vital signs, 34 hospital departments, and the number

of outpatient visits (prior to the current visit in the study

period). To further capture the trend in patient re-admis-

sion patterns, we included additional variables: the number

of ED visits (prior to the current visit) in the study period,

the number of days since the last inpatient visit (of the

current visit), and the number of inpatient visits (prior to

the current visit) in the study period. We included labs that

were processed through a centralised lab and excluded point

of care testing.

Table I. Sickle cell ICD-9/ICD-10 diagnosis codes.

ICD-9 282�41, 282�42, 282�6, 282�60, 282�61, 282�62, 282�63,
282�64, 282�68, 282�69

ICD-10 D57�0, D57�00, D57�01, D57�02, D57�1, D57�2, D57�20,
D57�21, D57�211, D57�212, D57�219, D57�3, D57�4,
D57�40, D57�41, D57�411, D57�412, D57�419, D57�8,
D57�80, D57�81, D57�811, D57�812, D57�819

ICD-10 D57�3 (sickle cell trait) was removed from the inclusion cri-

teria. After removing patients who were only diagnosed with sickle

cell trait (ICD-10 D57�3) during the study period, we had 1 009

patients left in the dataset.

Machine Learning for Predicting Re-admissions in SCD

ª 2020 British Society for Haematology and John Wiley & Sons Ltd 159
British Journal of Haematology, 2021, 192, 158–170



Data preprocessing

Each lab variable took six categorical values (Tables II and

III) to indicate whether a lab result was missing, normal,

low, high, low panic, or high panic. All lab variables were

defined based on central lab reference values and were not

adjusted to the normalised lab values for an individual

patient. The vital sign variables were kept as continuous in

the Random Forest (RF) model and were preprocessed into

categorical variables in the Logistic Regression (LR) and

Supported-Vector Machine (SVM) models. Table II includes

the cut-off values for preprocessing these variables into cate-

gorical variables. The reason why the vital sign variables were

coded as continuous instead of predefining the cut-off values

using domain knowledge as in the RF model is that the RF

algorithm automatically selects cut-off values that have high

predictive value (indeed, this is one of the RF algorithm’s

advantages). Out of the 3 299 encounters, 873 (26�5%) did

not have any vital signs taken; 685 (20�8%) did not have

smoking status; 656 (19�8%) did not have any medication

prescriptions; 454 (13�8%) did not have any procedures per-

formed; 39 (1�2%) did not have any lab tests. The latter

three could be classified as missing values or not applicable

depending on the individual patient circumstance. The rest

of the data did not contain any missing information. Table II

describes the percentage available information for each indi-

vidual variable in detail. Instead of imputing the missing val-

ues, we created a dummy variable for each variable that

contains missing information to indicate whether this vari-

able is missing in a particular encounter. This is a popular

method in the ML community to handle missing data, and

has shown superiority to other methods in healthcare applica-

tions where data is not missing at random but rather a reflec-

tion of the decision made by care providers.39,40 Twenty-seven

out of 195 re-admission patients died during the observation

period, and these 27 patients had 200 unplanned inpatient

admissions in total. Sixty out of 446 total patients died during

the observation period, and these 60 patients had 247

unplanned inpatient admissions. Since the number of admis-

sions that resulted in mortality was less than 2%, those admis-

sions were kept in the training and testing dataset.

Methods

To predict whether an inpatient visit would result in a re-ad-

mission, three standard ML algorithms were applied using the

scikit-learn package in Python: LR,41 SVM,42 and RF.43 Tradi-

tional risk-scoring systems, the LACE and HOSPITAL indices,

were also applied.13,14 Although LACE and HOSPITAL have

not been previously applied to the SCD patient population,

they provide two benchmark models for comparison. All vari-

ables needed to compute those two indices were contained in

the EHR data. In addition, to test the impact of patients with

frequent admissions on our ML models, we included a

weighted RF model where each admission was weighted inver-

sely by the total number of admissions incurred by the patient

during the study period. Supplementary Section A describes

the details of each algorithm and how they were used. The

features mentioned above were treated as inputs to these mod-

els. We randomly selected the admissions incurred by 30% of

the 195 return patients and 251 non-return patients to be the

testing set (n = 134); the training set contained the admissions

Fig 1. Study inclusion criteria flow chart. Description of the patient and inpatient visit inclusion criteria. At least one unplanned inpatient visit

was made by 455 patients from January 1, 2013 to November 1, 2018. All consecutive (n = 15) unplanned inpatient admissions where the dis-

charge and re-admission dates were the same were combined. We removed any inpatient encounters in which the patient was under the age of

18 at the time of the visit given that we did not have access to the Children’s Hospital EHR database. Since inpatient visits after October 1, 2018

were censored, we removed those visits, resulting in 446 patients and 3 299 unplanned inpatient visits.
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Table II. Data preprocessing.

Variables

(Categorical/Real

valued)

Num. vars.

before

After

(representation) Missing data Variable descriptions and preprocessing steps

Healthcare insurance

providers (C)

50 4 (4) No missing data Grouped insurance into 4 types: private,

government, auto/employment, Medicare/

Medicaid.

ICD-9/ICD-10 diagnosis

codes (C)

3849 340 (340) No missing data In addition to removing diagnosis codes that

appeared less than 20 times, we also hand-picked

37 groups of diagnosis codes, including 3 sickle

cell genotypes listed in Table IV and 17 groups

from the LACE index to calculate the Charlson

comorbidity index score.

Number of different

lab tests (C)

2945 13 (78) 39 (1�2%) encounters had

none of the 13 labs

performed;

see right for details on%

encounters(out of 3299)

having each of the 13 labs

performed

Hand-picked 13 sickle cell-related labs

[% encounters having this test performed]: white

blood cell count [98�5%], platelets count

[98�5%], haemoglobin [15�5%], haematocrit

[98�5%], reticulocytes count [77�1%], bilirubin

[62�2%], lactic dehydrogenase (LDH) [58�3%]

[tissue damage (i.e. anaemia)], lactate blood

[13�4%] (acid base imbalance i.e. lactic acidosis

secondary to shock), creatinine [91�5%], bun/

creatinine ratio [1�8%], creatinine clearance

[0%], Pro BNP [0%], sodium (from the

HOSPITAL index) [91�4%]. Each variable takes

six categorical values and was represented by

one-hot encoding. Table III describes the details

of how those lab variables were extracted

Procedures (C, R) 2808 25 (25) 454 (13�8%) encounters had

no procedures performed

Extracted whether any procedure was performed

during the hospitalisation (C) and the number of

blood transfusions performed (R); removed the

procedure codes (C) that appeared less than 20

times.

Number of

unique NDC codes

for medication (C)

4358 42 (43) 656 (19�8%) encounters had

no medication prescription;

the rest had at least one

prescription

Identified 553 unique drugs and grouped them

into 42 categories based on the drug effect. An

additional variable was added to indicate whether

any medication was prescribed during the

inpatient admission.

Zip codes (C) 190 2 (2) No missing data Removed the ones that appeared less than 20

times.

Smoking status (C) 10 5 (6) 685 (20�8%) encounters had

no smoking status

Regrouped into: never smoker, former smoker,

heavy tobacco smoker, light tobacco smoker,

passive smoke exposure–never smoker

Vital signs (R, C) 7 7 (RF: 15;

LR/SVM: 30)

873 (26�5%) encounters had

none of the vitals; see right

for details

[% encounters have this vital taken]:

BMI (R or C:<18�5, 18�5-24�9, 25-29�9, 30-34�9,
35-39�9,>=40) [71�5%], BP_systolic (R or C:

<90, 90-120, >120) [60�0%], BP_diastolic (R or

C: <60, 60-80, >80) [59�7%], pulse (R or C: <60,

60-100, >100) [59�7%], temperature (R or C:

<=35C/95F, (35C, 38C)/(95F, 100.4F),>=38C/

100.4F) [59�3%], respiratory_rate (R or C: <12,

12-18, >18) [59�6%], BP_position (C) [1�3%]

Number of hospital

departments (C)

34 34 (34) No missing data

Demographics (C, R) 2 2 (2) No missing data [% patients have this demographic reported]:

Gender (C) is binary [100%], age at encounter (R)

[100%]
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incurred by the remaining 211 patients. Thus, our training

and testing sets contained the same demographic information,

predictors and outcomes.

Model evaluation

We used the C-statistic, or equivalently the Area Under the

(receiver operating characteristic) Curve (AUC), and preci-

sion–recall curves as two quantitative metrics for identifying

predictive performance within each of the classifiers. For

intuition: a perfect classifier achieves a C-statistic of 1, while

random chance corresponds to a C-statistic of 0�5.
In addition, we reported the sensitivity and specificity of

our best-performing model. Since the number of samples in

our study was relatively small, our results might have been

sensitive to different training and testing splits. To address

this problem, we performed 100 different splits and averaged

the resulting 100 C-statistics.

Study results

Our training and testing sets contained the same demographic

information, predictors and outcomes. Table IV summarises

the characteristics and demographics of the postprocessed

dataset, as well as the distributions of LACE and HOSPITAL

indices computed using the postprocessed data. Our cohort

included 3 299 admissions of 446 adult patients with SCD. Of

these patients, 195 (43�72% of re-admission) patients were re-

admitted within 30 days for a total of 1 369 times. The aver-

age age of those 446 patients was 42�22 (SD = 19�03) years,

and the average age of the 195 patients who had re-admission

during the study period was 39�47 (18�14) years. The average

LACE and HOSPITAL indices of those 3 299 admission were

10�26 (2�79) and 8�16 (2�40), respectively.

To prevent overfitting, in the LR model we added LASSO

regularisation, and in the RF model we restricted the maxi-

mum depth of the decision trees to 15. Figure 2 summarises

the two performance metrics of each model — the Receiver

Operating Characteristic (ROC) and precision–recall curves.
LACE had a C-statistic of 0�6 (95% CI 0�57–0�64); HOSPI-

TAL performed slightly better than LACE (C-statistic 0�69,
95% CI 0�66–0�72); SVM with ‘rbf’ kernel outperformed

HOSPITAL in terms of C-statistic (C-statistic 0�72, 95% CI

0�69–0�75); LR outperformed SVM by a large margin (C-

statistic 0�77, 95% CI 0�73–0�8); RF performed similar to

logistic regression (C-statistic 0�77, 95% CI 0�73–0�79). Fur-
thermore, the weighted RF (C-statistic 0�77, 95% CI 0�73–
0�79) model performed similar to the RF model. Similarly, in

terms of precision–recall, SVM (AUC 0�68) outperformed

HOSPITAL (AUC 0�56), and the RF model (AUC 0�74) and

the LR model (AUC 0�72) performed the best. In both the

ROC and precision–recall curves, we observed that the curves

corresponding to RF and LR pointwise dominated those of

LACE and HOSPITAL indices.

Having established that the RF and LR models had the

best performance, we compared the sensitivities and specifici-

ties of those two models against those of the LACE and

HOSPITAL indices in Tables V and VI, respectively. In

Tables V and VI, the thresholds were chosen to match the

specificities of RF and LR models to those of the LACE index

and HOSPITAL index, respectively. A true negative case was

determined as a hospital admission that did not result in a

30-day re-admission, and we correctly predicted so, and a

true positive case was determined as a hospital admission

that did result in a 30-day re-admission, and we also cor-

rectly predicted so. In Tables V and VI, we again observed

that the performances of RF and LR were similar in terms of

sensitivity at their corresponding chosen thresholds, and the

Table II. (Continued)

Variables

(Categorical/Real

valued)

Num. vars.

before

After

(representation) Missing data Variable descriptions and preprocessing steps

Other variables

included (R)

7 7 (7) Not applicable Length of stay, number of outpatient visits, number

of ED visits, number of ED visits in the past

6 months, the number of days since the last

inpatient visit, number of inpatient visits in study

period, number of inpatient visits in the past year.

Description of the data preprocessing steps and the percentage of missing data. After preprocessing, we narrowed down the number of variables

in our model to be 481. In the Random Forest (RF) model, the vital-sign variables are continuous, and we represented each vital sign variable

using a tuple of size two with the first entry indicating whether the value of the variable is missing; this resulted in an overall vector representa-

tion of length 550. In the Logistic Regression (LR) and supported-vector machine (SVM) models, the vital-sign variables were preprocessed into

categorical variables and this resulted in an overall vector representation of length 565. In the third column, the number inside parentheses is the

size of the vector that we used to represent the corresponding features. The reasons that we used a larger vector to represent those features are

due to (i) missing data; and (ii) the fact that a categorical variable takes multiple values. In the fourth column, we described the percentage data

missing overall. In the fifth column, we described the details on the variables included and the percentage of patients with this variable measured

(if applicable) in square brackets.
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sensitivities of both models outperformed those of the LACE

index and HOSPITAL index, respectively.

To check the clinical integrity of our models, we selected a

subset of variables and reported their importance factors in

our RF model32 (see Fig 3) and in our LR model (Fig 4).

While the variables below the selected important predictors

from the LR model had near-zero coefficients (i.e., they had

minimal impact on the prediction outcome), the variables

outside the selected important predictions from the RF

model could still have relatively large impacts on the model.

Thus, in Fig 3 we provided the average information gain

(the amount of improvement in classification) of the selected

variables appearing in the RF model, and in Fig 4, we

reported both the direction and the standardised magnitude

Table III. Lab variables included in the study.

Lab category Included variable names Excluded variable names

White blood cell WBC, white blood cells, WBC count,

WBC & other nucleated cells

White blood cells–urine

>5 WBC/HPF (POC),

WBC esterase, rare WBCs present no organisms present,

No WBCs or organisms present, no WBCs present few gram-positive

cocci in pairs,

WBC–fluid,

WBC morphology,

WBC clumps,

Fecal WBC, immature WBC forms

Platelets Platelets, platelet count Platelet morphology, heparin pf4 platelet antibody, heparin platelet

ab, giant platelets, platelet estimate, large platelets, platelet function

p2y12, platelet sufficiency, mean platelet volume, rapid pra

(platelets), platelet function interp.

Haemoglobin Haemoglobin f, rapid haemoglobin s,

haemoglobin c. Crystals,

haemoglobin s, haemoglobin c,

haemoglobin a2, haemoglobin-plasma,

total haemoglobin, thb (haemoglobin)

Methaemoglobin &&, % oxyhaemoglobin, haemoglobin (poct),

haemoglobin - mixed venous, methaemoglobin - mixed venous, %

reduced haemoglobin, atypical haemoglobin, hemocue haemoglobin

(poct), methaemoglobin - venous, glycosylated haemoglobin,

methaemoglobin, carboxyhaemoglobin, ‘haemoglobin, qual’,

haemoglobin a, haemoglobin a1, haemoglobin a1c, haemoglobin

capillary (poc), bedside haemoglobin poct, haemoglobin-arterial,

haemoglobin-venous, calc. Haemoglobin istat

Haematocrit Haematocrit, haematocrit(hct) Haematocrit derived, haematocrit derived - mixed ven, haematocrit

(hct) manual pcv &&, haematocrit (poct), haematocrit-body fluid

(hct), haematocrit istat

Reticulocytes Absolute reticulocytes, reticulocytes,

reticulocytes-manual method

Immature reticulocyte fraction

Bilirubin Total bilirubin, direct bilirubin,

bilirubin unconjugated

Bilirubin-urine, bilirubin - urine (poc), bilirubin confirmation,

bilirubin unconjugated, other total bilirubin

Lactic dehydrogenase(LDH)

[tissue damage (i.e.

anaemia)]

Lactic dehydrogenase, lactic

dehydrogenase(ldh), other lactic

dehydrogenase(ld)

‘ldh, ascites fluid’

Lactate blood (acid base

imbalance, i.e. lactic

acidosis secondary to

shock)

Lactate, lactate blood, lactate whole

blood

Lactate csf, lactate istat

Creatinine Creatinine, creatinine, whole blood,

random urine creatinine, ‘creatinine,

random urine’

‘creatinine, jp drainage’, creatinine venous istat, fluid creatinine,

creatinine poct, urine protein/creatinine ratio, protein/creatinine

ratio, urine creatinine, total creatinine 24 hr urine, creatinine istat

Bun/creatinine ratio Bun/creatinine ratio Albumin/creatinine ratio

Creatinine clearance Creatinine clearance, creatinine

clearance (adult)

Creatinine clear (children’s)

BNP ‘Pro bnp, n-terminal’

Sodium Sodium (na), sodium (na) whole

blood, sodium na whole blood,

sodium arterial blood gas

Stool sodium (aka nastool), sodium istat, urine sodium (na), total

sodium (na) 24hr urine, sodium (na) (poct)

The percentage of reticulocytes results that was normal, low, and high in this study was 37�6%, 0�9%, and 61�5%, respectively.
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of coefficients of the selected variables in the LR model. Both

Figs 3 and 4 contain similar features.

Discussion

This is the first study to apply ML algorithms to predict the

hospital re-admission rate in patients with SCD. We have

shown how the risk of 30-day re-admission of a particular

SCD patient can be estimated by preprocessing the EHR data

associated with an inpatient admission using our data pre-

processing steps, and then inputting the data into our pre-

trained model. Our models can be adapted to other regions

and hospital systems by retraining the models to incorporate

different zip codes, and can be used at the point of discharge

in a clinical setting. All variables included in our model are

easily accessible through the EHR data.

Table IV. Characteristics and demographics of the postprocessed dataset.

Total

n = 446

Re-admission Group

n = 195

General Unplanned inpatient encounters 3 299 2 823 (1 369 re-admissions)

Number of ED visits 6 780 4 899

Number of outpatient visits 10 731 5 978

Average length of stay per admission 5�895 (5�974) 5�543 (5�586)
Average number of admissions per patient 7�40 (12�90) 14�47 (16�97)
Number with HbSS 255 139

Number with HbSC 55 30

Number with HbS/B0 or HbS/B+ 36 26

Age 18–29 157 80

30–49 136 56

50–69 108 44

70–89 42 14

≥90 3 1

Gender Male 175 70

Female 271 125

LACE Index 10�26 (2�79) 10�52 (2�73)
HOSPITAL index 8�16 (2�40) 8�53 (2�32)

Description of the 3 299 encounters of the 446 patients included in the postprocessed dataset. We also included the distribution of LACE and

HOSPITAL indices computed using the EHR data. The sickle cell genotypes HbS/B0 and HbS/B+ were grouped into one genotype since ICD-9

diagnosis codes do not distinguish between these two genotypes.

Fig 2. Performance metrics of machine learning models for predicting 30-day re-admissions in sickle cell disease. Two performance metrics mea-

sured out-of-sample and averaged over 100 independent train/test draws. (A) Receiver operating characteristic curves, and corresponding area

under the curve; also known as the C-statistic. (B) Precision–recall curves.
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The average age of SCD patients in our study cohort was

39�47 years. Since we excluded patients under 18 years old

(given that we did not have access to our local paediatric

EHR database), and the oldest patient in our cohort is above

90 years old (compared to 56 years old in other studies),5

the average age in our study is slightly higher than that

found in other studies (31�7 years old).5 We also found that

the risk of rehospitalisation is highest for the age group

Table V. Out-of-sample prediction performance of the random forest and logistic regression models compared to LACE index.

Model

Predicted

Positive (%)

Predicted

Negative (%)

RF True positive (%) 39�61 19�41 Sensitivity (%) 67�1 � 3�8
True negative (%) 11�62 29�37 Specificity (%) 71�1 � 4�3

LR True positive (%) 39�42 18�20 Sensitivity (%) 68�4 � 3�8
True negative (%) 12�02 30�36 Specificity (%) 71�1 � 4�3

LACE True positive (%) 27�19 30�89 Sensitivity (%) 46�8 � 4�1
True negative (%) 11�89 30�04 Specificity (%) 71�7 � 4�3

Confusion matrices and corresponding sensitivities and specificities for the random forest and logistic regression classifier. A true positive (nega-

tive) case was determined as the admission that did (not) result in a 30-day re-admission and we correctly predicted so. The threshold of the

LACE index was chosen to be 10,13 and the thresholds of RF and LR were chosen such that the specificities of these models matched the speci-

ficity of the LACE index. Results were averaged over 100 independent train/test draws, where an average test set contained 134 patients and

1 000 visits. Sensitivity and specificity were reported with 95% confidence intervals.

Table VI. Out-of-sample prediction performance of the random forest and logistic regression models compared to HOSPITAL.

Model

Predicted

Positive (%)

Predicted

Negative (%)

RF True positive (%) 26�29 32�72 Sensitivity (%) 44�5 � 4�0
True negative (%) 6�05 34�94 Specificity (%) 85�2 � 3�4

LR True positive (%) 24�85 32�77 Sensitivity (%) 43�1 � 4�0
True negative (%) 6�26 36�12 Specificity (%) 85�2 � 3�4

HOSPITAL True positive (%) 21�95 36�13 Sensitivity (%) 37�8 � 3�9
True negative (%) 6�19 35�73 Specificity (%) 85�2 � 3�4

Confusion matrices and corresponding sensitivities and specificities for the random forest and logistic regression classifier. A true positive (nega-

tive) case was determined as the admission that did (not) result in a 30-day re-admission and we correctly predicted so. The threshold of the

HOSPITAL index was chosen to be 7,14 and the thresholds of RF and LR were chosen such that the specificities of these models matched the

specificity of the HOSPITAL index. Results were averaged over 100 independent train/test draws, where an average test set contained 134 patients

and 1 000 visits. Sensitivity and specificity were reported with 95% confidence intervals.

Fig 3. Important predictors for 30-day re-admissions in sickle cell disease selected by random forest model. Importance scores of a subset of the

most important variables selected by the random forest model, averaged over the 100 independent train/test draws are reported. Importance is a

measure of each variable’s cumulative contribution toward reducing square error, or heterogeneity within the subset, after the dataset is sequen-

tially split according to that variable. Thus, importance reflects a variable’s significance in prediction. Absolute importance is then scaled to give

relative importance, with a maximum importance of 100. Since the decision boundary of the random forest is extremely non-linear, the features

above are not associated with directions. Although the random forest model is less interpretable, it can model more complex relations between

variables. *The vital signs in the RF model are continuous as explained in the data preprocessing section. **Diag: Asthma corresponds to the

International Classification of Diseases (ICD)-9 codes that start with 493 and the ICD-10 codes J44�0-J45; Diag: Chronic pulmonary disease corre-

sponds to the following ICD-9/ICD-10 codes: 416�8, 416�9, 490–505, 506�4, 508�1, 508�8, I27�8, I27�9, J40–J47, J60–J67, J68�4, J70�1, J70�3; Diag:
sickle cell genotype HbSS corresponds to the following ICD-9/ICD-10 codes: 282�62, 282�61, D57�0, D57�00, D57�01, D57�02; Diag: Hypertension

corresponds to the following ICD-9/ICD-10 codes: 401–405, I16, I10–I13, I15, N26�2. ***Zip code 15221 corresponds to the borough of Wilkins-

burg, PA, within the Pittsburgh metropolitan area. †Any procedure performed during the hospitalization is one of variables included by the

LACE and HOSPITAL indices. ††ICD-10-PCS procedure code 30233N1 corresponds to ‘transfusion of non-autologous red blood cells into

peripheral vein, percutaneous approach’. ****Med: Supplement includes all dietary supplements; Med: Infection indicates whether a patient was

prescribed with any antibiotics during the hospitalization (this variable is used to indicate whether the patient had any bacterial infection in addi-

tion to the ICD-9/ICD-10 coding); similarly, Med: Neuro psychiatric includes all antipsychotic medications; Med: Cardiac disease includes all car-

diac medications; Med: Allergy and Med: Skin include all medications that can be used to treat allergy and skin problems, respectively.
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18–29 in both Table IV and Fig 4, which is consistent with

the results of a multistate study of patients with SCD that

revealed that acute care encounters and re-admissions were

most frequent in the 18–30 age group.6

In our study, RF and LR appeared to be the best ML

models in predicting hospital re-admissions as seen in similar

ML studies.32 To account for the fact that some patients

might have had a higher number of re-admissions, we intro-

duced a weighted RF model where each admission was

weighted inversely by the total number of admissions

incurred by the patient during the study period. The

weighted RF model performed similar to the unweight RF

Num. inpatient visits in past year
Num. days since last inpatient visit

Num. inpatient visits in study period
Num. ED visits in past 6 months

Num. ED visits in study period

Num. Outpatient visits
Length of stay

Never smoker
Lab: Normal reticulocytes

Lab: High platelets

Lab: Normal bilirubin

chronic pulmonary disease

f
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Fig 4. Important predictors for 30-day re-admissions in sickle cell disease selected by logistic regression model. The normalized magnitude of a

subset of the most important variables selected by the logistic regression model, averaged over the 100 independent train/test draws, is reported.

The variables in blue are positively associated with the prediction outcome, and the variables in yellow are negatively associated with the predic-

tion outcome. *Diag: Sickle cell genotype HbSS corresponds to the following ICD-9/ICD-10 codes: 282�62, 282�61, D57�0, D57�00, D57�01,
D57�02; Diag: Chronic pulmonary disease corresponds to the following ICD-9/ICD-10 codes: 416�8, 416�9, 490-505, 506�4, 508�1, 508�8, I27�8,
I27�9, J40-J47, J60-J67, J68�4, J70�1, J70�3; Diag: Asthma corresponds to ICD-9 codes that start with 493 and the ICD-10 codes J44�0-J45 **Med:

Cardiac disease indicates whether a patient was prescribed with any cardiac medications during his or her stay, and this variable is used to indi-

cate whether the patient has any cardiac comorbidities in addition to the ICD-9/ICD-10 coding; similarly, Med: Overdose reversal includes all

medication that can be used to reverse a drug overdose; Med: Supplement includes all dietary supplements; Med: Neuro sedative includes all

anesthetics; Med: Gastrointestinal includes all drugs that can treat gastrointestinal diseases. ***ICD-10-PCS procedure code 30233N1 corresponds

to ‘transfusion of non-autologous red blood cells into peripheral vein, percutaneous approach’. ****Zip code 15221 corresponds to the borough

of Wilkinsburg, PA, within the Pittsburgh metropolitan area. †Any procedures performed during the hospitalization is one of the variables

included by the LACE and HOSPITAL indices.
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model, indicating that the impact of those patients with fre-

quent hospital admissions was small in our LR and RF models.

We discovered that ML methods were able to pick out

additional variables specific to the SCD cohort that are

underrepresented or absent in the traditional generalised hos-

pital re-admission scoring systems such as LACE (four vari-

ables) and HOSPITAL (seven variables). All the variables

from LACE and HOSPITAL were represented in our model,

however, our models suggested the following variables were

also predictive (Figs 3 and 4): labs (reticulocytes, platelets,

bilirubin, white blood cells), demographic information (gen-

der, zip code 15221), and SCD-specific comorbidities

(chronic pulmonary disease, asthma).

For example, in our LR model (Fig 4), we observe that

the majority of variables are in alignment with clinical expe-

rience and past studies. For instance, the number of inpatient

visits over the past year, length of stay, and ED visits over

the past six months are known to be risk factors for hospital

re-admissions.44 The model found these variables positively

correlated with higher risk of hospital re-admissions. Con-

versely, having had a recent blood transfusion correlated neg-

atively with the risk of hospital re-admission in the model.

These findings lend support to a previous study where the

authors found that transfusion was associated with a reduced

estimated odds ratio of inpatient mortality of 0�75 (95% CI:

0�57–0�99) and a decreased odds ratio of 30-day re-admission

of 0�78 (95% CI: 0�73–0�83) in the Truven Health MarketS-

can� Medicaid Databases.9

Our RF model (Fig 3) contains a larger set of important

features when compared with our LR model (Fig 4). In addi-

tion to the variables mentioned above, the RF model also

includes variables such as whether the patient has asthma or

chronic obstructive pulmonary disease. However, in this

model, the variables could contribute either positively or

negatively to the re-admission risk. For example, it is possi-

ble that the age of the patient could contribute both posi-

tively and negatively towards the final re-admission risk

depending on the number of inpatient re-admissions that the

patient had in the past year. Thus, the features in Fig 3 are

not associated with any directions.

Our study underscores how ML may impact clinical care in

SCD. However, since ML models test for correlations and not

causations, further domain knowledge is needed to implement

the model. Here we provide some examples of how such

domain knowledge can be applied to exact meaningful inter-

ventions. For example, we found that zip code 15221, cardiac

comorbidities (variable Med: Cardiac disease), and age are sig-

nificantly associated with hospital re-admission risks among

SCD patients. Since zip code 15221 is associated with a lower-

income community, and community resources may affect

health outcomes, SCD clinics and comprehensive programmes

could mobilise to increase access to key healthcare

resources for individuals with SCD residing in socioeconomi-

cally disadvantaged communities. For instance, SCD providers

could establish strategic partnerships with community-based

organisations and primary-care providers in Federally Quali-

fied Health Centres—community-based healthcare providers

that receive funds from the Health Resources & Services

Administration Health Center Program for primary-care ser-

vices in underserved areas—to provide behavioural health ser-

vices, social services, and community outreach. In addition,

healthcare plans and insurance providers may assist the SCD

providers by assigning case managers and bolstering social

work support for those patients with the highest re-admission

risk based on socioeconomic factors. Our ML model also iden-

tified medical factors for which both inpatient and outpatient

interventions may be critical. We confirmed the emerging evi-

dence that cardiac comorbidities significantly modulate the

SCD phenotype45 by demonstrating their impact on 30-day

re-admission. Finally, age also emerged as an important factor

in our model. This finding suggests that younger patients with

SCD who may struggle navigating the challenging transition

from paediatric to adult care could be engaged by partnering

with the paediatric SCD providers to ensure continuity of care,

ideally in a medical-home setting. In summary, our study

underscores the importance of identifying factors that affect

30-day re-admission that can be targeted with a comprehen-

sive, holistic, and medical-home approach in SCD. This strat-

egy is already bearing fruit for other chronic diseases that

affect individuals throughout the lifespan46 and is likely to be

critical for the vulnerable SCD community.

There are several limitations to our ML models. First,

ICD coding may not always be reliable in EHR data-

sets.33,36,37 Since our dataset was de-identified, we were not

able to verify if coding was correct by checking individual

patients’ EHR records. However, the majority of patients in

our study cohort were diagnosed with SCD at least twice

during the study period, increasing the likelihood that they

were correctly identified as having SCD. To check the

robustness of the SCD coding in our dataset, we re-per-

formed two experiments with the following modifications:

(i) with a subset of patients (identified in Table IV) with

known sickle cell genotypes; and (ii) with a subset of patients

with at least two unplanned hospital re-admissions. In both

scenarios, we observed similar results. Tables V and VI in

Section B of the Supplementary Materials illustrate the per-

formance of our models as well as that of LACE and HOSPI-

TAL indices under the above two scenarios. In addition,

SCD genotypes were included as features in our models

using ICD coding. In particular, our LR model revealed that

the genotype haemoglobin SS (HbSS) was negatively associ-

ated with re-admission risk (Fig 4). There is evidence indi-

cating that the coding of genotype HbSS is relatively

accurate (with an error rate of 3%), but that the coding of

genotype HbSC and HbS/B+ could be highly inaccurate (with

error rates of 61% and 52%, respectively), which is a limita-

tion of coding in classifying genotype.37 Thus, further

research is needed to verify the impact of the latter two SCD

genotypes on re-admission risk. Second, socioeconomic fac-

tors and social determinants of health are inconsistently
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documented or not always accessible through the EHR

alone.4,14-16 Given this limitation, we relied on zip codes and

insurance status as proxies of socioeconomic status

(Table II). Third, the data in our study might have con-

tained missing admissions since patients might have been

admitted into other hospitals outside the UPMC system.

This limitation is similarly present in other studies,28,30 and

may be overcome by a more comprehensive data collection

process (e.g. via survey), or by accessing multiple regional

EHRs, to ensure the label of each visit is correct. Since our

data were de-identified, we are unable to implement these

measures in our study. Finally, since SCD is a rare disease in

the US according to NIH criteria, our sample size was rela-

tively small. This precluded the use of more sophisticated

ML models such as deep neural networks.

Our study demonstrates the feasibility of incorporating

predictive analytical models with EHR data mining on a

real-world dataset to attempt to illuminate re-admission pat-

terns within a healthcare ecosystem; in particular, we showed

the feasibility and potential of ML algorithms in predicting

30-day unplanned hospital re-admissions for patients with

SCD. Our best models, RF and LR, had relatively high pre-

dictive powers and could be useful in predicting 30-day re-

admissions within hospital systems. Thus, training ML mod-

els with disease-specific variables can be valuable tools in

predicting hospital re-admission risk for SCD patients and

may identify clinical variables not commonly included in re-

admission scores. If our model shows that a patient has a

high re-admission risk, then hospital resources can be allo-

cated at point of discharge to include triaging with follow-up

visits and allocating specific resources to patient and family

members to reduce re-admissions. In summary, we have

developed a model that is more sensitive than existing mod-

els, suggesting that we can refine how we identify patients at

high risk for re-admission in SCD, but more investigation is

needed to translate our findings into clinical interventions.
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