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Analysis of the Human Plasma Proteome Using
Multi-Nanoparticle Protein Corona for Detection of
Alzheimer’s Disease

Claudia Corbo,* Andrew A. Li, Hossein Poustchi, Gha Young Lee, Sabrina Stacks,
Roberto Molinaro, Philip Ma, Theo Platt, Shahed Behzadi, Robert Langer, Vivek Farias,
and Omid C. Farokhzad*

As the population affected by Alzheimer’s disease (AD) grows, so does the
need for a noninvasive and accurate diagnostic tool. Current research reveals
that AD pathogenesis begins as early as decades before clinical symptoms.
The unique properties of nanoparticles (NPs) may be exploited to develop
noninvasive diagnostics for early detection of AD. After exposure of NPs to
biological fluids, the NP surface is altered by an unbiased but selective and
reproducible adsorption of biomolecules commonly referred to as the
biomolecular corona or protein corona (PC). The discovery that the plasma
proteome may be differentially altered during health and disease leads to the
concept of disease-specific PCs. Herein, the disease-specific PCs formed
around NPs in a multi-NPs platform are employed to successfully identify
subtle changes in plasma protein patterns and detect AD (>92% specificity
and ≈100% sensitivity). Similar discrimination power is achieved using
banked plasma samples from a cohort of patients several years prior to their
diagnosis with AD. With the nanoplatform’s analytic ability to analyze
pathological proteomic changes into a disease-specific identifier, this
promising, noninvasive technology with implications for early detection and
intervention could benefit not only patients with AD but other diseases as
well.
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1. Introduction

Alzheimer’s disease (AD) is a type of de-
mentia affecting one in ten people over
the age of 65[1,2 ] for which existing di-
agnostic methods are both very invasive
and costly. This neurodegenerative disorder
causes major disruptions in cognitive pro-
cesses such as memory and behavior, with
yearly increases in the number of affected
individuals worldwide.[2,3 ] Especially since
its prevalence is expected to increase to 88
million by 2050 from 55 million in 2019, the
demand for appropriate treatment will con-
tinue to grow.[2 ] Because current research
hypothesizes that AD pathogenesis begins
20–30 years before a clinical diagnosis from
presenting symptoms,[4–9 ] the development
of robust early diagnosis remains a crucial
clinical and social priority.

Current approaches to diagnosis of AD
require an invasive lumbar puncture to
measure levels of A!42, tau, and p-tau in
cerebrospinal fluid (CSF).[10,11 ] Moreover,
because no single biomarker can accurately
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diagnose AD,[12,13 ] patients are subjected to multiple analyses to
increase the probability of an accurate diagnosis. Thus, it is cru-
cial to discover more accurate diagnostic markers for the early
detection of AD and develop a robust, non-invasive method of
measuring them. Analyzing patients’ blood (serum and plasma)
is an appealing possibility, since drawing blood creates only mi-
nor discomfort and allows for frequent testing, follow-up, and
access to clinical trials.

Nanoparticles (NPs) in biological fluids interact with a wide
range of biomolecules, particularly proteins, which are later ad-
sorbed onto the NPs’ surface to form a biomolecular layer re-
ferred to as the protein corona (PC).[14–18 ] The PC gives the NPs
a new biological identity distinct from their pristine synthetic
identity,[19–21 ] which is “seen” by cells and processed by biological
systems in a specific manner depending on its composition.[17 ]

Indeed, the specific content of the PC dramatically affects the bi-
ological fate of the NPs in terms of uptake and interactions with
cells, pharmacokinetics, therapeutic efficacy, toxicity, and circula-
tion time.[20,22–31 ]

It is increasingly being accepted that alterations in the plasma
proteome, caused by a spectrum of diseases, can affect the PC
composition, generating disease-specific protein coronas.[32–34 ]

Therefore, characterization of personalized PCs may become a
tool for the detection of variations in plasma protein concentra-
tions and a valuable alternative method for capturing fluctuations
in circulating protein concentrations undetectable with conven-
tional blood analysis. The scientific communities in multiple dis-
ciplines have long been working to develop blood-based diag-
nostic technologies.[35–42 ] Indeed, recent studies have tested the
feasibility of employing the personalized-PC formed on NPs to
detect pancreatic cancer or assess the status of acute viral in-
fection using dynamic-light scattering[38,39 ] and SDS-PAGE.[40 ]

However, these approaches need further development to improve
specificity, prediction rate, and sensitivity. Recently, our group
and others have employed single- and/or multi-nanoparticle pro-
tein coronas to detect cancer and inflammatory diseases.[43–45 ]

Herein, combining complementary expertise in array recogni-
tion, bioinformatics, and machine learning, we describe the de-
velopment of a multi-nanoparticle protein corona nanoplatform
capable of detecting important proteins among subtle corona
changes and robustly identifying AD in its early stages. The
nanoplatform is composed of 6 NPs similar in size, but having
different composition and surface functionalization (i.e., 100 nm
polystyrene and silica NPs in their plain, -amino, and -carboxyl
conjugated forms). The differences in their surface properties
mean that the 6 NPs form similar but distinct protein corona pat-
terns and, in turn, the entire set of coronas is different when in-
cubated in plasma from diseased versus healthy individuals, that
is, Alzheimer’s disease protein coronas (AD-PCs) versus healthy
protein coronas (H-PCs). Using quantitative LC-MS/MS analysis,
we identified and quantified the proteins constituting the overlap-
ping but distinct protein corona patterns for each plasma sample
in this 6-NP combination. We then used the compositions of AD-
PCs and H-PCs in machine-learning analyses that generated an
AD-specific protein corona identifier for later use in validating
the nanoplatform technology on a blinded set of plasma samples.
The AD and healthy control samples were divided into a training
set for supervised classification and predictor identification and
a test set for the prediction of blinded samples, including plasma

samples for the cohort studies (Figure 1). The nanoplatform dis-
criminated between AD patients and healthy individuals with an
accuracy of ≈94%, and achieved successful early detection of AD
with an accuracy of ≈96% in a retrospective cohort of individuals
healthy at the time of plasma collection but diagnosed with AD
several years later.

2. Results and Discussion

2.1. Nanoparticle Characterization and Protein Corona Formation

The nanoplatform was composed of 6 NPs with different surface
modifications intended to form varying protein corona profiles
upon incubation in plasma samples. The 6 NPs were 100 nm
silica (S) or polystyrene (P) nanoparticles with either plain (P
and S), amino-conjugated (P-NH2 and S-NH2), or carboxyl-
conjugated (P-COOH and S-COOH). As initial proof-of-concept,
the size, zeta potential, and morphology of the NPs with and
without PC were examined for differences between AD and con-
trol plasmas. The NPs’ size distributions were characterized us-
ing Nanosight’s nanoparticle tracking analysis. Before plasma
incubation, all NPs were homogeneous in size (Figure 2A and
Figure S1, Supporting Information), with the polystyrene NPs
ranging from 90 to100 nm and the silica NPs ranging from 80
to 100 nm. Our characterization confirmed the manufacturer’s
specifications that the NPs had a negative surface charge. Af-
ter plasma incubation, however, we found that all 6 NPs coated
with protein corona displayed less homogeneity, that is, increased
size and wider distribution (Figure S1, Supporting Information;
scatter plot). Consistent with the literature, the average size in-
crease was 30 nm, indicative of an average thickness of 15 nm for
the protein corona layer.[46,47 ] The surface charge of the protein-
coated NPs also decreased, consistent with the typical charge
of plasma proteins of ≈−20 to −30 mV (Figure 2A). The sur-
face charge differences between AD plasma-incubated NPs and
healthy plasma-incubated NPs were not significant enough to be
a factor in AD discrimination. NP morphology was characterized
using transmission electron microscopy (TEM). Incubation in
plasma did not alter the spherical and homogenous morphology
of the NPs, but a thin layer was visible around the NPs, which
was confirmed by the size increase from the characterization de-
scribed above (Figure 2B).

2.2. Protein Corona Analysis

Proteins constituting the different PCs of NPs were resolved
by gel electrophoresis (SDS-PAGE) and later stained for exam-
ination with Coomassie Brilliant Blue (Figure 3). As expected,
gel eletrophoresis patterns of the protein corona were different
for the 6 nanoparticles, for example, silica and polystyrene NPs
demonstrated different abilities to adsorb proteins. Indeed, we
observed less intense bands in the PCs of silica NPs compared
to the bands of the polystyrene NPs PCs. Also, the PC of plain
polystyrene was much more abundant in the range of molecular
weights 55–65 kDa, indicating that albumin was more abundant
in this PC than in others. This scenario was observed both for
AD patients’ plasma and for the control plasma, as highlighted by

Adv. Healthcare Mater. 2021, 10, 2000948 © 2020 Wiley-VCH GmbH2000948 (2 of 10)



www.advancedsciencenews.com www.advhealthmat.de

Figure 1. Schematic representation of the personalized PC test workflow. 6 NPs (polystyrene and silica, both in their plain, amino-, and carboxyl-
conjugated forms) were incubated with the plasma of healthy individuals and AD patients, and the PCs formed on each NPs were identified and quantified
by LC-MS/MS analysis. The personalized PCs formed on the 6 NPs result in the enrichment of an overlapping but distinct pool of specific plasma proteins
representing the bases for subsequent statistical analysis. Using classification approaches, we identified the proteins whose contributions to the PC were
consistently different between AD and healthy samples. Those proteins were then used to establish criteria for discrimination between the two groups.
Next, we evaluated the accuracy of the system by analyzing blind plasmas. We also included a set of cohort samples of patients diagnosed with AD
several years after the plasma collection.

the blue arrows in Figure 3. Analysis of the bands in the PCs by
densitometry confirmed that silica NPs generally adsorbed lower
amounts of proteins, but those proteins were more diverse. In-
deed, while more than one band was detected in the range of al-
bumin for polystyrene NPs’ PC (red arrows), several differences
were observed between the PCs of AD patients and healthy in-
dividuals, especially for silica NPs (green arrows). While a de-
tectable difference was reassurance that the different NPs were
each creating a different protein corona profile, the gel differ-
ences alone were not sufficient to accurately discriminate AD pa-
tients from healthy controls. Next, the composition of the PC was
analyzed by mass spectrometry to characterize the individual pro-
teins and their relative amounts. We identified 446 and 682 pro-
teins in the non-cohort and cohort data sets, respectively. We also
determined the contribution of individual proteins in the PCs by
spectral-counting label-free analysis, a mass spectrometry tech-
nique widely used for quantitative analysis of proteins, recently
employed by others for PCs of NPs.[48–50 ] For each patient (AD
and healthy), the percentage contribution was calculated 6 times,
that is, once for each NP (full raw data are provided in Tables S5
and S6, Supporting Information, Supporting Information). Un-
like the practice in classic biomarker discovery experiments, we
did not check for single proteins exclusively identified in the PC
of AD to discriminate disease samples from healthy ones. The
combination of the PCs of the 6 NPs generated an AD-specific
PC identifier that was different from that of healthy individuals.

2.3. Machine-Learning Outcomes

The mass spectrometry data from the nanoplatform’s protein
coronas were then fed into a machine learning algorithm to dis-

criminate AD and early-AD protein coronas from H-PCs. The 19
plasma samples (11 AD samples and 8 healthy samples) were
randomly stratified into two sets: A training set of 10 samples
(6 AD and 4 healthy) and a test set of 9 samples (5 AD and 4
healthy). The training set was used to train a random forest clas-
sifier algorithm[51,52 ] designed to categorize protein corona mass
spectrometry data into either “AD” or “healthy.” Low-rank tensor
factorization[53–55 ] (discussed in more depth in Section 4) was uti-
lized to process and de-noise the spectrometry data before clas-
sifier training. This de-noising implicitly decreases the consider-
able variability noticed in individual corona elements. The pro-
cessed spectrometry data were then used to train the random for-
est classifier. We then trained a random forest classifier, a popu-
lar non-linear classification algorithm,[51,52 ] on the resulting de-
noised data.

We then tested the accuracy of this classifier on the test set,
for the purpose of correctly labeling these blind samples as “AD”
or “healthy.” We measured the sensitivity and specificity of our
classifier (Table 1); we report these with 95% confidence inter-
vals which, given the relatively small number of plasma sam-
ples, were calculated via a Bayesian approach (using the Jeffreys
noninformative prior). We also measured the receiver operating
characteristic (ROC) curve (Figure 4), which captures the range
of sensitivity and specificity pairs achievable with our classifier;
the specific numbers reported in Table 1 can be thought of as a
single point on this curve, shown in red in the figure. Finally, we
measured the area under the ROC curve, or area under the curve
(AUC), which is a standard measure of accuracy for classification
tasks.

To reduce the bias in results that may have been introduced by
how the data were split between the training and testing sets, the
classifier training and its characterization were re-run with the
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Figure 2. Physicochemical properties of NPs before and after incubation with human plasmas. A) Surface charge and size of NPs before and after
incubation with AD and control plasmas. Results are reported as average ± SD (n= 3). B) TEM analysis. NPs before and after coating with AD protein
coronas, analyzed by transmission electron microscopy to evaluate potential changes in morphology and size. All the NPs show a size increase following
incubation in plasma.

Table 1. Non-cohort sensitivity, specificity, and area under ROC curve.

Array size Sensitivity [%] Specificity [%] AUC [%]

1 90.3 83.7 92.89

[5298] [4295]

2 98.1 90.4 98.92

[60 100] [4897]

3 98.5 91.3 99.40

[60 100] [4997]

4 99.6 91.6 99.65

[62 100] [4997]

5 99.4 92.8 99.74

[61 100] [5098]

6 100.0 93.7 99.80

[62 100] [51.98]

Classification accuracy for PC nanosystem with array size increasing from 1 to 6
nanoparticles (column 1); Sensitivity and specificity, along with associated confi-
dence intervals, improve with additional NPs (columns 2–3); Area under the ROC
curve also increases with array size (column 4); Experimental results are averaged
over 1000 independent draws of a training set comprising 10 plasmas, with evalua-
tion on the remaining 9 plasmas; Mean values, along with 95% confidence intervals,
are displayed.

training and testing sets randomly chosen in 1000 replications
between >10 000 stratified partitions. All reported values are av-
eraged over these 1000 replications, with an average sensitivity
of 99.96% (rounded to 100.0% in the table), average specificity of
93.7%, and an average AUC of 99.8%.

The classifier training procedure of 1000 replications with ran-
dom draws of training versus testing set was then repeated with
data from only 1 NP instead of 6 to quantify the increase in ro-
bustness introduced by the multi-NP platform. Table 1 depicts
the differences in sensitivity, specificity, and AUC in a single-NP
platform for each of the 6 NPs. The single-NP platform displayed
statistically significantly lower sensitivity and specificity with p
< 10−119 in a one-sided Wilcoxon signed-rank test in comparison
to the 6-NP multi-nanoplatform (Table S2, Supporting Informa-
tion). The robustness versus number of NPs was further analyzed
by repeating the procedure with a nanoplatform consisting of 2
to 5 NPs (Table 1; rows 2–5). For the most part, the nanoplat-
form improves with more nanoparticles, with the highest sensi-
tivity and specificity achieved by the full 6-NP system (Table S2,
Supporting Information; FDR < 1%). This confirms that extract-
ing different PC profiles with multiple NPs with different sur-
face properties drives the robustness of our nanoplatform. Since
our aim was also to verify the performance of this platform for
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Figure 3. SDS-PAGE gels and densitometric analysis of protein corona profiles. PC profiles analyzed and compared through SDS-PAGE. 4 representative
gels of AD PC and 1 healthy PC are shown. Loading order: P, P-NH2, P-COOH, S, S-NH2, S-COOH. Intensity of bands relative to plasma proteins adsorbed
on NPs was analyzed by ImageJ (y-axis: intensity, x-axis: molecular weight).

Figure 4. Performance of full nanoparticle array on non-cohort. Left) ROC curve for full PC nanosystem with 6 nanoparticles on non-cohort samples.
Area under this curve is equal to 99.80%. The red point indicates the reported sensitivity and specificity, and the rest of the curve represents potential
tradeoffs between sensitivity and specificity. Right) The same ROC curve, zoomed into the top left portion. Experimental results are averaged over 1000
independent draws of a training set comprising 10 plasmas, with evaluation on the remaining 9 plasmas.
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Table 2. Cohort sensitivity, specificity, and area under ROC curve.

Array size Sensitivity [%] Specificity [%] AUC [%]

1 92.0 71.2 93.43

[6398] [2193]

2 96.5 86.3 98.09

[6999] [2797]

3 96.5 87.4 98.46

[6999] [2798]

4 97.1 88.9 98.85

[7099] [2898]

5 97.5 91.4 99.22

[70 100] [2999]

6 97.6 95.5 99.47

[7199] [3199]

Classification accuracy for PC nanosystem with array size increasing from 1 to 6
nanoparticles (column 1); Sensitivity and specificity, along with associated confi-
dence intervals, improve with additional NPs (columns 2–3); Area under the ROC
curve also increases with array size (column 4); Experimental results are averaged
over 1000 independent draws of a training set comprising 11 plasmas, with evalua-
tion on the remaining 10 plasmas; Mean values, along with 95% confidence intervals,
are displayed.

early diagnosis, we also included in this analysis samples from a
cohort study: Plasma of individuals healthy at the time of blood
collection who developed AD several years later. We followed the
procedure described above, with 1000 replications with random
splits between training and testing sets. The splitting in this in-
stance consisted of 11 training samples (8 AD, 3 healthy) and
10 test samples (8 AD, 2 healthy). Raw mass spectrometry data
were processed and de-noised as described above, followed by the
random forest classifier. Average sensitivity and specificity were
97.6% and 95.5%, respectively (Table 2), and the average AUC
was 99.47 (Figure 5). Given that both values exceeded 95%, we
posit that the nanoplatform developed here successfully detects
early-onset AD.

2.4. Bioinformatics Outcomes

The random forest model yields an importance score for each
variable (i.e., each NP-protein pair). This score is related to the
significance of that variable in discriminating healthy versus AD
samples (described in detail in Section 4) and allows us to iden-
tify the proteins that are overall most important to our model.
We sorted proteins by their model importance score—Figure 6
and Table S3, Supporting Information, show the 30 proteins with
highest model importance score for the non-cohort samples, and
Figure 7 and Table S4, Supporting Information, show the 30
highest-scoring proteins for the cohort samples. These proteins
were detected by combining all 6 NPs. To evaluate the robustness
of our model, we calculated these importance scores across the
previously described 1000 random splits of the data, to determine
whether the relative importance of these proteins is stable. Fig-
ures 6 and 7 also show, for each importance score, the 25th to
75th percentiles of that score across the 1000 splits of the data.
The relatively small size of these intervals demonstrates that the
set of important proteins is robust to the split of data used for
model training, illustrating model stability.

Furthermore, to gain insight into the biological explanation be-
hind the machine learning-facilitated discovery of proteins signif-
icant in AD, we interrogated the Open Targets database (https:
//www.opentargets.org/; date accessed: 28 June 2018). Open Tar-
gets integrates public databases such as GWAS Catalog, UniProt,
Gene2Phenotype, Cancer Gene Census, IntOGen, Europe PMC,
and Reactome to calculate an association between a protein and
a disease on a scale of 0.0 (weakest) to 1.0 (strongest).[56 ] Using
the Experimental Factor Ontology (EFO) disease terms of “neu-
rodegenerative disease (EFO:0 005772)” and “Alzheimers disease
(EFO:0000249)” (a child in the ontology tree of neurodegener-
ative diseases), we queried Open Targets for all the associated
targets and respective scores. Of the 444 total proteins identified
in the non-cohort sample, 8 have an Open Targets score denot-
ing a strong association (above 0.8) with neurodegenerative dis-
ease. By comparison, of the 681 total proteins identified in the co-
hort sample, 20 have a strong association with neurodegenerative

Figure 5. Performance of full nanoparticle array on cohort. Left) ROC curve for full PC nanosystem with 6 nanoparticles on cohort samples. Area under
this curve is equal to 99.47%. The red point indicates the reported sensitivity and specificity, and the rest of the curve represents potential tradeoffs
between sensitivity and specificity. Right) The same ROC curve zoomed into the top left portion. Experimental results are averaged over 1000 independent
draws of a training set comprising 11 plasmas, with evaluation on the remaining 10 plasmas.
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Figure 6. Protein importance and model stability for classification (non-cohort). Random forest importance scores for the top 30 proteins with highest
total score (summed across 6 NPs) in the non-cohort classification model. Each column indicates the total classification importance of a single protein,
with the 6 colored stacks within a column indicating the separate importances of the observed interaction of that protein with each of the 6 NPs. Each
colored stack is accompanied by vertical error bars that indicate the 25th and 75th quantiles of the same importance score across classifiers trained on
1000 random draws of the training set from the data (i.e., the same train-test draws previously used to evaluate the model). The relatively small sizes of
these confidence intervals indicate the “stability” of the trained model in terms of the protein-NP interactions upon which it crucially relies, with respect
to random draws of data. The proteins are listed in Table S3, Supporting Information.

Figure 7. Protein importance and model stability for classification (cohort). Random forest importance scores for the top 30 proteins with highest total
score (summed across 6 NPs) in the cohort classification model. Each column indicates the total classification importance of a single protein, with the
6 colored stacks within a column indicating the separate importances of the observed interaction of that protein with each of the 6 NPs. Each colored
stack is accompanied by vertical error bars that indicate the 25th and 75th quantiles of the same importance score across classifiers trained on 1000
random draws of the training set from the data (i.e., the same train-test draws previously used to evaluate the model). The relatively small sizes of these
confidence intervals indicate the “stability” of the trained model in terms of the protein-NP interactions upon which it crucially relies, with respect to
random draws of data. The proteins are listed in Table S4, Supporting Information.

disease. Among these, Apolipoprotein E (P02649/APOE) is very
well known to be associated with late-onset sporadic AD, partic-
ularly its E4 variant, which represents the most well-known ge-
netic risk factor in many ethnicities.[57 ] This protein was present
in both sets. In addition, we see P14136/GFAP Glial fibril-
lary acidic protein, whose gene mutations cause Alexander dis-
ease, a rare disorder of astrocytes in the central nervous sys-
tem. P05067/APP Amyloid beta precursor protein, a well-known
target for Alzheimer’s disease, was present only in the cohort
sample.[57 ]

Though the high Open Targets scoring proteins vary in their
Random Forest classification importance, the sample size is too
small to calculate accurate absolute or relative model perfor-
mance.

3. Conclusion

Here we demonstrate that PCs from six different NPs could be
used to train a classifier machine-learning algorithm to diagnose
both AD and early-onset AD with significant accuracy and speci-
ficity. While CSF-based and single-biomarkers blood-based tests
suffer from high rates of false positives and require further com-
plementary analyses to reach a final diagnosis, this approach can
record the interactions between NPs and all the specific high-
affinity proteins in a biological fluid, for example, plasma, allow-
ing the generation of a highly specific PC identifier for AD.

In the literature, the combination of CSF A!1-42 and T-tau at
baseline yielded sensitivity and specificity levels of 95% and 83%,
respectively, for clinical AD diagnosis in patients with MCI.[58 ]
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On the other hand, the PET imaging system was able to dis-
criminate between Alzheimer’s and other dementias with > 90%
sensitivity and 70% specificity.[59 ] Our nano-array system’s sensi-
tivity and specificity for AD detection from healthy cohorts were
≈100% and > 93%, respectively.

To reiterate, our approach is not based on the identification of
specific, predetermined biomarkers. The NPs concentrate only
those proteins showing the highest affinity toward their surface,
thus allowing the detection of proteins that undergo only slight
changes in abundance in the presence of a disease. In other
words, we can say that our library of NPs interacts with hun-
dreds of proteins in the interrogated biofluid in an unbiased way,
meaning that this approach is not a targeted or an antibody-based
method. The compositions of the PCs around the NPs are used
to discriminate between samples.

Indeed, the nanoarray system can be easily modified to
increase robustness and predictive value by using additional
nanoparticles with various chemical properties. In addition,
while reliable detection of low-abundance proteins is difficult
with assays like ELISA, the nanoarray system allows such low-
abundance proteins not only to be detected due to the high sur-
face area and adsorbing nature of nanoparticles, but also to play
a role in the diagnostic process if the random forest algorithm
deems them an important feature for classification.

We believe that our findings substantially advance the field
of neurodegenerative nanotechnology and may pave the way for
early diagnostic approaches, including the detection of devas-
tating diseases such as AD, long before they can be diagnosed
through currently available screening approaches or symptoms.
Different from the current standard biomarker tests, whose pro-
cedure for extraction is very invasive and discourages asymp-
tomatic patients from getting early and routine testing, our ap-
proach is based only on blood serum. It eliminates a major road-
block to routine testing and early detection, akin to the liquid
biopsies for cancer that were recently approved by the FDA. To
further improve the test’s performance, we plan to focus on se-
lecting an ideal set of different NPs, both number-wise and type-
wise, that identifies the highest number of proteins and offers
the best performance in terms of accuracy and ease of execu-
tion. Moreover, the nanoplatform could serve as an alternative to
current plasma proteome-based studies in the discovery of novel,
low-concentration protein biomarkers.

4. Experimental Section
Nanoparticles: 90–100 nm plain, amino-conjugated and carboxyl-

conjugated silica nanoparticles were supplied by Kisker-Products (https:
//www.kisker-biotech.com/). 90–100nm plain, amino-conjugated, and
carboxyl-conjugated polystyrene nanoparticles were supplied by Poly-
science, Inc. (http://www.polysciences.com/). The nanoparticles’ size dis-
tribution, morphology, and surface charge (zeta potential) were character-
ized as described in the following sections.

Personalized Protein Corona Formation: Human plasma from
Alzheimer’s disease patients and healthy individuals was purchased
from Innovative Research, Inc. (Novi, MI, USA). To create protein coronas
around NPs, plasmas from 11 current AD patients, eight healthy individ-
uals, and 16 AD patients from a cohort study were used (healthy at the
time of withdrawal, years later diagnosed with AD) with five controls. The
cohort plasma samples were collected through the NIH-funded Golestan
Cohort Study, performed by the National Cancer Institute (NCI) in the

USA, the International Agency for Research on Cancer (IARC) in France,
and the Tehran University of Medical Sciences (TUMS) in Iran. This
study involved the collection and storage of plasma from 50 000 healthy
subjects, over 1000 of whom went on to develop various diseases.

Protein coronas were created by incubating NPs in a solution with a
1:1 volume ratio of deionized H2O and human plasma at 37 °C for 1 h
under constant agitation. Immediately after incubation, PC-coated NPs
were centrifuged (14 000rpm and 10 °C for 30 min) and subjected to ex-
tensive washing in cold phosphate-buffered saline to remove soft PC. PC-
coated NPs were resuspended in denaturing buffer for SDS-PAGE gels and
LC/MSMS analysis, or in deionized H2O for size distribution and surface
charge characterization.

Physicochemical Characterization of Nanoparticles: Size distribution
was characterized with nanoparticle tracking analysis (Nanosight,
Malvern, UK), which calculates the sizes of nanoparticles flowing through
a canal with a scattered laser beam detected on an optical microscope.
Meanwhile, a video was recorded by a camera aligned to the beam show-
ing the movement of the NPs (30-60 frame/sec). " -potential of bare and
protein corona-coated NPs was determined using a Zetasizer Nano ZS90
(Malvern, UK). NPs were diluted in bidistilled water before the analysis to
a concentration of 50 µg mL−1. Size and surface charge values are given
as mean ± SD of three independent measurements. For TEM analysis,
samples and grids were labeled with 1% uranyl acetate. A Tecnai G2 Spirit
BioTWIN Transmission Electron Microscope equipped with an AMT 2k
CCD camera was used.

1D Gel Electrophoresis: PC was dissolved in 8 m urea and 50 mm am-
monium bicarbonate. An equal volume of Laemmli buffer 2X was added
and boiled for 5 min at 90 °C. Samples were resolved onto 4–20% Mini-
PROTEAN TGX Precast Gels (Bio-Rad Laboratories, Hercules, CA) for 1 h
at 120 V. Coomassie Brilliant Blue (Fisher Scientific, Fair Lawn, NJ, USA)
overnight staining followed by washing in ultra-pure water was carried out
for protein visualization. Densitometric analysis of protein bands was per-
formed using ImageJ (website: imagej.nih.gov/ij/).

Protein Identification and Quantification by Mass Spectrometry: Pro-
teins were treated with 10 mm dithiothreitol (Sigma) for 1 h at 56 °C and
55 mm iodoacetamide (Sigma-Aldrich, St Loius, MO, USA) for 1 h at 25 °C
in the dark. Proteins were then hydrolyzed with trypsin (Promega, Madi-
son, WI, USA) at an enzyme/substrate ratio of 1:50 in 100 mm ammonium
acetate, pH 8.9 at 25 °C overnight. A 5% acetic acid (99.9%, Sigma-Aldrich)
solution was utilized to deactivate the trypsin. Peptides were desalted us-
ing C18 SpinTips (Protea, Morgantown, WV), then vacuum centrifuged
and stored at −80 °C until the day of analysis. Peptides were separated
by reverse-phase HPLC (Thermo Fisher, Waltham, MA Easy nLC1000) us-
ing a precolumn (made in house, 6 cm of 10 µm C18) and a self-pack
5 µm tip analytical column (12 cm of 5 µm C18, New Objective) over a
140-min gradient before nano-electrospray using a QExactive mass spec-
trometer (Thermo Fisher). Solvent A was 0.1% formic acid and solvent B
was 80% MeCN/0.1% formic acid. The gradient conditions were 2–10% B
(0–3 min), 10–30% B (3–107 min), 30–40% B (107–121 min), 40–60%
B (121–126 min), 60–100% B (126–127 min), 100% B (127–137 min),
100–0% B (137–138 min), and 0% B (138–140 min), and the mass spec-
trometer was operated in data-dependent mode. The parameters for the
full-scan MS were: Resolution of 70 000 across 350–2000 m/z, AGC 3e6,
and maximum IT 50 ms. The full MS scan was followed by MS/MS for
the top 10 precursor ions in each cycle with a normalized collision energy
of 28 and dynamic exclusion of 30 s. Raw mass spectral data files (.raw)
were searched using Proteome Discoverer (Thermo Fisher) and Mascot
version 2.4.1 (Matrix Science). Mascot search parameters were: 10 ppm
mass tolerance for precursor ions; 15 millimass units (mmu) for fragment
ion mass tolerance; 2 missed cleavages of trypsin; fixed modification was
carbamidomethylation of cysteine; the only variable modification was me-
thionine oxidation. Only peptides with a Mascot score ≥ 25 were included
in the data analysis. Spectral counting was performed by summing the
total number of peptides selected for fragmentation of each protein.

Statistical Analysis: All statistical analyses were performed in Python
using the scikit-learn, numpy, and scipy packages, and figures and graphs
were created using the bokeh package in Python, along with Microsoft Ex-
cel, XLSTAT, and MATLAB. For all plasma samples, a data matrix X_i was
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generated such that each row of the matrix corresponded to the protein
abundances of a single nanoparticle, as obtained from the protein corona
nanoplatform. As a preprocessing step, the protein abundances were con-
verted to relative protein abundances by normalizing the rows of all of the
matrices.

Tensor Factorization: The data were treated as a three-mode tensor, the
first two modes corresponding to nanoparticles and proteins, and the third
mode corresponding to plasma samples; this was essentially equivalent
to stacking the observation matrices corresponding to each sample, X_i,
on top of each other. The data were de-noised via a low Tucker rank ten-
sor factorization[44–46 ] using code implemented in Python for this project
(available for academic use upon request). Each matrix X_i, was approxi-
mated by a tensor decomposition that takes the form

Xi ≈ USiV
⊤ (1)

where U is a matrix whose rows can be viewed as latent features corre-
sponding to each of the nanoparticles, and similarly V is a matrix whose
rows can be viewed as latent features corresponding to each of the pro-
teins; these latent features are shared across all of the data matrices. Fi-
nally, each Si is a matrix encoding interactions between nanoparticle and
protein features, and these are allowed to be unique between samples.
This decomposition was estimated in two steps: a) U and V were esti-
mated via a truncated singular-value decomposition on the mode-1 and
mode-2 unfoldings of the tensor, and then given these estimates, b) each
Si matrix was fit separately via a least-squares calculation.

Random Forest Classification: The random forest model is a well-
known machine-learning algorithm for classification. A random forest is
made up of multiple decision trees that each make simple classification
decisions based on relatively few variables. These trees were created (or
“trained”) with different, randomly drawn subsets of variables, reducing
the likelihood of two identical trees. Given a new sample, each tree was
traversed top-down until a set of training samples reached at the bottom.
Using the forest as a whole for classification amounts to having the multi-
ple decision trees “vote” on a label (in this case, AD or healthy), where each
tree’s vote was made from the labels of the bottom set of training samples.
For the authors#x00027; own algorithm, each random forest consisted of
1000 decision trees and was trained using the scikit-learn package. Impor-
tance scores were also calculated using the same package. On an individ-
ual “tree” of the random forest, the importance score of any variable used
in constructing the tree was defined as the proportion of the training set
that lies in the “leaves” of nodes utilizing that variable (variables not used
in constructing the tree are assigned a score of zero); then the overall im-
portance score for a variable is the average of its importance scores on
each tree.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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