
15-122: Principles of Imperative Computation, Fall 2022

Written Homework 3

Due on Gradescope: Monday 19th September, 2022 by 9pm EDT

Name:

Andrew ID:

Section:

This written homework covers specifying and implementing search in an array and how
to reason with contracts. You will use some of the functions from the arrayutil.c0
library discussed in lecture in this assignment.

Preparing your Submission You can prepare your submission with any PDF editor that
you like. Here are a few that prior-semester students recommended:

• PDFescape or DocHub, two web-based PDF editors that work from anywhere.
• Acrobat Pro, installed on all non-CS cluster machines, works on many platforms.
• iAnnotate works on any iOS and Android mobile device.

There are many more — use whatever works best for you. If you’d rather not edit a PDF,
you can always print this homework, write your answers neatly by hand, and scan it into
a PDF file — we don’t recommend this option, though.

Caution Recent versions of Preview on Mac are buggy: annotations get occasionally
deleted for no reason. Do not use Preview as a PDF editor.

Submitting your Work Once you are done, submit this assignment on Gradescope. Al-

ways check it was correctly uploaded. You have unlimited submissions.

Question: 1 2 3 4 Total

Points: 5 3.5 4.5 2 15

Score:

Arda Akina:

I
aakinci

15-122 Written Homework 3 Page 1 of 9

1. Debugging Preconditions and Postconditions

Here is an initial, buggy specification of the function find that returns the index of the
first occurrence of an element x in an array A. You should assume the find function
does not modify the contents of the array A in any way.

1 int find(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 // (nothing to see here)
4 /*@ensures (\result == -1 && !is_in(x, A, 0, n))
5 || (0 <= \result && \result < n
6 && A[\result] == x
7 && A[\result-1] < x); @*/

1.11pt Give values of A and \result below, such that the precondition evaluates to true
and checking the postcondition will cause an array-out-of-bounds exception.

• x = 729

• A =

• n = 5

• \result =

1.21pt Notice that the postcondition seems to be relying on A being sorted, although the
precondition does not specify this. It might be possible, then, that unsorted input
will reveal additional bugs in our initial specification.
Give values for A and \result below, such that \result != -1, the precondition
and the postcondition both evaluate to true, and \result is not the index of the
first occurrence of x in the array.

• x = 729

• A =

• n = 5

• \result =

c� Carnegie Mellon University 2022

- ✗ can't be in A

729 800 400 10001100

0

☆
7807294 72916

3

15-122 Written Homework 3 Page 2 of 9

1.31pt Give values for A and \result below, such that the precondition evaluates to
true, the postcondition evaluates to false, and \result is the index of the first
occurrence of x in the array.

• x = 729

• A =

• n = 5

• \result =

1.41pt Edit line 7 so that the postcondition for find is safe and correct even if the array is
not sorted. Make the answer as simple as possible. You’ll need to use one of the
arrayutil.c0 specification functions found at https://cs.cmu.edu/~15122/
code/arrayutil.c0.

7 ; @*/

If we did have a sorted array, the original line 7 would be almost correct.

1.51pt Edit the original line 7 slightly so that, if we added an additional precondition

//@requires is_sorted(A, 0, n);

the postcondition for find would be safe and it would correctly enforce that
A[\result] is the first occurrence of x in A. This time, do not use any of the
arrayutil.c0 specification functions.
The addition you make to the postcondition should run in constant time (O(1)). (We
don’t usually care about the complexity of our contracts, of course, but this limits what
kinds of answers you can give. In the future, unless we specifically say otherwise, you
can assume that the efficiency of contracts doesn’t matter.)

7 && ();

c� Carnegie Mellon University 2022

I 2 1000789 4

3

☆ft
! is

_ in /×
,
A
,

- result)

☆%
☆☆

\result = -0 I × > A[result - I]

15-122 Written Homework 3 Page 3 of 9

2. The Loop Invariant

Now we will consider a buggy implementation with a correct specification.

1 int find(int x, int[] A, int n)
2 //@requires 0 <= n && n <= \length(A);
3 //@requires is_sorted(A, 0, n);
4 /*@ensures (\result == -1 && !is_in(x, A, 0, n))
5 || (0 <= \result && \result < n
6 && A[\result] == x
7 /* YOUR ANSWER TO TASK 1.5 */); @*/
8 {
9 int lo = 0;

10 int hi = n;
11 while (lo < hi)
12 //@loop_invariant 0 <= lo && lo <= hi && hi <= n;
13 //@loop_invariant gt_seg(x, A, 0, lo);
14 //@loop_invariant le_seg(x, A, hi, n);
15 {

...

22 }
23 //@assert lo == hi;
24 return -1;
25 }

You should assume that the missing loop body does not write to the array A or modify
the local variables x, A, or n, but that it might modify lo or hi.

2.10.5pts In one sentence, explain why gt_seg(x, A, 0, 0) and le_seg(x, A, n, n)
are always true, assuming 0 <= n && n <= \length(A). Your answer should
involve the size of the array segment being tested.

c� Carnegie Mellon University 2022

the size of both
arrays being tested is equal to 0

,

which
means it must be that × > A[0,0) and

✗ ≤ A[rn)
,
respectively

,

15-122 Written Homework 3 Page 4 of 9

2.21pt Prove that the loop invariants (lines 12–14) hold initially.
You may take for granted that all the loop invariants are known to be safe. You do need
line n <= \length(A) from line 2 to reason that the last loop invariant involving
le_seg is safe (that it satisfies its preconditions). You don’t need to include line 2
in your proof that le_seg(x,A,hi,n) always evaluates to true.

0 <= lo is true because of line(s)

lo <= hi is true because of line(s)

hi <= n is true because of line(s)

gt_seg(x, A, 0, lo) is true because of line(s)

le_seg(x, A, hi, n) is true because of line(s)

2.31pt Danger! These loop invariants do not imply the postcondition when the function
exits on line 24. Give specific values for A, lo, and hi such that the precondition
evaluates to true, the loop guard evaluates to false, the loop invariants evaluate
to true, and the postcondition evaluates to false, given that \result == -1.

• x = 729

• A =

• n = 5

• \result = -1

• lo =

• hi =

c� Carnegie Mellon University 2022

9☆
2,9 , 10

10

9
10

- to≥ hi
- sorted
- ✗ in A

S 20 729 780 900

2

2

15-122 Written Homework 3 Page 5 of 9

2.41pt Modify the code after the loop so that, if the loop terminates, the postcondition
will always be true. The conditional and the return statement should both run in
constant time (O(1)) and should not use arrayutil.c0 specification functions.
Take care to ensure that any array access you make is safe! You know that the loop
invariants on lines 12–14 are true, and you know that the loop guard is false
(which, together with the first loop invariant on line 12, justifies the assertion
lo == hi).

22 /* Loop ends here... */
23 //@assert lo == hi;

25 if ()

27 return ;

29 return -1; // old line 24
30 } // old line 25

c� Carnegie Mellon University 2022

A[lo] = = ×

to

15-122 Written Homework 3 Page 6 of 9

3. Code Revisions

Here is a loop body that performs linear search. You can use it as an implementation
for lines 15–22 on page 3:

15 {
16 if (A[lo] == x) return lo;
17 if (A[lo] > x) return -1;
18 //@assert _________________________;
19 lo = lo + 1;
20 }
21 //@assert lo == hi;

3.11.5pts For the loop invariants to hold for this loop body, they must be preserved through
each iteration. Prove that the invariant on line 12 on page 3 is preserved by this
loop body — you may not need all the provided lines.

A assumption

B by

C by

D by

E by

F by

G by

Therefore we conclude that

by

3.20.5pts Fill in the assertion on line 18 with the strictest fact about the relationship between
A[lo] and x that is necessarily true at this point of the execution. Prove that it is
true by point-to reasoning.

18 //@assert ; // by

c� Carnegie Mellon University 2022

0<=10 Ssl, ⇐ hissh:<in

lo < hi line 11

do' -- to -11 line 19
to +1 ≤ hi math

,
line 11

Is,
'
≤ hi assumption , line 19

0 ≤ to
'

assumption
,
line C

o ≤ to'SSli≤ hi'SBhi2=n proof above

☆ Allo] < × 16,17

15-122 Written Homework 3 Page 7 of 9

3.31.5pts Prove that the invariant in line 13 is preserved by this loop body. You may use
your answer to the previous task if you wish. (You may not need all the provided
lines.)

A assumption

B by

C by

D by

E by

F by

Therefore we conclude that

by

c� Carnegie Mellon University 2022

WTS ×> A[gli)

yt - Seg /×,Ai9ld
* SACO, lol assumption

✗ > Allo] 16,17 (negation)
✗ > A [0,6+1) C

,

B

yt _ sey(YA, 0,10-+1) D

gt-s-ylx.to, lo
') preservation

15-122 Written Homework 3 Page 8 of 9

3.41pt You might have noticed in the previous part that hi does not actually change
during the loop, even though all our reasoning assumes it might. Could we
replace the loop invariant on line 14 with hi == n?
To show that this isn’t always sufficient, consider an alternate loop body that
performs binary search. It replaces the code at the beginning of this question.

15 {
16 int mid = lo + (hi-lo)/2;
17 if (A[lo] == x) return lo;
18 if (A[mid] < x) lo = mid+1;
19 else { //@assert A[mid] >= x;
20 hi = mid;
21 }
22 }

Show that hi == n is not a valid loop invariant of a loop with this body. Give spe-
cific values for all variables such that n and A satisfy the preconditions, the loop
guard lo < hi evaluates to true, and your loop invariants from the previous
question evaluate to true before this loop body runs, but this new loop invariant
evaluates to false after one iteration of the loop. Then write the values of lo‘
and hi‘ after one iteration of the loop.

• x = 729

• A =

• n = 5

• lo = • lo‘ =

• hi = • hi‘ =

c� Carnegie Mellon University 2022

726 729 730 731 732

0 0

5 2

lo Chi

15-122 Written Homework 3 Page 9 of 9

4. Timing Code

The following run times were obtained when using two different algorithms on a
data set of size n. You are asked to extrapolate the asymptotic complexity of these
algorithms based on this time data. Determine the asymptotic complexity of each
algorithm as a function of n. Use big-O notation in its tightest form and briefly explain
how you reached the conclusion.

4.11pt n Execution Time
1000 0.564 milliseconds
2000 2.271 milliseconds
4000 8.992 milliseconds
8000 36.150 milliseconds

Asymptotic complexity: O()

4.21pt n Execution Time
1000 0.043 milliseconds

1000000 43.68 milliseconds
1000000000 43960.55 milliseconds

Asymptotic complexity: O()

c� Carnegie Mellon University 2022

n2

when you
double the size of n,

the execution time is quadrupled . For

example
,

if n .
- woo then if you

✓"t to cheek for A-2000 the- you do

0/(2-72) = Olan) which is for times

the executive time of original n ,

n

%?jg ≈ 1000
1000000

↳ = 1000

When n
'multiplied by 1000 in

size
,

its execution time also is

multiplied by tooo ⇒ diner complexity

