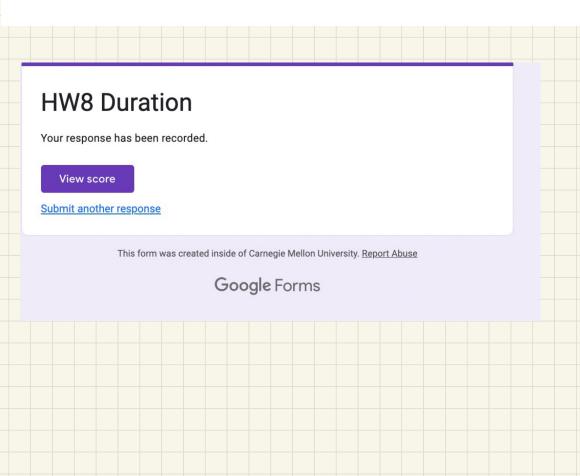
Name: Ardu Akinci Quakinci

1. (2 points) Please fill out the survey here on how long you spent on HW8. You will receive two points for your response; to receive them, please upload a screenshot of the confirmation page.



2. (14 points) Consider the complex logarithm
$$\ln(z)$$
 for a complex number $z \in \mathbb{C}$. Recall that in

EXPLAIN

lecture, we defined
$$\operatorname{Ln}(z) = \ln(|z|) + j\operatorname{Arg}(z)$$
, where $\operatorname{Arg}(z) \in [-\pi,\pi)$.

a.(3 points) Find
$$\operatorname{Ln}(e^j)$$
, $\operatorname{Ln}(-e)$, and $\operatorname{Ln}(-e^j)$

b.(3 points) Does
$$Ln(e^j) + Ln(-e) = Ln((-e)(e^j))$$
? Please show your work.

c.(3 points) Does
$$\text{Ln}(e^j) + \text{Ln}(-e^j) = \text{Ln}\left(e^j \cdot (-e^j)\right)$$
? Please show your work.

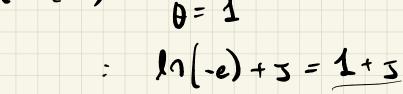
c.(3 points) Does
$$\mathrm{Ln}(e^j)+\mathrm{Ln}(-e^j)=\mathrm{Ln}\,(e^j\cdot(-e^j))$$
? Please show your work.
$$\mathrm{d.}(5\ points)\ \mathrm{Now\ suppose\ we\ define\ the\ complex\ logarithm\ as\ }\ln(z)=\ln|z|+j(-2\pi+\mathrm{Arg}(z))$$
 Does $e^{\ln(z)}=z$ still hold for all $z\in\mathbb{C}$? Briefly explain your answer.

$$2e \int Ln(e^{3})^{2} = 1$$

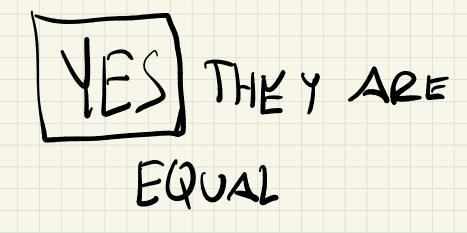
$$= \ln(1) + 3(1) = 3$$

$$= \ln(-1) + 3(2) = \ln(1) + 2 = 3$$

$$\text{b.} (\textit{3 points}) \quad \text{Does } \ln(e^j) + \ln(-e) = \ln\left((-e)(e^j)\right)? \text{ Please show your work.}$$



c.(3 points) Does $Ln(e^j) + Ln(-e^j) = Ln(e^j \cdot (-e^j))$? Please show your work.



d.(5 points) Now suppose we define the complex logarithm as $\ln(z) = \ln|z| + j(-2\pi + \text{Arg}(z))$. Does $e^{\ln(z)} = z$ still hold for all $z \in \mathbb{C}$? Briefly explain your answer.

$$e^{\ln(z)} = e^{\ln(z) + 3(-2\alpha + Arg(z))}$$

$$= e^{\ln(z)} \left(e^{3(-2\alpha + Arg(z))}\right)$$

$$= 2\left(e^{3(-2\alpha + Arg(z))}\right)$$

$$= 2\left(e^{3(-2\alpha + Arg(z))}\right)$$
if the angle of 2 is

Not equal to $2\alpha + 4\alpha$

monsere

3. (20 points) In the following sections, please show all work.

Find expressions for sinh(z) and cosh(z) in terms of e^z and e^{-z} , and prove a.(10 points)

them using the Taylor series expansions. [Hint]: Use the power series definition of the complex exponential e^z . You may also use the fact

that
$$\sinh'(x) = \cosh(x), \cosh'(x) = \sinh(x).$$

$$e' = 1 + \frac{1}{2} + \frac{2}{6} + \frac{2}{24}$$

$$e^{-x} = -1 + x - \frac{x^2}{2} + \frac{x^3}{6} - \frac{x^4}{24}$$

$$\frac{e^{-x}}{2} = -\frac{1}{2}t\frac{x}{2} - \frac{x^{2}}{4} + \frac{x^{3}}{12}$$

$$\frac{2}{2} - \frac{2}{2} = \frac{2}{2} = \left(\frac{1}{2} - \frac{1}{2}\right) + \left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{4} - \frac{1}{4}\right) + \left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{4} - \frac{1}{4}\right) + \left(\frac{1}{2} + \frac{1}{2}\right) + \left(\frac{1}{2} + \frac{1}{2}\right)$$

$$\frac{e^{x}-e^{-x}}{2} = x + \frac{x^{3}}{6} + \frac{x^{5}}{120}$$

$$= \sin h(x)$$

$$\cos h(x) = e^{x} + e^{-x} + \cosh(x) = 1 + \frac{1}{2} + \frac{1}{4} +$$

3a.) (contined)

$$\frac{e^{x}}{2} = \frac{1}{2} + \frac{x}{2} + \frac{x}{4} + \frac{x}{12} + \frac{x}{4} + \frac{x}{12} + \frac{x}{4} + \frac{x}{12} + \frac{x}{4} + \frac{x}{12} + \frac{x}{12} + \frac{x}{4} + \frac{x}{12} + \frac{$$

-	=	+3	2 ~	` [2+	- 7	4	~	~	12	•	^ `	_									
K	. 4	٠.	K		K R 4	F @	,) ¢		/\			١.	1	K	,	e '	\	1	χ 2	_ 1	2	\
L		2	٠ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ ـ	•	7	2		=	l z	. (2	/ተ ׳	L	3	3 1	2	} {	ر د	آ ا		الر) \
, ,k	4	2	k	1		_(× ²			L	l	12	~	江	J	1	:[20	7	†	7 4	/
	5		-	1	~	2			J:	2												

= cosh(x)

b.(10 points) Show the following two identities, using the fact that
$$\sin(a) = \frac{(a^{-1}a^{-1}a^{-1})}{2}$$
, $\cos(a) = \frac{(a^{-1}a^{-1}a^{-1})}{2}$ and $\sin(a) + \cos(a) + \cos(a)$ is $\sin(a) + \sin(a) = \sin(a)$.

ii) $\cos(p + jq) = \cos(p) \cosh(q) - j \sin(p) \sinh(q)$

i.) $\sin(p + jq) = \cos(p) \cosh(q) - j \sin(p) \sinh(q)$

i.) $\sin(p + jq) = \sin(p) \sinh(q)$

LHS; $\sin(p + jq) = \frac{(a^{-1}a^{-1}a^{-1})}{2}$, $\sin(p) \sin(q)$

LHS; $\sin(p + jq) = \frac{(a^{-1}a^{-1}a^{-1})}{2}$, $\sin(p + jq) = \frac{(a^{-1}a^{-1}a^{-1}a^{-1})}{2}$, $\sin(p + jq) = \frac{(a^{-1}$

$$= \frac{2 \cdot (e^{-3} \cdot 2)}{2 \cdot 3}$$

$$= e^{-3(e^{-3} \cdot 2)} - \frac{e^{-3(e^{-3} \cdot 2)}}{2 \cdot 3}$$

$$= e^{-3(e^{-3} \cdot 2)} - \frac{e^{-3(e^{-3} \cdot 2)}}{2 \cdot 3}$$

$$= e^{-3(e^{-3} \cdot 2)} - \frac{e^{-3(e^{-3} \cdot 2)}}{2 \cdot 3}$$

$$= e^{-3(e^{-3} \cdot 2)} - \frac{e^{-3(e^{-3} \cdot 2)}}{2 \cdot 3}$$

$$= e^{-3(e^{-3} \cdot 2)} - \frac{e^{-3(e^{-3} \cdot 2)}}{2 \cdot 3}$$

1i.) ii)
$$\cos(p + jq) = \cos(p) \cosh(q) - j \sin(p) \sinh(q)$$

LHS

$$\cos(p + 32) = e$$

$$\tan(p + 32) = e$$

Phs

$$\cos(p) \cosh(q) - 3\sin(p) \sinh(q) = e$$

$$\cos(p + 32) = e$$

RHS: LHS

4. (18 points) In the following sections, please show all work.

a.(12 points) Let $z_1 = 3 + 2j$. Solve for the real and imaginary parts of $\sin(z_1)$, $\cos(z_1)$, and e^{z_1} . You may find it helpful to use the identities that you derived in **3b**. **Note:** Some work or evaluation is expected - do not simply plug in the values of z and report the

Note: Some work or evaluation is expected - do not simply plug in the values of z and report the answer.

b.(3 points) Find the polar form of $z_2 = 1 - j$.

c.(3 points) Let $z_3 = 2e^{j\frac{\pi}{4}}$. Find $\arg(\frac{z_2}{z_3})$ (z_2 is given in **4b**).

(c.) points) Let
$$z_3 = 2e^{4}$$
, Find $\arg(\frac{1}{2})$ (z_2 is given in 4b).

(a) $s_1 = (3 + 2\pi) = s_2 = (3) \cdot s_3 + (2) + \chi(s_3) \cdot s_4 + (2)$

$$= (0.1 \text{ In ID}) \left(\frac{e^2}{4} + \frac{e^{-2}}{2} \right) + \chi(s_3) \left(\frac{e^2}{2} + \frac{e^{-2}}{2} \right)$$

$$= 0.531 + (-3.591)$$
[For $s_1 = (2, 1)$ Qev (-3.591)]

$$= (-3.591)$$

$$= (-3.591)$$

$$605(2.) = 605(5) = 605(2) - 35.7(3) = 10.141)$$

$$= (-0.99) \left(\frac{e^{2} + e^{-2}}{2}\right) - 3(0.141) \left(\frac{e^{2} - e^{-2}}{2}\right)$$

b.)
$$2_2 = 1 - 1_3$$

$$0 = \frac{1}{4} - \frac{1}{4} = \frac{1}{4}$$

$$0 = \frac{1}{4} - \frac{1}{4} = \frac{1}{4}$$

$$0 = \frac{1}{4} - \frac{1}{4} = \frac{$$

(.)
$$z_3 = \lambda e^{-3\pi/4}$$

(.) $z_3 = \lambda e^{-3\pi/4}$

5. (18 points) For parts a. and b., use $f(z) = \frac{\sin(z)}{z}$ centered at $z = \frac{\pi}{2}$.

Note: The first order truncation of a Taylor series centered at a point a is given by

$$P_1(z) = f(a) + f'(a)(z - a).$$

Similarly, the n^{th} order truncation of a Taylor series, $P_n(z)$, centered at a point a is given by:

$$f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \frac{f'''(a)}{3 \cdot 2}(x-a)^3 + \dots + \frac{f^{(n)}(a)(x-a)^n}{n(n-1)(n-2) \cdots (3)(2)}.$$

a.(10 points) Write the first, second and third order truncations of the Taylor series for the function $f(z),z\in\mathbb{C}$.

b.(8 points) Plot the function and its three truncated approximations. You should make four plots corresponding to the function itself, its first-order truncation, its second-order truncation, and its third-order truncation. Each plot should be three dimensional, with coordinates corresponding to $(\Re(z),\Im(z),|f(z)|)$. You can use surf in Matlab to make your plots. Plot from -2 to 2 with a 0.15 step size for each axis.

2.) First Order Trunction:

$$P_{12}:f(a)+P(a)z-a$$

= $Sin(a)$ + $Cons(a)-Sin(a)$ (2 -a)

a a^{2}
 $Second Order trunction:

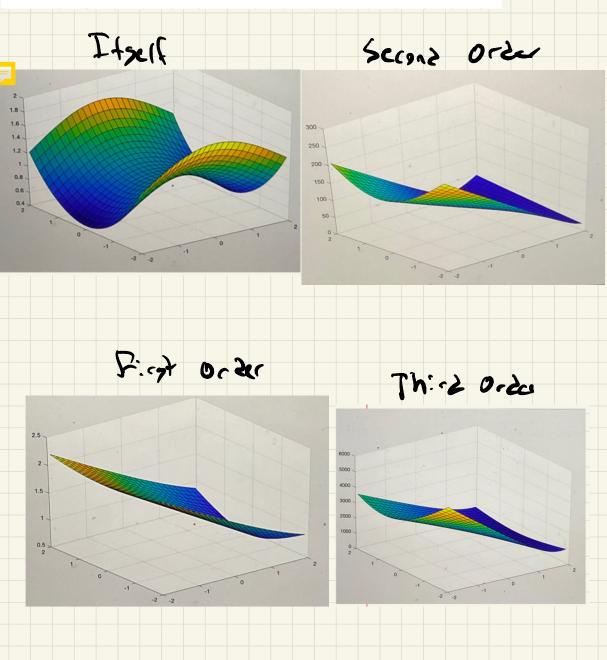
 $P_{2}(z)=f(a)+f'(a)(z-a)+f'(a)(x-a)^{2}$

= $\frac{2}{\pi^{2}}-\frac{U}{\pi^{2}}(2-\frac{\pi}{2})+\frac{u^{2}sin(a)}{2(ac_{3}a-\frac{2}{2}ina)}(x-a)^{2}$

= $\frac{2}{\pi^{2}}-\frac{U}{\pi^{2}}(2-\frac{\pi}{2})+\frac{u^{2}sin(a)}{2(ac_{3}a-\frac{2}{2}ina)}(x-a)^{2}$$

Third Order Transfor:
$$J(x) + J'(x)(x-x)^2 + \frac{J''(x)}{3}(x-x)^2$$

$$\frac{2}{3} - \frac{1}{3} \frac{1}{3}$$



6. (18 points) Consider $z \in \mathbb{C}$ and then:

a.(6 points) Find the derivative of $f(z) = \frac{2z-1}{z^2-2z+10}$ for $z \in \mathbb{C}$. For which values of z is this function differentiable?

function differentiable?

b.(12 points) By explicitly evaluating the Cauchy-Riemann equations, determine whether the following complex functions are analytic or not.

- i) $f(z) = 2z^3 + 3z + 5$
- ii) $f(z) = \frac{\overline{z}}{z}$

a.)
$$\int |z|^2 = \frac{2(x^2 - 2x + 1i)}{(x^2 - 3x + 1i)^2} - (2x - 2)(2x - 1)$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 20 - 4x^2 + 2x + 4x + 4x - 2}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 - 3x + 1i)^2}$$

$$= \frac{2x^2 - 4x + 1i}{(x^2 -$$

$$\frac{x^{2}-2xy_{3}-y^{2}(5)}{x^{2}+y^{2}} = \frac{x^{2}-y^{2}(5)}{x^{2}+y^{2}} = \frac{2xy}{x^{2}+y^{2}} = \frac{2xy}{x^{2}$$

(ii) $f(z) = \frac{z}{z} + \frac{z}{x-32} + \frac{z}{x-32}$

24 (x2 + y2)2 Since 22 + 27
8 24 + 27
24 - 24
24 \$ \$ then this funition is NOT 48 anulatic

Jw = - 15 x 3

7. (10 points) Power Systems Application Problem

Voltage (V) and current (I) are two well known sinusoidal elements that are often represented as *phasors*. Phasors are sinusoidal signals with time-invariant amplitude, phase, and angular velocity $(2\pi f)$. Phasors have their own notation, *phasor notation*, which represents the magnitude and phase of the signal. For a given signal with magnitude A, frequency f, and phase θ , phasor notation would look like the following:

$$x(t) = A\cos(2\pi f t + \theta^{\circ}) \to X = A/\theta^{\circ}$$

In electric power systems, voltage and current are also typically represented using their *root mean square* (RMS) values, where the relationship between a sinusoidal and RMS is the following:

$$y = X \cos(2\pi f t + \theta^{\circ}) \rightarrow Y_{rms} = \frac{X}{\sqrt{2}} / \theta^{\circ}$$

In power systems, we use V_{rms} (the phasor representation of v(t) with RMS values) and I_{rms} (the phasor representation of i(t) with RMS values) to find $complex\ power$ (S) where $S=V_{rms}I_{rms}^*$. As a result, S is then also a complex number where $\Re(S)$ is called real or active power (P) (which is the power you're most likely familiar with) and $\Im(S)$ is called reactive power (Q).

a.(4 points) Find the phasor representation of V_{rms} and I_{rms} when $v(t)=170\cos(2\pi ft-30^\circ)$ and $i(t)=7\cos(2\pi ft-60^\circ)$ for f=60 Hz. Please round to the nearest whole number.

b.(6 points) Find |S|, P, and Q.

b.(6 points) Find |S|, P, and Q.