Nanostructures for Tera-bit Level Charge Trap Flash Memories

Byung-Gook Park, II Han Park, Jung-Hoon Lee, Gil Sung Lee, Jang-Gn Yun Inter-University Semiconductor Research Center School of Electrical Eng. and Computer Sci. Seoul National University

NanoForum'09

Outline

I. Introduction

- II. NAND Cell Structure
- III. NOR Cell and Array Structure
- IV. AND Cell and Array Structure
- V. STAR NAND Flash Structure
- VI. Conclusions

Flash Memory and Mobile Equipments

NanoForum'09

Expedited Growth Theory - NAND Flash

- □ Expedited growth theory of NAND flash memories
 - → Year 2011 1Tb capacity with 20nm feature size

NanoForum'09

Hard Disk Drive and Flash Memory

NanoForum'09

Growth of Storage Capacity

NanoForum'09

Floating Gate vs. Charge Traps

> No floating gate

- FG-FG space
- FG-active space
- Single gate structure

Defect immunity

- Non-conductive trap layer
- Discrete trap storage

> 3D structure compatibility

- Insulating storage node
- Simple fabrication

NanoForum'09

Outline

I. Introduction

II. NAND Cell Structure

- III. NOR Cell and Array Structure
- IV. AND Cell and Array Structure
- V. STAR NAND Flash Structure
- VI. Conclusions

NanoForum'09

NanoForum'09

Arch Structure (3)

- Utilization of HSQ mask characteristic
- □ Planarization by TEOS, HSQ and etch back

NanoForum'09

Arch Structure (4)

<Programming characteristics>

<Erase characteristics>

Radius of Si channel = 15 nm

NanoForum'09

Outline

- I. Introduction
- II. NAND Cell Structure

III. NOR Cell and Array Structure

- IV. AND Cell and Array Structure
- V. STAR NAND Flash Structure
- VI. Conclusions

NanoForum'09

Cone Structure (1)

Utilization of field and current concentration

- field concentration in the horizontal direction
- current concentration in the vertical direction

NanoForum'09

Cone Structure (2)

- □ Simple array structure
 - common source architecture
 - word line connection through small spacing of cones

NanoForum'09

Cone Structure (3)

<Plan view>

NanoForum'09

<Cross-sectional view>

Cone Structure (4)

Electrical characteristics

<Program/erase characteristics>

<Retention characteristic>

NanoForum'09

Outline

- I. Introduction
- II. NAND Cell and Array Structure
- III. NOR Cell and Array Structure

IV. AND Cell and Array Structure

- V. STAR NAND Flash Structure
- VI. Conclusions

NanoForum'09

	NAND	NOR	AND
program efficiency	high	Low	high
sensing speed	low	high	high
density	high	low	low

NanoForum'09

Vertical AND Structure (1)

Memory cell device with vertical and double gate structures

- vertical structure, S/D junctions connected by diffusion layer

 \rightarrow High integration density.

- double gate structure.

 \rightarrow High device performance, high sensing speed.

NanoForum'09

Vertical AND Structure (2)

□ Fabrication procedure

NanoForum'09

Vertical AND Structure (3)

□ Program/erase characteristics

Programming Time (sec)

SNU SoEECS & ISRC

NanoForum'09

Outline

- I. Introduction
- II. NAND Cell Structure
- III. NOR Cell and Array Structure
- IV. AND Cell and Array Structure

V. STAR NAND Flash Structure

VI. Conclusions

NanoForum'09

STAR NAND Flash Structure (1)

- ❑ Stacked bit-lines
 → high density
- Cylindrical channel and gate-all-around cell structure
 - \rightarrow high performance
- ❑ Single-crystal Si channel
 → high performance, uniformity, reliability

NanoForum'09

STAR NAND Flash Structure (2)

□ Fabrication procedure

NanoForum'09

STAR NAND Flash Structure (3)

Fabrication procedure (continued)

STAR NAND Flash Structure (4)

□ Components of stack and nanowire implementation

<Selectively etched SiGe>

<Rounded Si nanowire>

Conclusions (1)

- Charge trap flash memory including SONOS structure is a promising candidate for the next generation high density flash memories.
- For NAND application, arch SONOS flash memory is proposed for field concentration and suppression of back tunneling and is successfully demonstrated.
- For NOR application, cone SONOS flash memory is proposed for field and current concentration, and the fabricated cell shows superb electrical characterics.

NanoForum'09

Conclusions (2)

- For AND application, vertical AND structure is proposed for drastic reduction of cell size and the feasibility is demonstrated.
- For further increase of density, STacked ARray (STAR)
 NAND array is proposed.