Label-free NanoBio Chemical Imaging of Cells and Tissues for New Bio-medical Applications

DaeWon Moon

Nano-Bio Fusion Research Center

Korea Research Institute of Standards and Science (KRISS)

Collaborators: J.Y. Lee, E.S. Lee, T.G. Lee, H.K. Sohn, E.S. Lee, J.E. Gil, W. JeGal, S.H. Kim, (KRISS)

J.H. Chung (SNU), J.E. Park (Samsung Medical), Ann Plant (NIST)

Funding: MOST, MOCIE, KRISS,

Outline: Our strategy of nano-bio fusion Present status of nanobio imaging methodology at KRISS A case report on Atherosclerosis with cardiovascular lipid, cell adhesion, and collagen ECM imaging

Visions in the near future

How to utilize NT to solve Biomedical Issues through noble methodologies

Analysis Demands from Bio-Medical R&D

: in-vivo/in-vitro, biochemical imaging, dynamics sensitivity & selectivity, general methodology

Label-free single cells/tissue biochemical imaging for medical & pharmaceutical applications

Large Gap between Molecular Biology and Medical Applications 3/25

Label-free Single Cells/Tissue Chemical Imaging R&D at KRISS

CARS (Coherent Anti-Stokes Raman Scattering

CARS Microscope at KRISS

1064 nm Modelocked ps laser 750 – 960 nm NIR synchronously pumped ps OPO Laser beam/pulse diagnostics and overlap control Dichroic beam coupling and signal decoupling Non-descan CARS signal detection Optics Relay optics and optimal microscope objective Galvano-mirror laser scan inverted optical microscope

CARS Excitation Source

Stokes Laser Pump/Probe Laser Rep. Rate Pulse Width Bandwidth Raman shift coverage Sample Irradiation 1.5 W @ 1064 nm fixed 2 W @ 725 – 960 nm 76 MHz 7 ps 0.38 nm / 6 – 7 cm⁻¹ 1500 – 3500 cm⁻¹ ~ 100 mW in total

Image Acquisition

Imaging Area Pixels Frame Rate Z- section Range Z- section Step Spatial Resolution 250 x 250 μm² 1024 x 1024 10 image/s 500 μm 0.1 μm Lateral ~ 300 nm Axial ~ 900 nm

 Multiplex Raman capability : 200 cm⁻¹~ 1500 6/25

Real Time CARS images of an alive Hela Cell

Aliphatic C-H @ Δ = 2837 cm⁻¹ Dynamic Imaging of Vesicles

Depth-Resolved Images of an unstained HeLa Cell

Tissues

Atherosclerosis

Single Cells

Fat Liver Tissue

Focal Adhesion & Migration

Stem Cell Differentiation

Skin

Sebaceous Gland

μ-CARS Potential

Hyaloid Vessel

Retinal Tissue

Live Cell (NIH3T3)

HCV-LD Collocalization

9/25

From Cellular basic studies to Medical interests in Atherosclerosis

CARS images for lipid vesicle uptake processes in the differentiation of human monocytes (THP-1) to macrophages

PMA in 10% serum media

duration: 2 hours

CARS spectra for biochemical characterization of lipids from a mouse atheroma tissue

- Collaboration with Samsung Medical Center

ex vivo Atherosclerosis Cardiovascular CARS Imaging

3D Reconstruction of en face CARS Images

Cardiovascular Imaging

- in vivo US/SPECT/PET/NIR :
 - Agents required
 - Low resolution
- ex vivo Biopsy of atheroma tissue :
 - Cryosection
 - Foam cell staining with oil red-O dye

- Collaboration with Samsung Medical Center

Foam cell differentiation/ Atherosclerosis Diagnosis

Atherosclerosis tissue analysis with multiplex CARS

degree of oxidation/saturation of lipids for plaque stabilization analysis ?

Multiplex CARS Spectra

Vision of CARS Laser Microscopy

in-vivo Medical and/or Animal model Imaging Endoscopy

Complementary Use of CARS and SIMS/MALDI imaging

Secondary Ion Mass Spectrometry (SIMS)

- : unique for semiconductor dopant analysis
- Can SIMS be useful for biochemical imaging of tissues ? Can it beat traditional staining optical microscopy & bio-SEM/TEM ?

SIMS studies on Photoaging Effects of Skin by UV irradiation

25 keV Bi_{3}^{+} imaging after C_{60}^{++} cleaning:

(collaborations with SNU Medical School, Dermatology, J.H. Chung) Is he happy? Maybe, No for proteins, Yes for lipids. Good for CV imaging Is he excited? No. Why ??? >> insufficient molecular ions

Complementary use of SIMS & MALDI imaging of tissues with matrix controls

Surface Plasmon Resonance for cell adhesion & migration imaging

SPR applications

quantitative analysis of biomolecules on surface

- biomolecule adsorption dynamics
- antibody-antigen, DNA-DNA interactions

A10 SMC on collagen

HUVEC on fibronectin 19/25

The Effect of Flow Rate to A10 SMC Adhesion on Collagen

flow rate: 1 cm/s 1 hour flow rate: 27 cm/s

5 hours

flow rate: 1 cm/s 6 hours

SPR dynamic imaging of HUVEC adhesion on fibronectin & the Shear Stress Effect

no shear stress

1.2 Pa shear stress

dynamics movies

Scanning Ion Conductance Microscope (SICM)

Sample

- measurement of cells alive in solution
- cell membrane electrochemical mapping
- ~10 nm resolution, elemental specificity
- single ion channel localization and monitoring

Functional localization of K_{ATP} Channels

Y. Korchev Imperial College

SICM imaging of Collagen ECM morphology in solution

300ug 1 hr incubation

SICM at KRISS

AFM 25um x 25um

25um x 25 um

Z: 2316.0111

Final Vision:

1) Understanding & monitoring atherosclerosis from the subcellular level to the *in-vivo* tissue level 2) by *in-vitro/in-vivo* label free biochemical imaging tools 3) For medical imaging diagnostics and/or animal imaging for pre-clinical screening

SIMS lipid choline image of a skin tissue

SICM image of collagen fibers

SPR image of **HUVEC** on fibronectin

CARS lipid image of foam cells in a blood vessel tissue

- 1. Label-free tools such as CARS, bio-SIMS, SPR, SICM can be used as noble and complementary tools in biochemical imaging of single cells/tissues for cell biology and medical diagnostics.
- 2. If it works nicely for atherosclerosis, it can be extended to study other diseases and to understanding EHS issues of nanomaterials for improvement of the quality of life.
- 3. To tackle these issues, global collaborations are mandatory and beneficial to all of us.

Why not between Korea and USA !