

## ENERGY

## The U.S Department of Energy's National Hydrogen Storage Project: Goal, Progress and Future Plans

Sunita Satyapal<sup>1</sup>, Carole Read<sup>1</sup>, Grace Ordaz<sup>1</sup>, Ned Stetson,<sup>1</sup>George Thomas<sup>2</sup>, John Petrovic<sup>3</sup>

## **U.S. DOE Hydrogen Program**

<sup>1</sup>Office of Hydrogen, Fuel Cells and Infrastructure Technologies <sup>2</sup> DOE (on assignment); retired, Sandia National Laboratory <sup>3</sup> retired, Los Alamos National Laboratory

The Fourth U.S.-Korea Forum on Nanotechnology: Sustainable Energy

Honolulu, HI, April 26-27, 2007



**Overview** 

 $\succ$  The challenge of on-board H<sub>2</sub> storage >DOE Hydrogen storage targets > Are we making progress? Recent R&D examples from the DOE Program Examples of nanotechnology benefits & needs Future Plans

## Hydrogen Storage: The "Grand Challenge"

Goal: On-board hydrogen storage for > 300 mile driving range and meet all performance (wt, vol, kinetics, etc.), safety and cost requirements.

|                                                                                   | Examples of Targets                  | 2010                                   | 2015                                 |
|-----------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|
| These<br>Are<br>System<br>Targets<br>Material<br>capacities<br>must be<br>higher! | System Gravimetric<br>Capacity (net) | 6 wt.%<br>(2.0 kWh/kg)                 | 9 wt.%<br>(3.0 kWh/kg)               |
|                                                                                   | System Volumetric<br>Capacity (net)  | 1.5 kWh/L<br>(45 g/L)                  | 2.7 kWh/L<br>(81 g/L)                |
|                                                                                   | Storage System Cost                  | \$4/kWh<br>(~\$133/kg H <sub>2</sub> ) | \$2/kWh<br>(\$67/kg H <sub>2</sub> ) |
|                                                                                   | Min. Full Flow Rate                  | 0.02 g/s/kW                            | 0.02 g/s/kW                          |
|                                                                                   | Refueling Time (for 5 kg)            | 3 min                                  | 2.5 min                              |
|                                                                                   | Cycle Life (Durability)              | 1000 cycles                            | 1500 cycles                          |

**Freedom**CA

Fuel Partnershin

More targets and explanations at www.eere.energy.gov/hydrogenandfuelcells/

## **Results: Current Status vs. Targets**

No technology meets targets- results include data from vehicle validation



Note: Estimates from developers. To be periodically updated.

Costs exclude regeneration/processing. Complex hydride system data projected. Data points include analysis results.



### Strategy: Diverse Portfolio with Materials Focus

"...DOE should continue to elicit new concepts and ideas, because success in overcoming the major stumbling block of on-board storage is critical for the future of transportation use of fuel cells."<sup>1</sup>



1. Coordinated by DOE Energy Efficiency and Renewable Energy, Office of Hydrogen, Fuel Cells and Infrastructure Technologies

2. Basic science for hydrogen storage conducted through DOE Office of Science, Basic Energy Sciences

3. Coordinated with Delivery Program element

#### Systematic approach

- Theory & experiment
- Go/no-gos & downselects
- Independent analysis & testing
- ~ 40 universities, 15
  companies, 10 federal labs
- Aims to address NAS & other peer review recommendations
- Annual solicitation for increased flexibility
- Close coordination with basic science
- Strong auto & energy industry input-FreedomCAR
   & Fuel Partnership
- Coordination with other agencies & globally

1. NRC H<sub>2</sub> Economy Report (2004),p.44



Applied R&D Hydrogen Storage "Grand Challenge" Partners: Diverse Portfolio with University, Industry and National Lab Participation

#### **Centers of Excellence**

Metal Hydride Center National Laboratory: Sandia-Livermore

Industrial partners: General Electric HRL Laboratories Intematix Corp.

**Universities:** 

CalTech Stanford Pitt/CMU Hawaii Illinois Nevada-Reno Utah

Federal Lab Partners:

Brookhaven JPL, NIST Oak Ridge Savannah River Hydrogen Sorption Center National Laboratory: NREL

Industrial partners: Air Products & Chemicals

Universities: CalTech Duke Penn State Rice Michigan North Carolina Pennsylvania

Federal Lab Partners: Lawrence Livermore NIST Oak Ridge Chemical Hydrogen Storage Center National Laboratories: Los Alamos Pacific Northwest

Industrial partners: Intematix Corp. Millennium Cell Rohm & Haas US Borax

Universities: Northern Arizona

> Penn State Alabama California-Davis Univ. of Missouri Pennsylvania Washington

**Independent Projects** 

**Advanced Metal Hydrides** UTRC, UOP Savannah River Nat'l Lab Univ. of Connecticut Sorbent/Carbon-based Materials UCLA State University of New York Gas Technology Institute UPenn & Drexel Univ. Miami Univ. of Ohio **Chemical Hydrogen Storage** Air Products & Chemicals RTI Millennium Cell Safe Hydrogen LLC Univ. of Hawaii **Other New Materials & Concepts** Alfred University Michigan Technological University UC-Berkeley/LBL UC-Santa Barbara Argonne Nat'l Lab Tanks, Safety, Analysis & Testing Lawrence Livermore Nat'l Lab Quantum Argonne Nat'l Lab, TIAX LLC SwRI, UTRC, Sandia Nat'l Lab Savannah River Nat'l Lab

**Coordination with: Basic Science (Office of Science, BES)** 

MIT, U.WA, U. Penn., CO School of Mines, Georgia Tech, Louisiana Tech, Georgia, Missouri-Rolla, Tulane, Southern Illinois; Labs: Ames, BNL, LBNL, ORNL, PNNL, SRNL

U.S. Department of Energy



#### No current system meets targets, <u>but</u> there are some materials with potential...



G. Thomas et al, DOE Annual Program Review Adapted from Schlapbach et al for material capacities

U.S. Department of Energy



# Exciting Possibilities- Destabilized hydrides and nano-engineering

E.g., New system (11.4 wt. % and 0.095 kg/L) – LiBH<sub>4</sub> / MgH<sub>2</sub>





J. Vajo, S. Skeith, and F. Mertens, J. Phys. Chem. B, <u>109</u>, 3719-3722 (2005). U.S. Department of Energy



#### **Recent Progress- Chemical Hydrogen Storage**



#### Organic liquid carriers & catalysts



 Mesoporous scaffolds internally coated with ammonia borane show >6 wt% capacity, hydrogen release at < 80 C and reduced borazine formation

units)

Relative Yield (arb.





Autrey, Gutowski, et al, PNNL



#### **Results: Carbon Aerogels as Nanoporous Scaffolds**

Examples of improving kinetics & reducing temperatures

CAs: unique porous materials of 3D networks of interconnected nanometer-sized carbon particles



Baumann et al, LLNL & Ahn et al, Caltech







#### **Results: Sorbent Materials**



Independent verification of MOF-177 (O. Yaghi et al,highest capacity to date worldwide; > 7 wt.%, 77 K)

Independent verification of > 2x increase in capacity due to spillover (R. Yang et al)





R. Yang, U. MI

R. Yang, U MI, P. Parilla, elas, DREatroantso Demeny



#### **Examples of Hydrogen Storage Collaboration**



#### IEA – HIA TASK 22

A total of 43 projects have been proposed for Task 22. This includes participation by 15 countries, 43 organizations, and 46 official experts.







- \*

- Reversible Solid State Hydrogen Storage for Fuel Cell Power supply system (Russian Academy of Sciences)
- NESSHY Novel Efficient Solid Storage for Hydrogen (National Center for Scientific Research "Demokritos," EU)
- Hydrodes & Nanocomposites in Hydrogen Ball Mills (University of Waterloo, Canada)
- Combination of Amine Boranes with MgH<sub>2</sub> & LiNH<sub>2</sub> (Los Alamos National Lab, USA)
- Fundamental Safety Testing & Analysis (Savannah River National Lab, USA)

Examples of U.S.-Korea R&D interests in hydrogen storage

Metal decorated polymers:

H. Lee, W.I. Choi, and J. Ihm, "Combinatorial Search for Optimal Hydrogen-Storage Nanomaterials Based On Polymers", Physical Review Letters, <u>97</u>, 056104-1 (2006). (Seoul National University, Korea)

**Conducting polymers:** 

S.J. Cho, K.S. Song, J.W. Kim, T.H. Kim, and K. Choo, "Hydrogen Sorption in HCI-Treated Polyaniline and Polypyrrole: New Potential Hydrogen Storage Media", Fuel Chemistry Division Reprints, <u>47</u>, 790 (2002).

(Korea Institute of Energy Research)



<u>IPHE Hydrogen Storage Scoping Paper lists general areas of</u> <u>interest to IPHE (see www.iphe.net):</u>

- Materials-based systems that are reversible on-board, such as high-capacity metal hydrides, high surface area sorbents and carbon
- Chemical hydrogen storage systems, such as chemical hydrides, which must be regenerated off-board
- Standardized testing of materials and systems for hydrogen storage capacities, including standardization of units of measure
- Systems analyses which includes life cycle, efficiency, safety and environmental impact analyses



## Summary

- New Materials & Concepts are criticaladdress volumetric capacity, T, P, kinetics, etc. (not just wt. %!)
- Nanotechnology has potential to address critical needs in hydrogen storage



## **Hydrogen Fuel Initiative Budget**

|                                   | Funding (\$ in thousands) |                         |                     |                   |  |  |  |  |
|-----------------------------------|---------------------------|-------------------------|---------------------|-------------------|--|--|--|--|
| Activity                          | <b>FY2005</b><br>Approp   | <b>FY2006</b><br>Approp | FY2007<br>Actual    | FY2008<br>Request |  |  |  |  |
| Hydrogen Fuel Initiative          |                           |                         |                     |                   |  |  |  |  |
| EERE Hydrogen (HFCIT)             | 166,772                   | 153,451                 | 193,551             | 213,000           |  |  |  |  |
| Fossil Energy (FE)                | 16,518                    | 21,036                  | 23,611 <sup>1</sup> | 12,450            |  |  |  |  |
| Nuclear Energy (NE)               | 8,682                     | 24,057                  | 18,665              | 22,600            |  |  |  |  |
| Science (SC)                      | 29,183                    | 32,500                  | 36,500              | 59,500            |  |  |  |  |
| DOE Hydrogen TOTAL                | 221,155                   | 231,044                 | 272,327             | 307,550           |  |  |  |  |
| Department of<br>Transportation   | 549                       | 1,411                   | 1,420               | 1,425             |  |  |  |  |
| Hydrogen Fuel Initiative<br>TOTAL | 221,704                   | 232,455                 | 273,747             | 308,975           |  |  |  |  |



## **EERE Hydrogen Budget**

|                                            | Funding (\$ in thousands) |         |         |         |
|--------------------------------------------|---------------------------|---------|---------|---------|
| Activity                                   | FY 2005                   | FY 2006 | FY 2007 | FY 2008 |
|                                            | Approp                    | Approp  | Actual  | Request |
| Hydrogen Production & Delivery             | 13,303                    | 8,391   | 34,594  | 40,000  |
| Hydrogen Storage R&D                       | 22,418                    | 26,040  | 34,620  | 43,900  |
| Fuel Cell Stack Component R&D              | 31,702                    | 30,710  | 38,082  | 44,000  |
| Technology Validation                      | 26,098                    | 33,301  | 39,566  | 30,000  |
| Transportation Fuel Cell Systems           | 7,300                     | 1,050   | 7,518   | 8,000   |
| Distributed Energy Fuel Cell Sys.          | 6,753                     | 939     | 7,419   | 7,700   |
| Fuel Processor R&D                         | 9,469                     | 637     | 4,056   | 3,000   |
| Safety, Codes & Standards                  | 5,801                     | 4,595   | 13,848  | 16,000  |
| Education                                  | 0                         | 481     | 1,978   | 3,900   |
| Systems Analysis                           | 3,157                     | 4,787   | 9,892   | 11,500  |
| Manufacturing R&D                          | 0                         | 0       | 1,978   | 5,000   |
| Technical/Program Mgt. Support             | 535                       | 0       | 0       | 0       |
| <b>Congressionally Directed Activities</b> | 40,236                    | 42,520  | 0       | 0       |
| TOTAL                                      | 166,772                   | 153,451 | 193,551 | 213,000 |



## **For More Information**

Hydrogen Storage Team

Sunita Satyapal, Team Leader Overall Storage/ FreedomCAR Tech Team/International 202-586-2336 sunita.satyapal@ee.doe.gov

#### Carole Read

Sorbents & Carbon, Hydrogen Sorption Center of Excellence 202-586-3152 carole.read@ee.doe.gov

#### Grace Ordaz

Chemical Hydrides, Chemical Hydrogen Storage Center of Excellence 202-586-8350 grace.ordaz@ee.doe.gov

#### **Ned Stetson**

Metal Hydrides, Metal Hydride Center of Excellence 202-586-9995 ned.stetson@ee.doe.gov

www.hydrogen.energy.gov

U.S. Department of Energy



# Thank you



# It's not just about capacity- much research is focused on tailoring kinetics & thermodynamics...



- pressure limits (~20-35 kJ/molH<sub>2</sub>)
- refueling (<20 kJ/molH<sub>2</sub>)





- operating temperature
- release temperature





- Activation barrier for regeneration
  - energy efficiency
  - near thermo-neutral



T=77 K