The Tenth U.S.-Korea Forum on Nanotechnology

Atomic Layer Etching : Application to Nanoelectronic Device Processing

15 Oct. 2013

Yeom, Geun Young

Department of Advanced Materials Science and Engineeri Sungkyunkwan University, Korea

Concept of Atomic Layer Etching (ALET)

Various Application Study of ALET

Concept of Atomic Layer Etching (ALET)

Atomic layer etching technology

Etch mechanism of atomic layer etching

\clubsuit Chemisorption of Cl_2 on Material

........

Various Application Study of ALET

Si ALET as a function of etch parameters

Conditions :

.......

Etch residue remaining on the etched surface

Conditions :

- ICP Etching : BCl₃ (50 sccm)/Ar (50 sccm), 300 W, -60 V, 12 mTorr, 149 sec
- Atomic Layer Etching : Neutral beam irradiation dose (1.485×10¹⁷ atoms/cm²·cycle), BCl₃ pressure (0.33 mTorr), Etch cycle (217 cycle)

InP ALET as a function of etch parameters

Conditions :

Base pressure	3.0×10 ⁻⁷ Torr	Chamber pressure	8.9×10 ⁻⁵ Torr	Inductive power	300 Watts
1 st grid voltage	5 Volts	2 nd grid voltage	-250 Volts	Ne flow rate	70 sccm
Ne neutral beam irradiation dose	0~10.6×10 ¹⁵ atoms/cm ² · cycle	Cl ₂ pressure	0~0.62 mTorr	Cl ₂ supply time (t _{Cl2})	10 sec

Stoichiometry modification of InP surface

Conditions :

- ICP Etching : Cl₂ (70 sccm)/Ar (30 sccm), 700 W, -100 V, 12 sec
- Atomic Layer Etching : Neutral beam irradiation dose (7.2×10¹⁵ atoms/cm²·cycle), Cl₂ pressure (0.4 mTorr), Etch cycle (100 cycle)

- Wet recess : InGaAs cap layer; Citric Acid + $H_2O_2 = 7:1$
- Dry recess : InP etch stop layer; Ar RIE (Ar (50 sccm), 7 W, -65 V, 20 mTorr)

InP HEMTs (Gate Recess Process)

Schottky Diode Characteristics

> Conditions :

00000000

- Plasma Etching : Ar (50 sccm), 7 W, -65 V, 20 mTorr, 20 min
- Atomic Layer Etching : Neutral beam irradiation dose $(7.2 \times 10^{15} \text{ atoms/cm}^2 \cdot \text{cycle})$, Cl₂ pressure (0.4 mTorr),

Etch cycle (62 cycle)

60-nm depletion mode InP HEMT

Conditions :

0000000

- Plasma Etching : Ar (50 sccm), 7 W, -65 V, 20 mTorr, 15 min
- Atomic Layer Etching : Neutral beam irradiation dose (7.2×10^{15} atoms/cm²·cycle), Cl₂ pressure (0.4 mTorr),

Etch cycle (41 cycle)

Conditions :

HfO₂ ALET

Base pressure	3.0×10 ⁻⁷ Torr	Chamber pressure	2.0×10 ⁻⁴ Torr	Inductive power	300 Watts
1 st grid voltage	60 Volts	2 nd grid voltage	-250 Volts	Ar flow rate	30 sccm
Ar neutral beam Irradiation dose	0~2.67 × 10 ¹⁷ atoms/cm²∙ cycle	BCl ₃ pressure	0~0.33 mTorr	BCl ₃ supply time (t _{Cl2})	20 sec

Conditions :

-

00000000

0

HfO₂ ALET

Base pressure	3.0×10 ⁻⁷ Torr	Chamber pressure	2.0×10 ⁻⁴ Torr	Inductive power	300 Watts
1 st grid voltage	60 Volts	2 nd grid voltage	-250 Volts	Ar flow rate	30 sccm
Ar neutral beam Irradiation dose	1.485×10 ¹⁷ atoms/cm²∙cycl e	BCl ₃ pressure	0.33 mTorr	BCl ₃ supply time (t _{Cl2})	20 sec

MOSFET fabrication with HfO₂ **ALET**

0000000000000

<Main etch challenges>

- Gate dimensions down to less than 30 nm
- CD control better than 2 nm required
- Low silicon recess (~ 1 nm)

TEM Image of HfO₂ etched by ALET

- Precise Etching of HfO₂ on SiO₂ using ALET
- : Blank wafer (HfO₂ on SiO₂] etching

However, There are differences in MOSFET (without S/D active region) due to gate oxide edge damage which could be the leakage path in the heterogeneous interface between the high-k dielectric and the capping nitride layer

SUNG KYUN KWAN UNIVERSITY

MOSFET device as a function of gate length

SEMATE

MOS Parameter – IG

00000000

As gate length decrease from 1um to 100nm, the gate leakage current is as low as wet etching compared that of plasma etching.

Condition for atomic layer etching of graphene

Concept of graphene ALET

Ar Beam Irradiation

Etching products desortion

Oxygen radical feed

Chemisorbtion of oxygen

Etching products purge

1. O ₂ Plasma Condition	
Base Pressure	3.0×10 ⁻⁷ Torr
Working Pressure	8.9×10⁻⁵ Torr
Inductive Power	300 Watts
1 st Grid Voltage	No Bias
2 nd Grid Voltage	No Bias
O ₂ Gas Flow Rate	20 sccm
O ₂ radical exposure time	5 min

2. Ar Plasma Condition	
Base Pressure	3.0×10 ⁻⁷ Torr
Working Pressure	4.2×10 ⁻⁵ Torr
Inductive Power	300 Watts
1 st Grid Voltage	30 V
2 nd Grid Voltage	-150 V
Ar Gas Flow Rate	30 sccm
Ar neutral beam Irradiation time	1 min

......

Atomic layer etching of HOPG (highly oriented pyrolytic graphite) graphene

1. HOPG graphene

......

KYUN KWAN

Atomic layer etching of CVD graphene

CVD graphene

0-0/0

Carbon binding E change : Atomic layer etching of graphene

2. CVD graphene

.......

Mass spectroscopy

- Atomic layer etching has been successfully applied to the fabrication of various nanoscale devices to nanoscale Si and III-V devices.
- Using the ALET, not only the precise etching depth control but also the decrease of etch damage could be observed.
- It is believed that ALET could be more successfully applied to future 2-D device applications.

Thank you for your attention!

