Solution-Based R2R Nanomanufacturing: Technology, Scale-up and Transition

Li⁺ Energy Storage Macroelectronic Flex Substrate

Jim Watkins Polymer Science and Engineering Department and Center for Hierarchical Manufacturing University of Massachusetts Amherst

Center for Hierarchical Manufacturing (CHM)

Nanoscale Science and Engineering Center

Snapshot:

- An NSF Nanoscale Science and Engineering Center

 Funded through NSF's Division of Civil, Mechanical and Manufacturing Innovation
- \$4 million/year in NSF Support
 - o The CHM is funded by NSF through 2016
- 39 Faculty in 8 disciplines at 6 Institutions (27 Faculty at UMass)

A Strong Coupling With Leading Polymer Research

Polymer Science and Engineering Dept. at UMass Amherst 18 Faculty 120 Ph.D. Students 40 Post-Docs Conte National Center for Polymer Research

Controlling Morphology at the Nanoscale Can Be Critical to Device Performance: CHM Examples

Ordered Metamaterials

PV Heterojunctions

Device Architectures on Flex

Organic semiconductor

Dielectric

Gate

Substrate

Source

2 nm Au NPs in \leftarrow Dielectric Tunneling

Layer

Printed Hybrid and Inorganic Nanostructures

• Many applications require large active areas

Drain

Both morphology control and morphological stability are needed

Controlling Morphology at the Nanoscale Can Be Critical to Device Performance: CHM Examples

Transparent QD-Based LECs

Planar and Patterned Films for Light Management

Nanostructured SuperCaps

Bio-Mimetic Anti-Microbial Surfaces

Sharklet™ Surface Technology

Galapagos Shark Skin

- Many applications require large active areas
- Both morphology control and morphological stability are needed

One Goal: Integrated Low-Cost, Flexible Device or Patch

The NSF Center for Hierarchical Manufacturing is developing nanotechnology-enabled and high-performance, hybrid device layers for advanced device fabrication using novel R2R platforms and tools. These advances can be combined with silicon-chip pick-and-place assembly for expanded sensor platform capability

Personalized Health Monitoring

Personal Health Monitoring Real Time Medical Tracking Vital signs and medical information Medical Information is continuously Are measured and reported to local monitored Health Care Providers wireless hub Medical professionals can monitor in-home Respiration, ECG patients in real time Lab-on-a-Chip Measures drug levels biomarkers PPG, blood pressure. vascular performance 3-axis accelerometer Measures activity, falls **First Responders** Automatic notification In event of emergency

Distributed Sensing Networks & Security

Building and Infrastructure Integrated Systems

New \$46 million capital investment at UMass including \$23 million for R2R facility

Challenge 1: Manufacturing Platform Drives Cost

\$25/m²

Si wafer-based, precision devices Now: 32 nm features in production New Fab = \$4-6 Billion

\$25,000/m²

VS. Now: Macroelectronics, limited functionality Low cost, high volume

- Nanotechnology-enabled, high performance devices on a low-cost R2R manufacturing platform
- R2R not intended to compete with traditional Si based technology for high end computing

 hybrid approaches where needed
- Addressing opportunities that require new functionality, large areas, unique form factor etc.

Challenge 2: Low-Cost Capable Devices by Combining Printed Electronics and Nanostructured Device Layers

Defining Needs:

- 1. New materials and process to improve performance
- 2. Organize (order) nanostructured active layer (3 50 nm)
 - nanoparticles, fullerenes, nanorods, etc.
- 3. High speed pattern on web at device scale (50 nm 5 micron)
 - interconnect, micro/nanofluidic, optical, active surface
- 4. Solution-based processing, eliminate vacuum and high T
- 5. Additive approach where possible
- 6. Compatible with Si pick and place for some applications
- 7. Integrated device and systems development
- 8. Build tools for partner access, technology demonstration

Ordered Structure at Length Scales Less Than 50 nm Spontaneous Assembly from Solution, Complete Control of Morphology

Block Copolymer Assembly

Additive-Driven Assembly of Hybrids

Can We Control the Placement Discreet Populations of NPs? Phase-Targeted Loading of Dual NP Systems Using Orthogonal NP-Segment Interactions

Independent Control of Permeability and Permittivity

Can We Control the Placement Discreet Populations of NPs? Phase-Targeted Loading of Dual NP Systems Using Orthogonal NP-Segment Interactions

HfO2, ZrO2, etc.

FePt, ZrO₂ in PS-b-P2VP

XWANG stained 03-25-13018 PS-P2VP(199k)+10%FePt-OH+5%ZrO2T/10mg4PPy Cal: 0.14828 nm/pix 6:12:43 p 03/25/13

20 nm HV=200.0kV Direct Mag: 80000x X:na Y:na T:

Independent Control of Permeability and Permittivity

Can We Apply Self Assembly to Large or Optically Active NPs? Control Interactions, Use Templates with Large Periodicities that Assemble Rapidly

ZrO₂ in PS-PEO Bottle Brush

appropriate length scales for manipulating light

Scale-Up --- Roll-to-Roll Coating of Ordered Hybrids

- Two interchangeable microgravure coaters placed in series (swappable with slot-die)
- First coater used to apply a planarization layer
- Second coater used to apply thin block copolymer or hybrid layer on planarized film.
- Three independently controlled ovens

- Use "known" tools but new materials and process
- Validate structures, capabilities and scaling
- CHM research includes experiments and simulation

PS-PtBA on Planarized PEN

Patterning at Length Scales > 50 nm Nanoimprint Lithography: Two Modes

Thermal: Emboss thermoplastic or thermoset using heat, pressure UV-Assisted: Contact UV-curable resin with master, photocure

Scale-Up: UMass / CHM R2R NIL Tool

UMass NANOemBOSS R2RNIL constructed with Carpe Diem Technologies (Franklin, MA) Profs. Ken Carter and Jonathan Rothstein Test Bed Coordinators

CHM Transitions/Implementation Require Robust Demo Tools

R2RNIL – 500 nm to Sub-100 nm Gratings

Large Area Antimicrobial Textured Layers

Sharklet[™] Surface Technology

Galapagos Shark Skin

NIIL and R2RNIL Challenge: Can we replicate Sharklet pattern?

R2RNIL on CHM Nanoemboss

Mold Preparation:

- Negative of Sharklet features on 6 inch wafer was replicated on to PFPE on PET hybrid mold **Substrate Treatment:**
- PET web was coated with an adhesion agent then a photoresist layer was applied
- This PET pre-treatment improves the quality of imprinted features in long runs

R2RNIL Conditions:

- Resist: NOA adhesive 40 v/v % in PGMEA
- Speed: Imprinter was run at 10 -12 inches / minute
- Exposure at 365 nm

Solution Coatable Patterned and Planar Hybrid Device Layers: Polymer / NP Composites with Tuned Material Properties

Refractive Index of Transparent Polymer / TiO₂ NP Hybrids

Solution Coatable Patterned and Planar Hybrid Device Layers Example: Tuned Material Properties, Patterns by Nanoimprint Lithography

Wavelength Selective Bragg Mirrors

NIL Patterning of Composites

. U.S. Appl. 13/900,248

We can create, coat and pattern smooth polymer/NP and NP films Ranging from 100% polymer to 90% stabilized NPs metal oxides/high k /high RI / low RI

Crystalline NPs / structures -Low Temperature Processing

Fabrication of True Three-Dimensional Patterns Lift-Turn-Stack

Many, many geometries possible, not limited to grid patters Features below 100 nm readily accessible Extend to R2R

3D Patterning: Tetralayer

• SEM Images: 50% TiO₂, 50% NOA60

Printing of True 3-D Nanostructures Print, Lift, Turn and Stack for Photonic Log Pile Structures

Challenge 3: Run Fast \rightarrow Make Mistakes Fast On-line Metrology of Nanostructures for R2R

MIT (Hardt/Anthony) Super-resolution Imaging

Super Resolution Image with 10x Greater Resolution

NIST (Liddle/Gallatin) "matched optical filter" approach (near field grating interferometry)

Challenge 4: Reduce Risk of Exploration/Adaptation/Commercialization by Industry Partners

- Emerging Fields Characterized by Fragmented Developments with Variable Readiness Levels – Reality Does Not Follow Roadmaps
- New Materials and Processes Will Require Validated Tools and Scaling
- "New" Tools Typically Must Be Compatible with Existing Lines
- Maturing of New Technology May Require Demonstration Facilities with Multi-University/Industry Partnerships and Professional Staffing

 Potential for Follow-On/Parallel Funding for Academic Research Centers
- Incremental Successes Build Foundations for Game Changers
- Pre-competitive Partnerships Can Add Value

New Example at UMass Amherst

R2R Facility for Life and Nanosciences at the Heart of CPHM*

- Novel R2R Process Tools based on UMass/CHM Technology
- Novel R2R Process Tools based on Emerging Technology w/ Partners - ALD, Graphene, R2R Test Frames for Processes
- State of the Art Commercial Technology
- Common 6" Wide Web Platform
- Professional Staff (Goal)
- Early Engagement of CHM R2R Advisory Board and Stakeholders
- Cluster R Precompetitive Consortium Emerged from CHM
- Partnership Space
- Emerging Technology Workshops

*\$46 million capital investment in Center for Personal Health Monitoring by Commonwealth of Massachusetts
\$30 million equipment (\$15 in New R2R Manufacturing Tools)
\$16 million facilities including industry partnership space

Challenge 5: Build Communities of Practice

- Trade Associations / Roadmaps
- Supply Chains
- Information Exchange

Serving the nanomanufacturing R&D community with technical information, workshops, and technology roadmaps

Boston, MA

September 25

2011

www.internano.org

Summary of Needs

• New Materials Sets Required for Increased Performance

- fabricate devices that meet market and consumer (civilian or DOD) demands

• Demonstrate Manufacturability of Lab-Scale Materials and Devices

- will stretch capabilities of many academic labs / groups

- Develop Viable Tool Platforms
- Stage Priorities:
 - large area light and energy management as "low hanging fruit"
 - obtain "inorganic " device performance via R2R processing (transistors first)
 - integrated electronics and system development (e.g. autonomous sensor)
- Metrology is Largely Missing
- Reduce Risk of Partner Exploration and Adaptation

- demo facilities staffed with professionals and training (who pays?)

• Funding Agencies Have Needs Across TRLs or MRLs <u>but</u> Tend Not to Provide Funding Across TRLs

- opportunities for Multi-Agency Activity Coordinated Investment

Build Communities of Practice and Supply Chains

