The 10th US-Korea Nanosymposium

Plasmonic Metal Nanopatterning and Its Applications in Optoelectronics

Lee, Eung-Sug

2013. 10. 15

Korea Institute of Machinery & Materials

Outlines

1 Laboratory Introduction

- Members / Facility
- Researches for Nanoimprint

2 Technology Overview

Basic principles

- Research scopes and applications
- Research directions

Research Activities in Plasmonic Metal Nanopattern Process

- Lift-off, Direct etch, 3D profile of metal nanostructures
- Embedded profile Ag nanopatterns

Collaborations-Closing remarks

Members

Staffs

- Lee, Eung-sug: Ultrafind fabrication, Nanomechatronics
- Jeong, Jun-ho: Nanolithography, Nanoimprint
- Choi, Jun-hyuk: Metal nanopattering, Direct/Roll Imprint
- Choi, Dae-geun: Nanoimprint mater. Process chemistry
- Lee, Ji-hye: Nanowire, mask fabrication, biosensors
- Jeong, Joo-yeon: Electronics, Plasmonic optics

- ➤ Nanoimprint
 - Process, Tools, Functional mater.
 - Appl.: R-RAM, Sensors, (O)LED
- ➢ 3D Multiscale Architecturing
 - Nanowire structuring
 - Nanomaterials self-assembly
- > Plasmonic sensors, Light emitting
 - Metal nanostructuring
 - Metal NP. Self-growth

Facilities/Infra.

For Nanoimprint at wafer scale

For Nanoimprint in Large area

Large area Mold fabrication

Etched master at 8" wafer

Metal patterning infrastructures

Technology Overview

<section-header>

When illuminated outside

When illuminated inside

Surface plasmon resonace

- Photon-electron coupled phenomenon at resonant condition when illuminated on metal surface
- Collective oscillation of electrons propagating on the surface with positive dielectric constant
- Evanescent wave out of plane
- Locally amplified field formation

Localized surface plasmon resonance

Infrastructure of metallic nanopatterning

Research Activities

Lift-off for well-round shaped Metal dots

Step 2: Bilayer Imprint

- 150nm, Pillarਰੇ, 1:2 A.S.
- LOR 90nm / LV 300nm
- UV Imprint at 2 bar, 90s
- Transferred Height 250nm
- 잔류층 50~60nm

Step 3: Silipin 중착

▪ 4,000 rpm, 30sec ▪ 150도에서 3분 어닐링

<u>Step 5: Etch-down</u>

Silspin Etch 20s, O2+CHF3
Imprint Resist & LOR Etch
50 sccm of O2, 90s

Step 7: Ag 중착는 Lift-off

Thermal Evap. 30nm
 Developer 400K

Etching SiO2(50nm)

Etching Al (80nm)

- Implement PMMA layer as a cushioning buffer
- Increased Transmittance
- Configurable for depth, hole shape
- Applicable to UV-resistant tint glass

- Temperature dependent
 - Metal diffusion, followed by silver self-aggregation
- Pressure dependent, namely structure dependent
 - Optical modulation through Index-gradient

Point of the embedded configuration on multilayer optoelectronics

- Non-uniform current flow (Leakage current)
 ⇒ Reduced efficiency
- Electric field/Electron injection enhancement
 - \Rightarrow Electron transport effects
 - \Rightarrow Thermal decay, reduced life-time
- Charge recommbination in solar cells
 ⇒ Thermal decay, reduced efficiency

1. Bilayer Hybrid NIL and following Lift-off

- (a) Half pre-cure of the coated UV resist
- (c) Thermal Imprint, UV exposure while pressed
 - -> Complete cure of UV resist
- (d) Ag deposition by E-beam evaporation
- (e) Lift-off of thermal resist on top layer

- (a) E-beam evaporation of Ag on mold pattern
- (b) Half pre-cure of UV curable resist
- (c) Only Ag on the top surface of mold in contact with half-cured resist, and UV exposure
- (d) Mold release

ℵ Note: Embedded Dot Arrays

- 1) Half pre-cured UV-NIL resist
- 2) Limitedly Imprinted Depth via Pressure Control
- 3) Minimized Leakage Current at device depo.

4. EL Enhancements on Green w.r.t. config.

 \bigcirc Host – PVK/OXD-7 , TCTA // TPBi

 \bigcirc Dopant – Ir(mppy)₃ – green emitting material

Device configuration : ITO/PEDOT:PSS/EML/OXD-7/Al.

^b Turn-on voltage at 1 cd/m². ^c Maximum luminance.

^d Maximum luminance efficiency. ^e The 1993 CIE coordinates at maximum luminance

No.	Turn-On Voltage(V)⁵	L _{max} (cd/m²) ^c	LE _{max} (cd/A) ^d	QE (%)	CIE Coordinates (X,Y) ^e
Ref.	8.98	1980	16.26	4.71	(0.338,0.604)
150 nm	5.99	2914	17.09	4.61	(0.322,0.618)
200 nm	5.79	2722	13.07	3.94	(0.328,0.614)
265 nm	7.14	2112	26.51	6.44	(0.323,0.607)

EL enhanced by ~ 34% for 265nm

Closing Remarks

- > Research Infrastructures for Nanostructures/Patterning
- > Nanoimprint-based nanopatterning and its application works
- > Several approaches for metallic nanopatterning fabrications introduced in plasmonic fields

➢ Global Collaborations

UC Berkeley-Micromechanical Analysis and Design (BMAD)

IMRE, Singapore

AMO GmbH Aachen

Industrial Collaborations

Hutem Co. nanoLambda Korea Company APN Youngchang Chemical Co. Ltd Samsung Electronics-Manufacturing Institute

