
Extendibility of EUV Lithography Technology for Semiconductor Devices

Jinho Ahn

Professor, Materials Science & Engineering, Hanyang University Director, Nano & Convergence Tech., National Research Foundation of Korea

Moore's Law - Number of transistors on a chip doubles about every two years.

Electronics, Volume 38, Number 8, April 19, 1965

Scaling Enabler: Lithography

Resolution =
$$k1 \frac{\lambda}{NA}$$

NA = numerical aperture of imaging optics n (refractive index) * sin θ

K1	Solution
>0.55	Binary Mask + Simple Illumination
0.45 ~ 0.55	Binary +Attenuated PSM +OPC + Off-axis illumination
	Alternating / Chromeless PSM +OPC + Complex Illumination
0.35-0.45	+ Design Restriction
0.25-0.35	Innovative Solutions
<0.25	Below Diffraction Limit

"Effective k1" can be below 0.25 by using techniques such as "Double Patterning" (via splitting of features or pattern) Cost effectiveness and overlay are issues for this technology

October 15, 2013

Wavelength Reduction has been a key Driver of Moore's Law

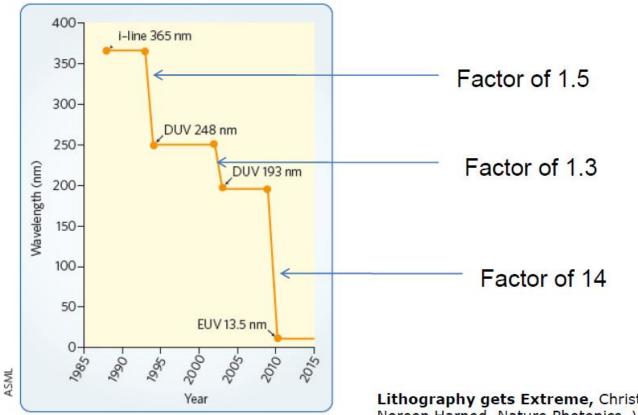
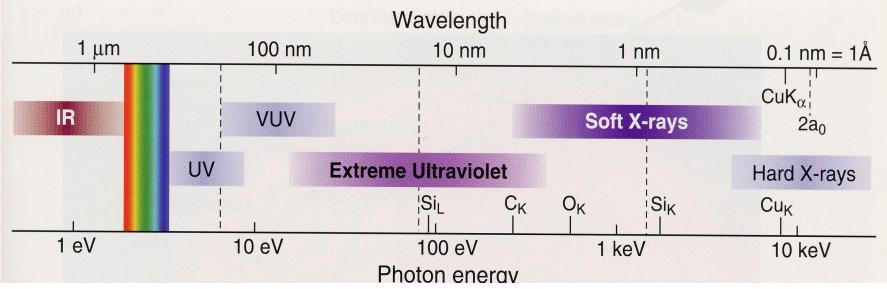


Figure 1 | Since the mid-1980s, the wavelength of light used in lithography systems has reduced by almost half from 365 nm to 193 nm. The switch to EUV lithography involves a further wavelength reduction factor of almost 15. DUV, deep ultraviolet. Lithography gets Extreme, Christian Wagener and Noreen Harned, Nature Photonics, Vol. 4, pp. 24-26, January 2010

October 15, 2013

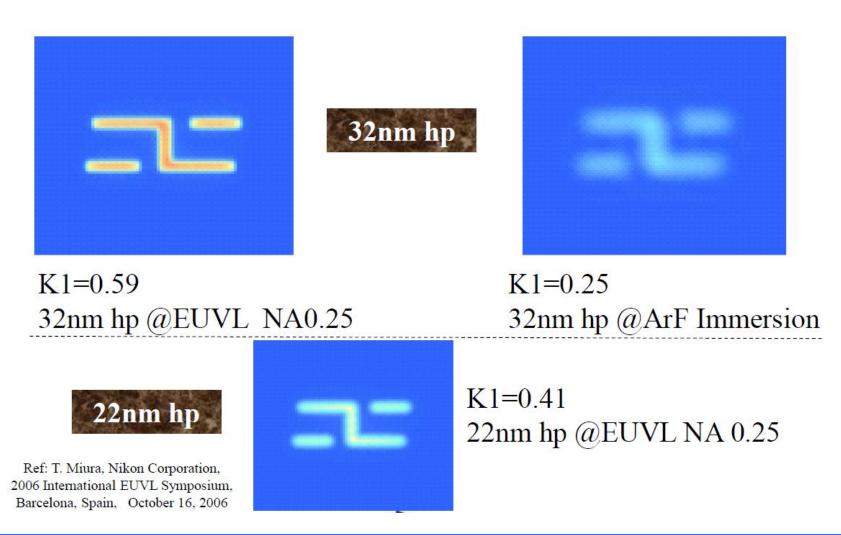
Lithography Roadmap: EUVL is the leading Lithography Technology for 22 nm node and Beyond (2012 ITRS)

	First Year of IC Production	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
	DRAM ½ pitch (nm) (contacted)	36	32	28	25	23	20.0	17.9	15.9	14.2	12.6	11.3	10.0	8.9	8.0	7.1	6.3
	MPU/ASIC Metal 1 1/2 pitch (nm)	38	32	27	24	21	18.9	16.9	15.0	13.4	11.9	10.6	9.5	8.4	7.5	7.5	7.5
45	193nm Imm										2						
32	193 nm DP						ŧ										
22	EUV																
	193nm MP ML2 (MPU)	Narrow	Options	_													
16	EUV						Y	NPU/	DRAN	A time	e line						
	193nm MP																
	ML2				Narrow	Options							8				
	DSA + Litho									-							
	Imprint		_			-											
11	EUV higher NA / EUV + DP																
	ML2																
	DSA + Litho	Narrow Options						1									
	EUV (new wavelength)																
	Imprint														1.		
	Innovation																


Research Regulred Development Underway Qualification / Pre-Production Continuous Improvement

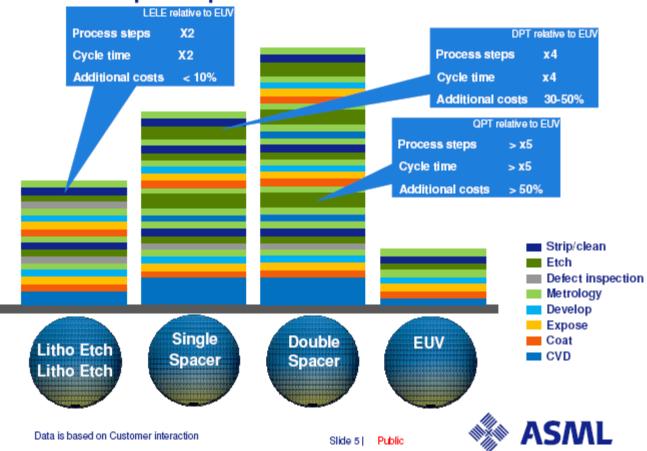
October 15, 2013

What is Extreme UltraViolet (EUV)?



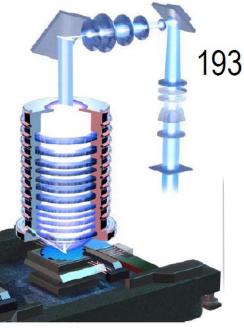
- Last region of electromagnetic spectrum to be developed
- Cause atomic resonance leading to high degree of absorption in all materials
- Short λ enables to see small structures and to write smaller patterns

Why EUV Lithography ? - Image quality with affordable k1 value

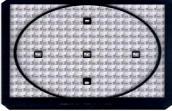


October 15, 2013

Why EUV Lithography ? - Cost Effective !



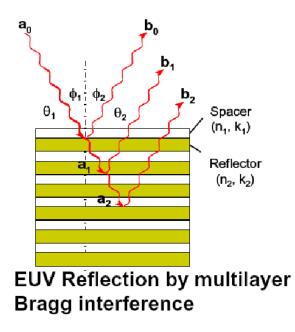
EUV simplifies process and reduces cost

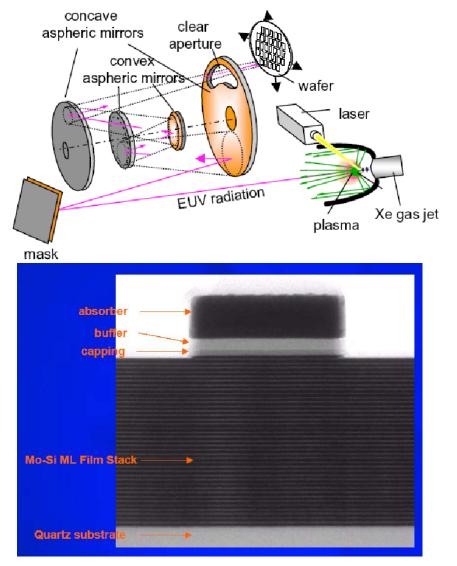

October 15, 2013

Big Change of Optical System from DUVL to EUVL

On-axis diffraction optics

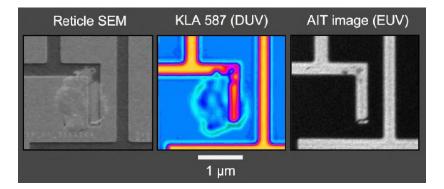
Reticle Mask




EUV Lithography Overview

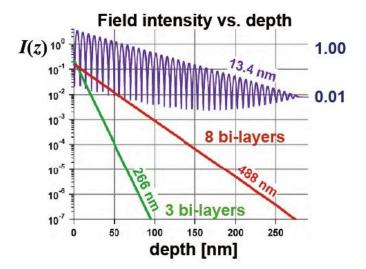
Principle

- $\lambda = 13.4 13.5$ nm (Xe)
- 4X all reflecting mirror (Mo/Si),
- Scanning projection
- □ N.A. = 0.1 0.30 (max ~ 0.55)



October 15, 2013

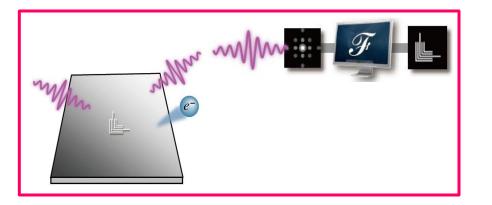
Wavelength-dependent defectivity

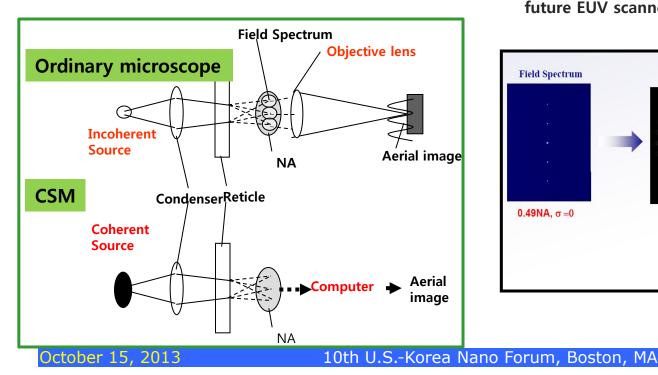

Wavelength-dependent defectivity

Ref.. Mochi, Proc. SPIE 7636 (2009).

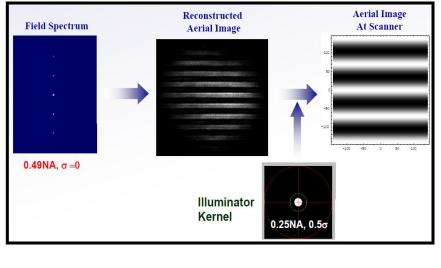
Penetration depth of different wavelength

13.5 nm	193/199 266 3 2 bi-layers bi-layers	488	e [−] 1-2 bi-layers
277 nm —		13 bi-layers	
$I(x) \approx 1\%$ 31 bi-layer	s		

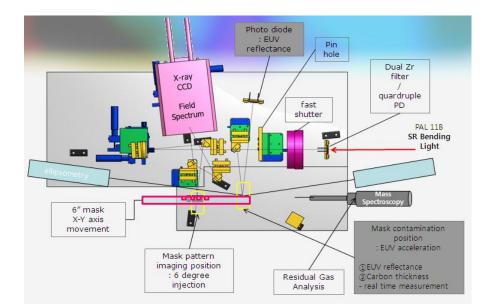


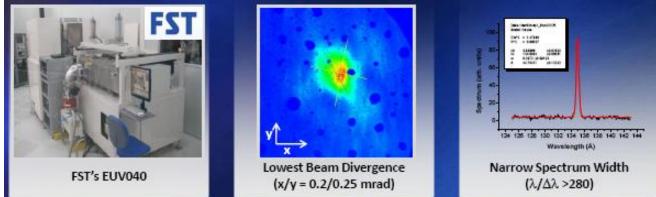

Ref.. Goldberg, EUVL Workshop (2010).

October 15, 2013

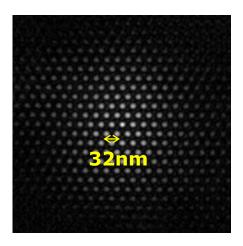

EUV Coherent Scattering Microscope

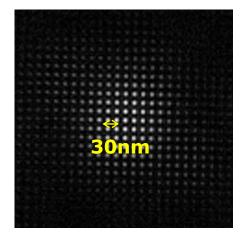
- Simple structure
 - Minimizing imaging limit caused by objective lens
 - Collecting diffaction pattern by CCD pixel
 - Mask image reconstruction by reverse Fourier Transformation
- Simulation capability for various exposure conditions
 - Incident angle and illumination condition
 - Real actinic imaging capability with current and future EUV scanner conditions


Ref. Dong Gun Lee

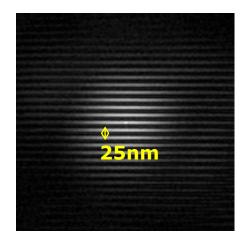

CSM with HHG EUV source @HYU

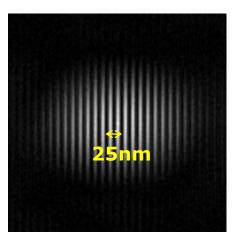
Collaboration with Samsung, FST & Auros




October 15, 2013

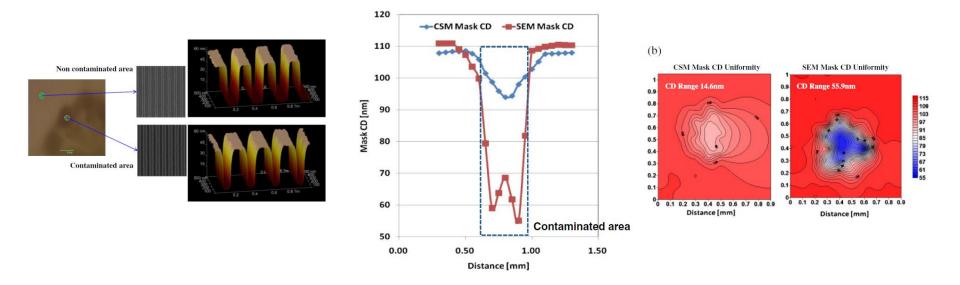
Mask Imaging Results by CSM




Contact hole (honeycomb)

Contact hole

L/S horizontal


CSM can detect low-density carbon contamination effect

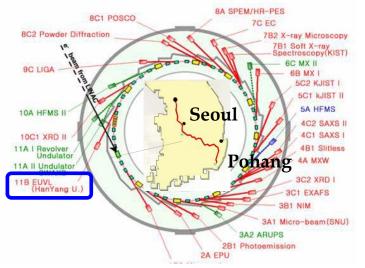
Japanese Journal of Applied Physics 51 (2012) 06FB04

DOI: 10.1143/JJAP.51.06FB04

Effect on Critical Dimension Performance for Carbon Contamination of Extreme Ultraviolet Mask Using Coherent Scattering Microscopy and *In-situ* Contamination System

Jonggul Doh^{1,2}, Sangsul Lee¹, Jaewook Lee¹, Seongchul Hong¹, Chang Young Jeong², Dong Gun Lee², Seong-Sue Kim², and Jinho Ahn¹*

Hanyang University


Korea EUVL R&D Infrastructure

Co-workers:

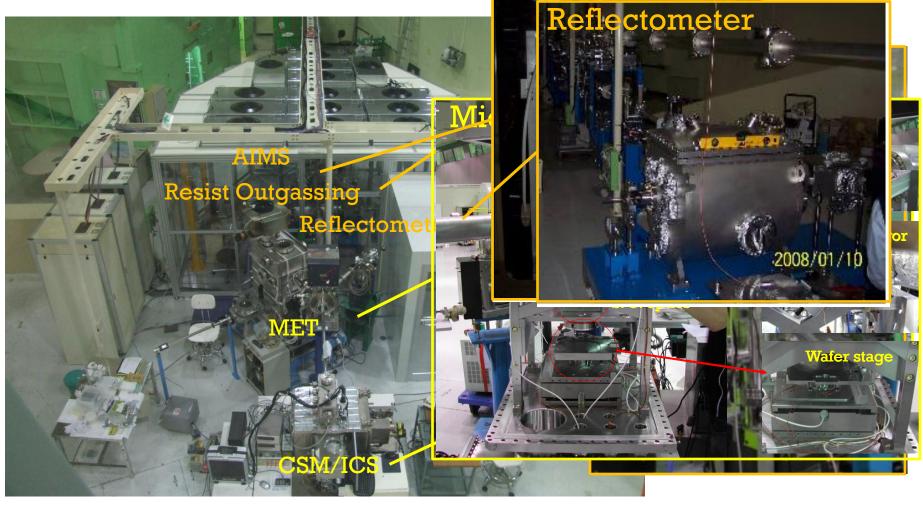
Academia - POSTECH, SNU, SKKU, Inha Univ.

Research Institute – Pohang Accelerator Laboratory, NCNT

Industry - Samsung Electronics, SK HynixDongjin Semichem, IMT

- \triangleright beam size at mask : < ϕ 2mm
- ▷ energy range : 92.5 eV(13.4nm)
- \triangleright energy resolution : > ±1%

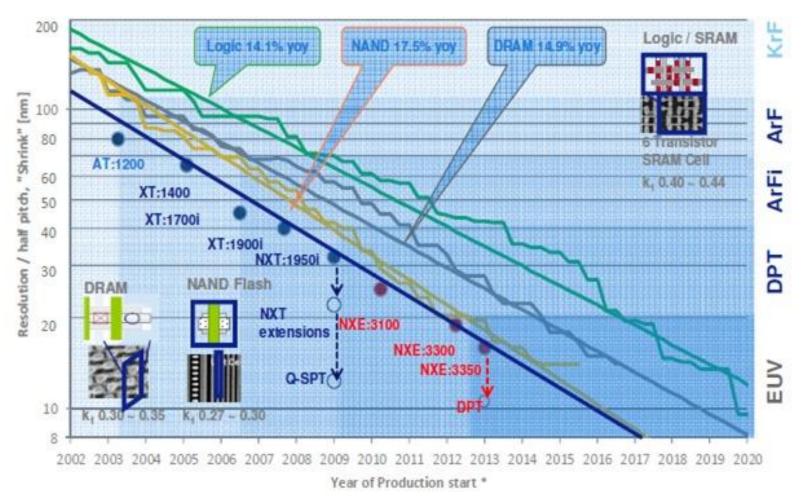
Beamline Micro exposure Tool PR Out-gassing EUV Microscope EUV Reflectometer



October 15, 2013

EUVL Beamline & Tools

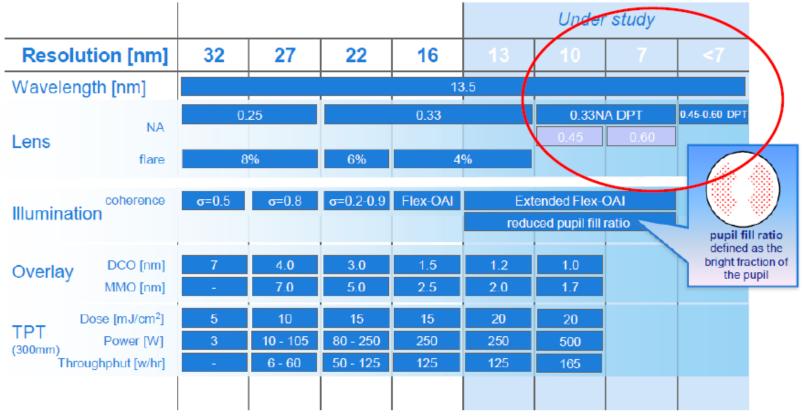
Pohang Synchrotron Facilities



AIMS

October 15, 2013

Industry roadmap toward <10nm Lithography supports shrink



Ref: ASML

Scanner Roadmap Extendibility

Rudy Peters / ASML, SPIE Microlithography, Feb 2013

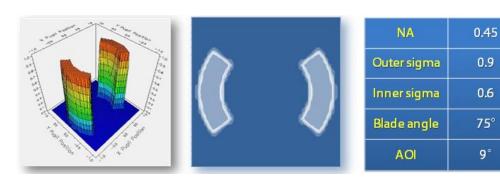
 EUVL can be extended to sub-10 nm patterning using double patterning and/or high-NA EUV

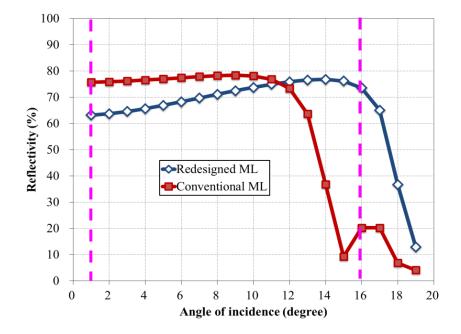
October 15, 2013

High-NA Limiting Factor

Mask structure

The 3D nature of the EUV mask limits resolution and image quality



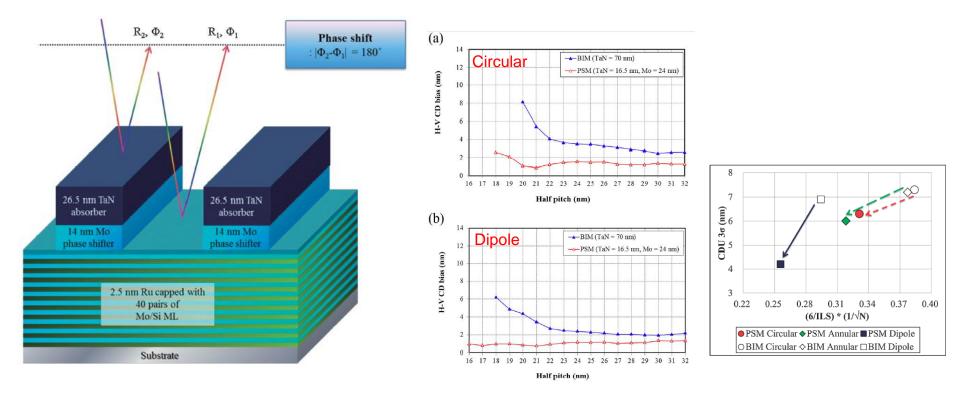

New mask structure including re-designed reflector and thin absorber is needed for high-NA system.

October 15, 2013

Optimizing Mask Structure for high NA – New reflector and absorber

Materials	TaBN	Ni ₃ N ₂	Pd ₃ N ₂	TeO ₂					
Thickness (nm)	30	24	20	24					
Reflectivity (%)	8.6	2.8	6.5	1.8					
	Non-shadowing								
Contrast (%)	82	98	97	84					
NILS left	2.71	2.91	3.17	2.76					
NILS right	2.71	2.91	3.17	2.76					
	Shadowing								
Contrast (%)	62	75	78	72					
NILS left	1.69	1.82	2.02	2.07					
NILS right	1.96	1.92	2.04	1.92					
H-V CD Bias (nm)	3.47	4.07	3.36	3.60					

Ref: J. Ahn et al. 2013 EUVL Symposium


Att.-PSM for better imaging quality

Applied Physics Express 6 (2013) 096501

http://dx.doi.org/10.7567/APEX.6.096501

Stochastic Patterning Simulation Using Attenuated Phase-Shift Mask for Extreme Ultraviolet Lithography

Seongchul Hong¹, Seejun Jeong², Jae Uk Lee¹, Seung Min Lee¹, and Jinho Ahn^{1,2}

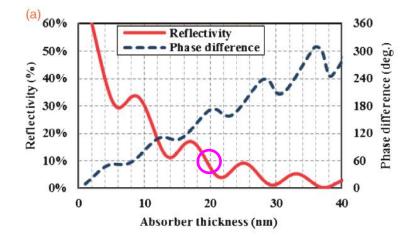
Hanyang University

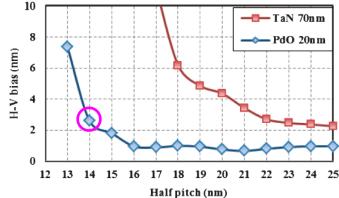
October 15, 2013

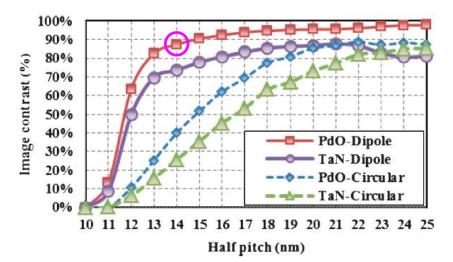
Very thin absorber for fine patterning

Applied Physics Express 6 (2013) 076502

http://dx.doi.org/10.7567/APEX.6.076502

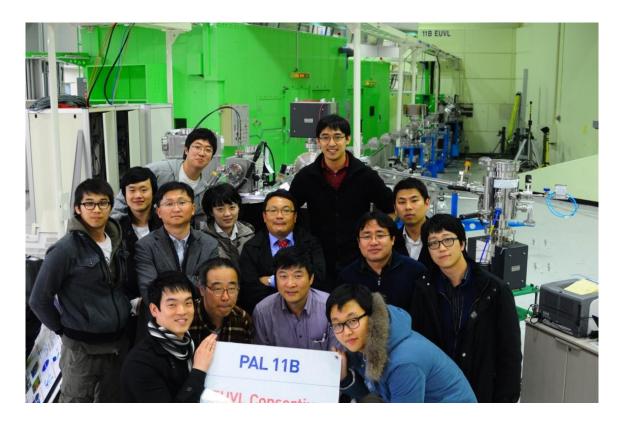

Very Thin Extreme Ultraviolet Mask Absorber Material for Extremely Fine Pitch Patterning

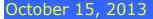

Jae Uk Lee, Seongchul Hong, and Jinho Ahn*


Department of Material Science and Engineering, Hanyang University, Seoul 133-791, Kon E-mail: jhahn@hanyang.ac.kr

Received May 16, 2013; accepted May 31, 2013; published online June 17, 2013

In this report, we propose palladium oxide (PdO) as an absorber material for an EUV mas down to 14 nm. In our simulations, because of its low refractive index (n = 0.8634) and phase shift mask with a very thin (~20 nm) PdO absorber can provide an EUV contra illumination. This results in a very limited horizontal-vertical critical dimension bias (≤ 2.6 (≥ 2.78) down to a 14 nm half pitch. © 2013 The Japan Society of Applied Physics


Even though struggling from the source power problems, huge progress is going on to insert EUV lithography into mass production.


Further innovation is underway to extend EUVL resolution limit beyond 10nm.

Continuing trend of device scaling will be realized though EUV lithography.

Thank you

