1. Enzyme Kinetics

a) $\mathrm{V}_{\mathrm{m}}=\mathrm{k} *\left[\mathrm{E}_{\mathrm{o}}\right]=\left(10^{4} \mathrm{~s}^{-1}\right) *(5 \mathrm{mg} / \mathrm{L})=50000 \mathrm{mg} /(\mathrm{s} * \mathrm{~L})$
b) In solving this problem we assume that $\mathrm{K}_{\mathrm{d}} \sim \mathrm{K}_{\mathrm{m}}$:
$r=\frac{V_{\text {max }}[S]}{K_{m}+[S]}$
We rearrange this to get:
$\frac{1}{r}=\frac{K_{m}}{V_{\max }} \frac{1}{[S]}+\frac{1}{V_{\max }}$

The y-intercept is $1 / \mathrm{V}_{\mathrm{m}}$, and the slope is $\mathrm{K} / \mathrm{V}_{\mathrm{m}}$.
c) One can use the plot to find V_{m} and then K . Using $\mathrm{V}_{\mathrm{m}}, \mathrm{K}$, and the amount of enzyme, one can then find k . This process is the reverse of what we have done in parts a) and b).

2. Metabolic Pathway Control

a) Four enzymes
b) Two enzymes
c) Yes, this drug may help to reduce symptoms. More S 3 will be unbound and push the reaction forward. It will trigger S5 production.

3. Enzyme Inhibition

a) $\mathrm{K}_{\mathrm{m}}=\mathrm{k}_{-1} / \mathrm{k}_{1} \quad$ and $\quad \mathrm{K}_{\mathrm{l}}=\mathrm{k}_{\mathrm{l},-1} / \mathrm{k}_{\mathrm{l}, 1}$

Thus, an increasing K_{x} indicates an increasingly weak association. In this problem, $\mathrm{K}_{\mathrm{m}}>\mathrm{K}_{\mathrm{I}}$, therefore the inhibitor binds more strongly than the substrate.
b)

$$
v=\frac{v_{\max }[S]}{K_{m}\left(1+\frac{[I]}{K_{I}}\right)+[S]}=\frac{0.67 \cdot 3.7}{4.9 \cdot\left(1+\frac{3.7}{1.2}\right)+3.7}=0.104562\left(\frac{\mathrm{mM}}{\min }\right) \quad \begin{aligned}
& \text { So the answer is } \mathbf{0 . 1 0} \mathbf{~ m M} / \mathbf{m i n} \\
& \text { (two significant figures). }
\end{aligned}
$$

c) In this problem we are given $\mathrm{V}_{\mathrm{m}}, \mathrm{K}_{\mathrm{m}}, \mathrm{I}$, and K_{i}. Additionally, we are given the initial condition $\mathrm{S}=$ 0.22 mM at $\mathfrak{t}=0$. Thus, we solve the differential equation:
$\frac{d S}{d t}=-\frac{a S}{b+S}$, note that we are consuming S , so the rate is negative. $\mathrm{a}=\mathrm{V}_{\mathrm{m}}$ and $\mathrm{b}=\mathrm{K}_{\mathrm{m}}\left(1+\mathrm{I} / \mathrm{K}_{\mathrm{i}}\right)$
$\left(\frac{b+S}{S}\right) d S=-a d t$
$b \ln (S)+S=-a t+c 1$
Using the initial condition we solve for c 1 , and now we can also plug in the values for a and b . We find that:
$8.49333 \ln (S)+S=-0.67 t+12.64$
Now we can solve the problem. If 90% of substrate is consumed then 0.022 mM remains. Thus, we substitute this value for S and calculate t . We find that $\mathrm{t}=29.4845 \mathrm{~min}$, or $\mathbf{2 9 . 5} \mathbf{~ m i n}$ (3 significant figures).

4. Mass Balance on a Hollow Fiber Hemodialyzer

a)

There are no chemical reactions occurring in this system, therefore mass ${ }_{i n}=$ mass $_{\text {out }}$ for all species.
Additionally, all flow into and out of the system must be conserved. Using a flow rate balance we find that:
$0=\mathrm{F}_{1}+\mathrm{F}_{3}-\mathrm{F}_{2}-\mathrm{F}_{4}$
$\mathrm{F}_{4}=\mathrm{F}_{3}+\mathrm{F}_{1}-\mathrm{F}_{2}=977 \mathrm{~mL} / \mathrm{min}$
Note that the volume difference of blood at arterial and venous side is due to the fact that water and urea are displaced from blood to the exiting dialysate stream.

Finding rate of urea removal:
The urea mass rate coming into the system from arterial blood is:

$$
F_{1} * U_{1}=355.2 \frac{\mathrm{mg}}{\mathrm{~min}}
$$

The urea mass rate exiting the system from the dialysate is:
$F_{4} * U_{4}=244.25 \frac{\mathrm{mg}}{\mathrm{min}}$
This result is the rate of urea removal, so this rate is $\mathbf{2 4 0} \mathbf{~ m g} / \mathbf{m i n}$ to two significant figures.
Finding concentration of urea in venous blood:

The urea mass rate exiting the system in venous blood is:

$$
355.2-244.25=110.9 \frac{\mathrm{mg}}{\min }
$$

We calculate U_{2} as:
$U_{2}=\frac{110.95}{183}=\mathbf{0 . 6 1} \mathbf{~ m g} / \mathbf{m l}$ (to two significant figures)
As mentioned above, there is a $2 \mathrm{~mL} / \mathrm{min}$ removal of fluid from the blood. To find the rate of removal of water, assume that the density of the removed fluid is $1 \mathrm{~g} / \mathrm{mL}$. Then,
$\frac{2 m L}{\min } \cdot \frac{1 g}{m L} \cdot \frac{1000 m g}{g}=\frac{2000 m g}{\min }$
$\frac{2000 \mathrm{mg}}{\min }-\frac{240 \mathrm{mg}}{\min }=\frac{1760 \mathrm{mg}}{\min }$
Thus, the rate of removal of water is $\mathbf{2} \mathbf{~ m g} / \mathbf{m i n}$ (one significant figure).
b) Initial concentration of urea in blood: $U_{1}=2.95 \mathrm{mg} / \mathrm{mL}$

Final concentration of urea in blood: $\mathrm{U}_{2}=0.61 \mathrm{mg} / \mathrm{mL}$
Initial amount of urea in blood: $\mathrm{M}_{1}=\frac{2.95 m g}{m L} \cdot 4900 m L=14455 \mathrm{mg}$, at $\mathrm{t}_{1}=0 \mathrm{~min}$
Final amount of urea in blood: $\mathrm{M}_{2}=\frac{0.60 m g}{m L} \cdot 4900 m L=2940 m g$, at $\mathrm{t}_{2}=? \mathrm{~min}$
The rate of removal of urea, as found in part a), is $240 \mathrm{mg} / \mathrm{min}$. Thus,
$t_{1}-t_{2}=\frac{M_{1}-M_{2}}{-240 \mathrm{mg} / \mathrm{min}}=-47.9792$, so $\mathrm{t}_{2}=47.9792 \mathrm{~min}$
So the patient should be put on dialysis for $\mathbf{4 8}$ minutes (two significant figures).

5. Biomechanics - Stride Analysis

We set up the problem as $\mathrm{P}_{\mathrm{t}, \text { body }}=\mathrm{P}_{\mathrm{t}, \text { body }+ \text { pack }}$. Note that $\mathrm{M}_{1}=\mathrm{M}_{\mathrm{body}}$, while $\mathrm{M}_{2}=\mathrm{M}_{\text {body }+ \text { pack. }} . \mathrm{M}_{2}=1.2 \mathrm{M}_{1}$.
Assuming optimal stride length, and using equation 10.6 from MMD, we find that $P_{t, \text { body }}=2(\alpha \beta)^{2}(g / L)^{1 / 2} M_{1} v_{1}^{2}=2(\alpha \beta)^{2}(g / L)^{1 / 2} 1.2 M_{1} v_{2}^{2}=P_{t, \text { body }+ \text { pack }}$

This reduces to $v_{1}^{2}=1.2 v_{2}^{2}$
Thus, the factor by which our walking speed compares to our speed without the pack is $\frac{v_{2}}{v_{1}}=\sqrt{\frac{1}{1.2}}=$ 0.912871 , or $\mathbf{0 . 9 1}$ to two significant figures.

6. Biofluid Mechanics - Inviscid Flow

Given:
$d_{1}=1.0 \mathrm{~cm}$
$v_{1}=55 \mathrm{~cm} / \mathrm{s}$
$P_{1}=100 \mathrm{mmHg}$
$d_{2}=1.5 \mathrm{~cm}$
Pressure drop in aneurysm:
First determine velocity in aneurysm:
$Q=v_{1} \cdot A_{1}=v_{1} \cdot \pi \cdot\left(\frac{d_{1}}{2}\right)^{2}=50 \mathrm{~cm} / \mathrm{s} \cdot \pi \cdot\left(\frac{1.0 \mathrm{~cm}}{2}\right)^{2}=43.20 \mathrm{~cm}^{3} / \mathrm{s}$
$v_{2}=\frac{Q}{\pi \cdot\left(\frac{d_{2}}{2}\right)^{2}}=\frac{43.20 \mathrm{~cm}^{3} / \mathrm{s}}{\pi \cdot\left(\frac{2.1 \mathrm{~cm}}{2}\right)^{2}}=12.47 \mathrm{~cm} / \mathrm{s}$
Use Bernoulli's Equation to relate pressures:
$\mathrm{P}_{1}+\rho \frac{\mathrm{v}_{1}^{2}}{2}+\rho \mathrm{gZ}_{1}=\mathrm{P}_{2}+\rho \frac{\mathrm{v}_{2}^{2}}{2}+\rho \mathrm{gz}_{2}$
Assume that the change in height between 1 and 2 is negligible ($\rho g z$ term cancel out)
Assume density:
$\rho=1.056 \mathrm{~g} / \mathrm{cm}^{3}$
The equation is now:
$\mathrm{P}_{1}+\rho \frac{\mathrm{v}_{1}^{2}}{2}=\mathrm{P}_{2}+\rho \frac{\mathrm{v}_{2}^{2}}{2}$
$P_{2}=P_{1}+\frac{\rho}{2}\left(\mathrm{v}_{1}^{2}-\mathrm{v}_{2}^{2}\right)$
$P_{2}=100 \mathrm{mmHg}+\frac{1.056 \mathrm{~g} / \mathrm{cm}^{3}}{2}\left(\left(55 \mathrm{~cm} / \mathrm{s}^{2}-(12.47 \mathrm{~cm} / \mathrm{s})^{2}\right) \cdot\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \cdot \frac{100 \mathrm{~cm}}{\mathrm{~m}} \cdot \frac{1 \mathrm{~Pa}}{\mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}^{2}} \cdot \frac{760 \mathrm{mmHg}}{1.01 \times 10^{5} \mathrm{~Pa}}\right)\right.$
$P_{2}=101 \mathbf{m m H g}$
Now for vigorous exercise:
$v_{1}=200 \mathrm{~cm} / \mathrm{s}$
Pressure drop in aneurysm during vigorous exercise
First determine velocity in aneurysm:
$Q=v_{1} \cdot A_{1}=v_{1} \cdot \pi \cdot\left(\frac{d_{1}}{2}\right)^{2}=200 \mathrm{~cm} / \mathrm{s} \cdot \pi \cdot\left(\frac{1.0 \mathrm{~cm}}{2}\right)^{2}=157.1 \mathrm{~cm}^{3} / \mathrm{s}$
$v_{2}=\frac{Q}{\pi \cdot\left(\frac{d_{2}}{2}\right)^{2}}=\frac{157.1 \mathrm{~cm}^{3} / \mathrm{s}}{\pi \cdot\left(\frac{1.5 \mathrm{~cm}}{2}\right)^{2}}=45.35 \mathrm{~cm} / \mathrm{s}$
Use Bernoulli's Equation to relate pressures, making the same assumptions as above:
$P_{2}=P_{1}+\frac{\rho}{2}\left(\mathrm{v}_{1}^{2}-\mathrm{v}_{2}^{2}\right)$
$P_{2}=100 \mathrm{mmHg}+\frac{1.056 \mathrm{~g} / \mathrm{cm}^{3}}{2}\left((200 \mathrm{~cm} / \mathrm{s})^{2}-(45.35 \mathrm{~cm} / \mathrm{s})^{2}\right) \cdot\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}} \cdot \frac{100 \mathrm{~cm}}{\mathrm{~m}} \cdot \frac{1 \mathrm{~Pa}}{\mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}^{2}} \cdot \frac{760 \mathrm{mmHg}}{1.01 \times 10^{5} \mathrm{~Pa}}\right)$
$\mathbf{P}_{2}=\mathbf{1 1 5} \mathbf{~ m m H g}$
$P_{2}=115 \mathbf{m m H g}$
If the aneurysm increases in size then \mathbf{v}_{2} would decrease and \mathbf{P}_{2} would increase.

