## 1. Biomaterials - Stress-strain behavior

| Conversion factor | 1 |
| ---: | :--- |
| Length | 8 |
| Width | 5 |
| Thickness | 6 |
| Area | 30 |


| Notes |
| :--- |
| Stress $=$ Force $/$ Area |
| Strain $=$ Displacement/L |
| Area $=w \times \mathrm{L}$ |
| Elastic modulus is slope of |
| stress vs. strain curve |


| Displacement <br> $(\mathrm{mm})$ | Force $(\mathrm{N})$ | Stress <br> $\left(\mathrm{N} / \mathrm{mm}^{\wedge} 2\right)$ | Strain (\%) |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |
| 0.05 | 21 | 0.7 | 0.625 |
| 0.1 | 49 | 1.63333333 | 1.25 |
| 0.15 | 118 | 3.93333333 | 1.875 |
| 0.2 | 190 | 6.33333333 | 2.5 |
| 0.25 | 301 | 10.0333333 | 3.125 |
| 0.3 | 399 | 13.3 | 3.75 |
| 0.35 | 503 | 16.7666667 | 4.375 |
| 0.4 | 602 | 20.0666667 | 5 |
| 0.45 | 700 | 23.3333333 | 5.625 |
| 0.5 | 810 | 27 | 6.25 |
| 0.55 | 960 | 32 | 6.875 |
| 0.6 | 1090 | 36.3333333 | 7.5 |
| 0.65 | 1200 | 40 | 8.125 |
| 0.7 | 1298 | 43.2666667 | 8.75 |
| 0.75 | 1390 | 46.3333333 | 9.375 |
| 0.8 | 1487 | 49.5666667 | 10 |
| 0.85 | 1523 | 50.7666667 | 10.625 |
| 0.9 | 1490 | 49.6666667 | 11.25 |
| 0.95 | 1350 | 45 | 11.875 |

Plotting the stress vs. strain for all data points we get figure A (below). The ultimate tensile stress is the maximum stress a material can withstand; this a strain of $10.625 \%$. Thus, the ultimate tensile stress is $\sim \mathbf{5 1}$ $\mathbf{N} / \mathbf{m m}^{2}$. To find the elastic modulus, E, we find the slope of the stress/strain curve in the elastic region, which seems to occurs when the strain is between 1.875 and $9.375 \%$. We use Excel's linear regression solver to find the slope (figure B). Thus, we find that the elastic modulus is $5.85 \sim \mathbf{5 . 9} \mathbf{N} / \mathbf{m m}^{\mathbf{2}}$. To relate the elastic, E, and shear, G, moduli, we use an estimate of Poisson's ratio (typically $v \sim 0.33$ ) and the relationship K (bulk modulus) $=\mathrm{E} /[3(1-2 v)]=2 \mathrm{G}(1+v) /[3(1-2 v)]$.

Re-arranging, $\mathrm{G}=\mathrm{E} /[2(1+v)]=\left(5.85 \mathrm{~N} / \mathrm{mm}^{2}\right) /[2(1+0.33)]=2.203 \sim \mathbf{2 . 2} \mathbf{N} / \mathbf{m m}^{2}$


Figure A


Figure B

## 2. MRI

The signal intensity depends upon the strength of the magnetic field and the amount of material in the field at each position. Since the signal shows a step-like formation, we can assume that at each position $X$, the magnetic field passes slices through the same amount of material. The dark material resonates at a lower frequency; therefore, the dark material experiences a lower magnetic field strength $B_{0}$. Thus, our field gradient is:


## 3. MRI

To solve this problem, we use two equations: $E=h^{*} \gamma^{*} \mathrm{~B} \quad$ and $\quad \mathrm{N}^{-} / \mathrm{N}^{+}=\exp \left\{-E / k_{B} T\right\}$
$h=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
$\gamma=42.58 \mathrm{MHz} / \mathrm{T}=42,580,000 \mathrm{~Hz} / \mathrm{T}$ (for hydrogen)
$B=0.75 \mathrm{~T}$
$k_{B}=1.3805 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
$T=298 \mathrm{~K} \quad$ (assume room temperature)
$E=\left(6.626 \times 10^{-34} \mathrm{~J} \bullet \mathbf{s}\right)(42,580,000 \mathrm{~Hz} / \mathrm{T})(0.75 \mathrm{~T})=2.116 \times 10^{-26} \sim \mathbf{2 . 1} \times \mathbf{1 0}^{-\mathbf{2 6}} \mathbf{J}$
$\mathrm{N}^{-} / \mathrm{N}^{+}=\exp \left\{\left(-2.116 \times 10^{-26}\right) /\left(\left(1.3805 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(298 \mathrm{~K})\right)\right\}=\exp \left\{-5.144 \times 10^{-6}\right\}($ or $\sim 1.0)$
$\left(\mathrm{N}^{+}-\mathrm{N}^{-}\right) / \mathrm{N}^{+}=1-\mathrm{N}^{-} / \mathrm{N}+=1-\exp \left\{-5.144 \times 10^{-6}\right\}($ or $\sim 0.0)$
MRI is extremely sensitive - able to operate with very small differences in the spin state populations.
Anything that will make $E / k_{B} T$ larger will improve the signal: we could increase the strength of the magnet (B) or we could decrease the temperature (T); everything else that impacts $E$ - the constants ( $h, \gamma, k_{B}$ ) - is set by Nature.

## 4. Signal processing

Using the aliasing formula, every signal with frequencies given by ( $\mathrm{f}-\mathrm{kf}_{\text {sample }}$ ) will look the same:
Thus, signals with frequencies:
$360-1 * 200=160$
$360-2 * 200=-40$
$360-3 * 200=240$ etc
Will all look the same when sampled at 200 Hz ; they will all look like a 40 Hz signal. The maximum signal frequency that a 200 Hz sampling frequency can accurately represent is 100 Hz (recall the definition of the Nyquist frequency). So, a 160 Hz signal would also look like a 40 Hz signal when sampled at 200 Hz , as would a 240 Hz signal.

We can also show this graphically. We assume that our signal is a simple sine function. Thus, our signal is $f(x)=\sin \left(360 * 2 \pi^{*} x\right)$. Notice that this function describes a continuous signal, which looks like:


Where the x axis is time in seconds, and the y axis is the signal intensity.
However, we are only sampling at a frequency of 200 Hz , or 200 times a second. Our samples are shown below as the red x's:


So connecting the x 's we get:


Note that were we to sample for more than 0.03 seconds, say for 1 second, we would find that our aliased signal would repeat itself:


We find that the period of the aliased signal is 0.025 seconds, and thus the frequency is $\mathbf{4 0} \mathbf{~ H z}$.

