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1. Biomaterials – Stress-strain behavior 
Conversion factor  1     

Length 8     
Width 5     

Thickness 6     
Area 30     

      
      

Notes  Displacement 
(mm) Force (N) Stress 

(N/mm^2) Strain (%) 

Stress = Force / Area  0 0 0 0 
Strain = Displacement/L  0.05 21 0.7 0.625 
Area = w x L  0.1 49 1.63333333 1.25 
Elastic modulus is slope of  0.15 118 3.93333333 1.875 
stress vs. strain curve  0.2 190 6.33333333 2.5 
  0.25 301 10.0333333 3.125 
  0.3 399 13.3 3.75 
  0.35 503 16.7666667 4.375 
  0.4 602 20.0666667 5 
  0.45 700 23.3333333 5.625 
  0.5 810 27 6.25 
  0.55 960 32 6.875 
  0.6 1090 36.3333333 7.5 
  0.65 1200 40 8.125 
  0.7 1298 43.2666667 8.75 
  0.75 1390 46.3333333 9.375 
  0.8 1487 49.5666667 10 
  0.85 1523 50.7666667 10.625 
  0.9 1490 49.6666667 11.25 
  0.95 1350 45 11.875 

Plotting the stress vs. strain for all data points we get figure A (below). The ultimate tensile stress is the 
maximum stress a material can withstand; this a strain of 10.625%. Thus, the ultimate tensile stress is ~51 
N/mm2. To find the elastic modulus, E, we find the slope of the stress/strain curve in the elastic region, 
which seems to occurs when the strain is between 1.875 and 9.375 %. We use Excel’s linear regression 
solver to find the slope (figure B). Thus, we find that the elastic modulus is 5.85 ~ 5.9 N/mm2. To relate the 
elastic, E, and shear, G, moduli, we use an estimate of Poisson’s ratio (typically ν ~ 0.33) and the 
relationship K (bulk modulus) = E/[3(1-2v)] = 2G(1+v)/[3(1-2v)]. 
 
Re-arranging, G = E/[2(1+v)] = (5.85 N/mm2)/[2(1+0.33)] = 2.203 ~ 2.2 N/mm2 
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                 Figure A                    Figure B 
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2. MRI 
The signal intensity depends upon the strength of the magnetic field and the amount of material in the 
field at each position.  Since the signal shows a step-like formation, we can assume that at each position 
X, the magnetic field passes slices through the same amount of material.  The dark material resonates at 
a lower frequency; therefore, the dark material experiences a lower magnetic field strength Bo.  Thus, 
our field gradient is:  
 

     
 
 
 
 
 
 
 
 
 
 
 

 
 
 
3. MRI 
 
To solve this problem, we use two equations: Β= **γhE     and     N-/N+ = exp{-E/kBT} 
 
=h 6.626×10-34 J s 
=γ 42.58 MHz / T = 42,580,000 Hz / T   (for hydrogen) 

B = 0.75 T 
kB = 1.3805×10-23 J/K 
=T 298 K    (assume room temperature) 

 
E = (6.626×10-34 J•s)(42,580,000 Hz/T)(0.75 T) = 2.116×10-26 ~ 2.1×10-26 J 
 
N-/N+ = exp{(-2.116×10-26)/((1.3805×10-23 J/K)(298 K))} = exp{-5.144×10-6} (or ~ 1.0) 
 
(N+-N-)/N+ = 1 – N-/N+ = 1 - exp{-5.144×10-6} (or ~ 0.0) 
 
MRI is extremely sensitive - able to operate with very small differences in the spin state populations. 
 
Anything that will make E/kBT larger will improve the signal: we could increase the strength of the 
magnet (B) or we could decrease the temperature (T); everything else that impacts E – the constants 
(h, γ, kB) - is set by Nature.  
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4. Signal processing 
 
Using the aliasing formula, every signal with frequencies given by (f – kfsample) will look the same: 
 
Thus, signals with frequencies: 
360 – 1*200 = 160 
360 – 2*200 = -40 
360 – 3*200 = 240 etc 
 
Will all look the same when sampled at 200 Hz; they will all look like a 40 Hz signal.  The maximum 
signal frequency that a 200 Hz sampling frequency can accurately represent is 100 Hz (recall the 
definition of the Nyquist frequency).  So, a 160 Hz signal would also look like a 40 Hz signal when 
sampled at 200 Hz, as would a 240 Hz signal. 
 
We can also show this graphically.  We assume that our signal is a simple sine function. Thus, our 
signal is f(x) = sin( 360*2π*x). Notice that this function describes a continuous signal, which looks 
like:  
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Where the x axis is time in seconds, and the y axis is the signal intensity.  
 
However, we are only sampling at a frequency of 200 Hz, or 200 times a second. Our samples are 
shown below as the red x’s:   
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So connecting the x’s we get:  

0 0.005 0.01 0.015 0.02 0.025 0.03
-1

-0.5

0

0.5

1

 
 
 



42-101 Intro. to BME Spring 2005 page 4 
(Przybycien) Problem Set 10 Solutions (of 4) 

 
Note that were we to sample for more than 0.03 seconds, say for 1 second, we would find that our 
aliased signal would repeat itself: 
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We find that the period of the aliased signal is 0.025 seconds, and thus the frequency is 40 Hz.  


