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Topics 

- fluid properties 
- hydrostatics 
- flow – mass balancing 
- flow – inviscid flow 
- flow – viscous flow 
- blood rheology 

 
The second category of biomechanics problems we will consider is bio-fluid mechanics.  This 
refers to the study of how fluids (liquids or gases) flow in response to pressure gradients.  Just as 
electrical current flows in response to a voltage gradient, heat is transferred in response to a 
temperature gradient, and molecules diffuse in response to a concentration gradient, fluids flow 
in response to a gradient of pressure.  Fluid mechanics is a core subject of chemical engineering, 
mechanical engineering and civil engineering.  The basic principles are the same, but the 
applications of bio-fluid mechanics often present unique challenges.  Understanding how fluids 
flow through pipes is necessary for selecting appropriate pumps in an industrial setting and so is 
commonly studied by each of these traditional engineering disciplines.  Flow through pipes is 
important for biomedical engineers as well, only now the pipes may be arteries whose walls are 
elastic (unlike the rigid pipes encountered in an engine or manufacturing plant), and now the 
fluid could be blood – a complex mixture of water, proteins, and deformable “semi-solid” cells 
(unlike the relatively simple fluids usually, but not always, found in the other applications). 
 
We will start with the basics and consider a few applications to fluid flow problems in the body. 
 
 
Fluid Properties – density 
 
Density, ρ 
 mass per unit volume 
  

ρ [=] M/L3 
 
An “incompressible” fluid has a constant density. 

Many fluids have negligible density changes as pressure increases, e.g. water, and 
although ρ ∝ 1/T, the constant of proportionality is very small. 
 
Notable exception: gases, e.g. PV = nRT ⇒ n/V = P/(RT)  
 

Specific Gravity, S.G. ≡ ρ(liquid)/ρ(H2O typically @ 15°C, 999 kg/m3))  
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Fluid Properties - viscosity 
 
Every fluid can be characterized by a viscosity. This is a material property that describes a fluid’s 
resistance to flow.  Not every fluid will flow at the same rate in response to the same pressure 
drop.  Consider how much less work it requires to drink water through a straw than to drink a 
milkshake through a straw.  The two liquids have much different viscosities. 
 
The viscosity has a fundamental mathematical definition.  Consider a volume of fluid held 
between two parallel plates.  The distance between the plates is ∆y.  The top plate is moved 
relative to the bottom plate by an amount ∆x.  One of the key ideas of fluid mechanics is the 
notion of the no-slip boundary condition.  This means that the layer of molecules in the fluid that 
lie directly on a solid surface do not slip along that surface.  If the surface is stationary (velocity 
v = 0), then the layer of molecules on that surface also must be stationary (v = 0).   Likewise, the 
layer of molecules in contact with the top surface must be rigidly coupled to the top surface.  So, 
if the top surface moved by an amount ∆x, the topmost layer of fluid must have moved by ∆x 
too. The result is that the fluid is sheared between the two surfaces. 

 
We define the strain (γ) as the ratio of the deformation ∆x to the distance ∆y. 
 

y
x

∆
∆

≡γ  

 
The act of shearing the fluid requires that the fluid must exert some force on the solid surface 
(and the bulk fluid must exert a force on the layer of fluid that is “stuck” to the solid surface).  
We take the magnitude of this force, divided by the area of the surface, and call it the shear 
stress (τ).  Shear stress has units of force/area, and thus has the same units as pressure.  The 
difference between pressure (force/area) and shear stress (force/area) is that pressure forces act 
perpendicular to the surface while shear stress acts parallel to the surface. 
 

∆y 

∆y 
∆x 

Deformation of a 
fluid element by 
moving the top 
plate by an 
amount ∆x 
relative to the 
bottom plate 
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The magnitude of the strain is proportional to the magnitude of the shear stress and on the 
amount of time (∆t) that the stress was applied: 
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The using µ as a proportionality constant, we can rearrange this to give 
 

y
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∆
∆∆

=
/µτ  

 
The ratio tx ∆∆ /  can be recognized as the difference in velocity of the top plate relative to the 
bottom plate vtx ∆=∆∆ / .  Thus, 
 

y
v

∆
∆

= µτ  

 
If the gap between the plates is infinitesimally small (∆y  dy), this is 
 

dy
dvµτ = . 

 
The derivative dv/dy indicates how the horizontal (x-direction) fluid velocity changes with 
vertical (y-direction) distance.  This derivative is called the strain rate 
 

dy
dv

≡γ&  

 
So, we can write  
 
 γµτ &=  
 
The proportionality constant µ is the viscosity of the fluid.  For a given strain rate (dv/dy) a more 
viscous fluid results in a larger shear stress.  If a fluid has a constant value for the viscosity, then 
it is called a Newtonian fluid.  Most simple fluids are Newtonian, but many complex fluids are 
non-Newtonian, meaning their viscosity depends on the strain rate. Blood is non-Newtonian. 

Pressure 

A

Shear Stress

A

force 
force 
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Units of Viscosity 
 
Examining the dimensions in γµτ &= , we can figure out the units that µ must have. 
τ [=] force/area SI unit = Pa 
γ&  [=] time-1  SI unit = s-1 
 
In order for γµτ &=  to be dimensionally consistent, µ must have units of (force/area)xtime.  The 
SI unit for viscosity is Pa.s (Pascal-seconds).   A common unit for viscosity in engineering 
literature is centipoises (cP).  The viscosity of water at room temperature is 1 cP.  (This is why it 
remains a somewhat popular unit – it is easy to remember.)  1 Pa.s = 1000 cP. 
 
Some examples of non-Newtonian behavior are shear-thinning fluids (viscosity decreases with 
increasing shear rate – paints are shear-thinning), shear-thickening fluids (viscosity increases 
with increasing shear rate – some particle dispersions in liquids are shear-thickening), and yield 
stress (solid-like behavior with no shear until a threshold stress is reached, at which point the 
material flows as a fluid – ketchup has a yield stress.)  These non-Newtonian behaviors have 
their origins in complex structures that macromolecular solutes can form in the liquid.  
 
Note, sometimes the “kinematic viscosity” is used in equations.  This is the viscosity divided by 
the density: “nu”, ν = µ/ρ 
 
Examining the dimensions of ν… 
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1 centistoke = 0.01 cm2/s 
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Hydrostatics 
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Hydrostatics examples: sphygmomanometer, blood pressure standing up versus lying down 
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Flow – mass balancing considerations 
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Two Types of Flow 
 
For modeling purposes, there are two primary types of flow – turbulent flow and laminar flow.  
Turbulent flow is associate with wild eddies and recirculations.  The velocity fluctuates 
throughout the fluid, but on average, there is a constant velocity across the entire flowing cross-
section.  If you put a drop of dye in a liquid in turbulent flow, it rapidly mixes with the fluid. 
Turbulent flow is associated with high kinetic energy flows. 
 
In laminar flow, fluid follows smooth streamlines.  The velocity varies smoothly across the 
flowing cross-section. If you put a drop of dye in a liquid in laminar flow, the drop tends to move 
smoothly downstream with very little mixing. 
 
The transition from laminar to turbulent flow occurs at a characteristic value of a dimensionless 
number called the Reynolds number, Re. 
 

µ
ρDv

=Re  where D is the diameter of the vessel, v is the velocity, ρ is the density, and µ is the 

viscosity. The Reynolds number is the ratio of “inertial forces” that tend to keep a fluid moving  
to “viscous forces” that tend to slow a fluid down.  For flow in a circular cross-section pipe, the 
transition from laminar to turbulent flow is observed experimentally to occur at Re = 2000 for all 
Newtonian fluids. 
 
Is turbulence an issue in blood flow in humans? 
Vessel Radius, cm Re 
Proximal aorta 1.5 1500 
Femoral artery 0.27 180 
Left main coronary artery 0.425 270 
Left anterior descending 
coronary artery 

0.17 80 

Right coronary artery 0.097 233 
Terminal arteries 0.05 17 
From Truskey, Yuan and Katz Transport Phenomena in Biological Systems, Pearson Prentice 
Hall Bioengineering, 2004. 
 
 
The way we describe flows mathematically depends on the value of Re.  Flows where Re is large 
can be modeled as inviscid flows (viscosity effects are negligible in determining how the fluid 
flows); flows where Re is not-so-large to small can be modeled as viscous flows (viscosity 
effects determine how the fluid flows). 
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Inviscid Flows – The Bernoulli Equation 
 
Flows that are characterized by large shear rates can produce large viscous losses, meaning that 
energy is lost from the flowing fluid as heat.  The origin of this heat is the friction between 
flowing molecules.  Just as friction produces the heat you feel when you rub your hands together, 
friction between molecules flowing past one another produces heat.  In many flows, we can 
neglect these viscous losses, and use the energy balance equation to derive a useful engineering 
equation that helps us keep track of pressure variations in non-uniform conduits. 

 
Defining our system as a fluid element containing an amount of energy E, we write 
 

( ) ( ) WQghvumghvum
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dE
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Because we assumed no viscous losses, we neglect heat transfer ( 0=Q& ).  We assume steady-
state flow, so dE/dt = 0.  Conservation of mass tells us that mmm outin &&& == .  We also assume 

isothermal flow conditions (isothermal = constant temperature, so u does not change).  Thus 
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Recalling again our heart analysis, the flow work done on the fluid element by fluid entering the 
system is  

ρ
in

inin
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VPW
&&& ==   

and the work done by the fluid element on fluid in the outlet is 
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Thus, the net flow work is  
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Substituting this into the energy balance gives 














−+−+−=

ρρ
outin

outin
outin PP

ghgh
vv

m
22

0
22

&  

 
Or,  
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We wrote this in terms of an inlet and an outlet, but in more general terms, we can use this to 
relate v, h and P at any two points “1” and “2” in a flowing, isothermal fluid. 
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This is the Bernoulli Equation. 
 

 
 
      The Bernoulli Equation is also useful when the flow geometry irregular… 
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Inviscid Flow Examples: 
 
Consider blood flowing into a narrow constriction.  Find the difference in pressure at points 1 
and 2, if the cylindrical vessel has a radius R1 at point 1 and a radius R2 at point 2. 
 

 
 
Assuming a horizontal arrangement, h1 = h2, so we neglect those terms. By conservation of mass, 
the flowrate must be constant.  Thus the average velocity at any location must be 
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Substituting the following for v1 and v2: 
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into the Bernoulli Equation, we can rearrange to get 
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Since R2 < R1, we find that P2 – P1 < 0.  There is a drop in pressure at the constriction.  This is 
due to the acceleration of the fluid as it passes through the constriction. 
 
 

R1 R2 
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Extension to a stenotic heart valve 
 
Schematic of heart valve 
 
Stenosis is a narrowing within a flow channel, so a 
stenotic heart valve is one with a narrowed cross-
section for blood flow.  This can result from 
degeneration of the valves, congenital defects, or 
diseases such as bacterial endocarditis or rheumatic 
heart fever.  Sometimes the valve is normal but the 
aorta downstream is constricted.  Stenosis causes the 
heart to work harder to pump the blood.  The heart 
compensates by becoming more muscular 
(hypertrophy), but this causes other problems with 
heart function that may be serious. 
 
Mild stenosis can be treated with anti-clotting drugs or drugs that regulate heart function.  About 
90,000 surgeries are performed annually for stenosis.  This is typically valve replacement 
surgery.  About 19,600 fatalities occur in the US annually from valve defects. 
 
The Bernoulli equation is used to non-invasively measure pressure drops across stenotic valves. 
The technology is Doppler Ultrasound Imaging (Doppler Flow Mapping).  This provides a local 
measure of blood velocity, from which the pressure is calculated. 
 
Referring to the drawing above, determine the pressure in the valve (position 2) relative to the 
pressure in the heart chamber just before the valve inlet (position 1). 
 
Neglecting small differences in h, the Bernoulli equation tells us that 
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ρ

 

 
Doctors like to report pressure in mm Hg (1 mm Hg = 133.32 Pa).  If the Doppler device reports 
velocities in meters/second, and we use the density of blood ρ = 1070 kg/m3, this becomes 
 

( )2
1

2
221 4 vvPP −=−  

with the pressure difference reported in mm Hg. 
 
Usually, the velocity in the chamber is much less than that in the valve.  Using the maximum 
velocity measured in the valve, and invoking the viscous flow result that vmax = 2vavg, we can 
then write 
 

2
max21 4vPP =−  

 
Here the Bernoulli Equation made it possible to non-invasively measure the local pressure in the 
valve, rather than the alternative, which is having to invasively insert a pressure probe via a 
catheter. 

1 

2 
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Viscous Flows – The Hagen-Poiseuille Law (Laminar Flow in a Cylindrical Vessel) 
 
Small Re flows (<~100) where viscosity effects determine how the fluid flows – where energy is 
dissipated by viscosity (e.g. Volvo 4WD example…). 
 
Because of the relevance to blood flow, we here present the Hagen-Poiseuille Law that relates 
the pressure drop between the entrance and exit of a pipe of length L and radius R to the 
volumetric flowrate, Q [=] volume/time, of a Newtonian fluid in laminar flow.  The analysis is 
based on a force balance on differential fluid shell element.   
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Can use these results to calculate details of the flow field, e.g. stress on the wall of the tube, 
pressure drop, etc. 
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The centerline velocity vmax is equal to twice the average velocity <v>, where <v> = Q/πR2. 
 
As we discussed earlier in the application of the energy balance to the power to pump the human 
heart, the power required to pump a fluid is  
 

PQW ∆=&  
 
Thus, if the flow is laminar, we can relate DP to the viscosity, tube length, tube radius and 
volumetric flow rate via the Hagen-Poiseuille Law to arrive at 
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Viscous Flow Examples: Estimate Shear Stress and Shear Rate at wall of Aorta; Pressure Drop 
in Capillaries 
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Alternative Invisicid flow treatment of pressure drop in the capillaries. 
 
In the text, the example sketched in Figure 11.8 illustrates how the Hagen-Poiseuille Law can be 
used to calculate how the pressure varies at a branching point in a capillary network.   
 
We can also use the Bernoulli Equation to estimate how the degree of size reduction in a 
branching blood vessel may lead to pressure buildup or pressure decreases. 
 

 
Consider a single artery of radius R1 that splits into two branches, both of which have radius R2. 
At steady-state, there is no buildup of blood, so the flowrate 1m&  entering the branchpoint, must 

equal the total flowrate out of the branchpoint, which is equal to 2 2m& . (We assume that since 

the branches have equal sizes, they split the blood flow equally.) 
 
Again neglecting height differences, the Bernoulli Equation is 
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Calculate the relationship between <v2> and <v1>, where we use the < > to indicate an average 
velocity 
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Now, setting 21 2mmm &&& == , this becomes 

 

R1 

1m&  

R2 

2m&  

R2 

2m&  
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and the Bernoulli Equation becomes 
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What if R2 = R1/2?  What is the local pressure change at that branchpoint? 
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Is there a relationship between R2 and R1 that gives no pressure difference at the branchpoint (P1 
– P2 = 0)? 
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This would be the optimal branching geometry for one vessel splitting into two vessels.  What if 
one vessel split into 3, or 4, or more vessels? 
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Blood Rheology 
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     These RBC stacks are known as “rouleaux” 
 



 42-101 Intro to BME (Spring 2005) 8.21 
 Topic 8.  Bio-Fluid Mechanics 
 
 

 
 
 
 


