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Topics – Gait Analysis 
- A simple model for power expenditure on walking 
- Stride optimization 
- Ergonomic analysis 

 
Biomechanics refers primarily to the rules governing how biological systems move.  
Traditionally this has focused on force generation and power requirements for motion of the 
skeleto-muscular system, as well as the fluid mechanics of blood flow.  More recently, there has 
been growing interest in cellular biomechanics – the study of force generation by elements of the 
cytoskeleton and the cellular response to externally applied physical stress. 
 
A sampling of topic in biomechanics: 
 
Is there an optimal gait for walking? (How might this be used to design footwear?) 
How is force transmitted throughout the body during an impact (automobile safety?) 
How does an altered gait affect stress and movements of the upper body (orthopedics?) 
How do blood flow patterns through a branching artery affect plaque deposition (atherosclerosis 
treatment?) 
How do blood cells respond to shear stresses in blood vessels? (design of artificial heart valves?) 
How do cells migrate through the extracellular matrix? (cancer treatment?) 
 
Gait Analysis 
 
We will develop a simple model that can predict how much power is required for a person to 
walk.  At its core, this is an application of the energy balance concept.  When a person walks, 
one foot is always in contact with the ground.  At the right point in the stride, one foot is lifted 
and moved forward – it must gain kinetic energy.  Another feature of walking is that the body 
tends to move up and down – the body must gain gravitational potential energy when it rises.  
This energy must be provided by the body – ultimately it is derived from metabolic energy 
sources, but in this analysis we will not concern ourselves with the metabolic energy source.  Our 
goal is to figure out how much energy must be provided per unit time (i.e., power) to walk at a 
certain velocity. 
 
If you observe different people walking in a group, 
you will notice that although they all move at the 
same velocity, not everyone in the group takes the 
same number of steps.  If they take more steps to 
keep up with the group, they must be taking 
shorter steps.  The velocity is equal to the step 
length a times the step frequency.  What 
determines the optimal step length and frequency?  
This depends on how long a person’s legs are and 
on the mass of the person. 
 
Our model for walking is very simple:  Two 
straight legs of length L that pivot around a 
common axis: 
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The full length of the stride is a, and the angle that the leg makes with the vertical line is γ.   
 
 
How can we analyze the power requirements?  The Energy Balance – let our system be the two 
legs and their pivot point, enclosed by the red border in the figure.  Assume that the pivot point 
has a mass equal to that of the body minus that of the two legs. 
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There are no inlet or outlet streams, so the last two terms are zero.  Likewise, we assume that 
there is no heat transfer during walking, so 0=Q& . Then we have  
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Let’s break down the energy of the system into its parts: 
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Since there is not a large temperature change, the internal energy u does not change.  We are left 
with the statement that the power is being used to change the potential energy and the kinetic 
energy of the system.  We will approximate the derivative by considering the change in potential 
energy and the kinetic energy over one stride of duration ∆t (equal to the reciprocal of the step 
frequency). 
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The kinetic energy change corresponds to swinging the leg forward.  The mass m is the mass of 
the leg. The potential energy change corresponds to lifting the body. 
 
The time interval depends on the walking velocity and the stride length: 
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The velocity of the leg goes from zero initially (in contact with ground) to v as it moves. Thus, 
the power requirement for the kinetic energy term is: 
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Note that we are assuming that it is the leg only that accelerates; the rest of the body is moving 
along at constant velocity.  We will include a proportionality constant, α, which accounts for the 
ratio of leg mass to total body mass, so we can write our result in terms of the body mass.  
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Now, the potential energy change.  The body elevation rises by some amount ∆h during the step.  
Thus, the change in potential energy gives rise to a power term: 
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Determining ∆h in terms of leg length, L, and stride angle, γ, is possible by trigonometry: 
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Combining the two power terms, we get 
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This can be analyzed to find the optimal stride length a, for a person whose legs have length L 
and whose body mass is m.  For this analysis, the cosine term can be simplified by using a Taylor 
series expansion.  This will replace a trigonometric function with a power series function that is 
easier to work with. 
 
The Taylor series is commonly used for this purpose.  The general definition of the Taylor series 
expansion of some function f(x) is 
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The primes denote derivatives (first derivative, second derivative, etc.).  We say that we are 
taking the expansion around some reference value, xo.  This expansion is valid as long as we 
apply it to values of x that are not too far from xo.  In each term, we evaluate the derivative at xo. 
 
So, if we assume that the angle γ is not too far from 0o during the stride, we can expand 
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So, the power requirement  
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The angle γ can be related to L and a using trigonometry.   Recall that the circumference of a 
circle of radius L is 2πL.  Recall also that a circle of 360° corresponds to an angle of 2π radians. 
 
Then (using radians instead of degrees for angle measurements), recall that an arc length equals 
the product of the radius of the arc and the angle that subtends the arc.  If we approximate the arc 
length subtended by γ/2 as a/2, then 
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Now substitute that back into the power equation: 
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To accommodate the numerous approximations made here, including the arc length, introduce a 
second proportionality constant β, such that  
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[Note that in our text, Domach prefers to lump the factor of ½ of the first term in to α and the 

factor of 1/8 of the second term in to β such that 
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In application (and in our formulation rather than Domach’s), α ~ 0.1 and β ~ 1.0. 
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Stride Optimization 
 
Notice that the kinetic energy and potential energy contributions each depend on the stride length 
in a different manner.  If we increase the stride length a, the kinetic energy requirement 
decreases, but the potential energy requirement increases.  (Picture a person walking – does this 
make sense?) Whenever we have opposing tendencies like this, there is an opportunity for 
optimization. 
 
Optimization refers to the engineering design that maximizes some desirable outcome (profit, a 
large force, etc.) or minimizes some cost (e.g. power consumption).  Let’s find the stride that 
minimizes power consumption. 
 
In calculus, this is sometimes called a min-max problem.  We want to find the value of a that 
gives the minimum power.  To find this, we apply the rule that at the minimum of any function, 
the first derivative must equal zero.  The same rule applies to a maximum. Picture a function 
passing through a max or min.  Does this make sense?  To determine whether the point at which 
the first derivative is zero is a minimum or maximum (or a saddle point), can check the second 
derivative.  For a minimum, the curvature at this point must be concave up and the second 
derivative will be positive.  For a maximum, the curvature at this point must be concave down 
and the second derivative will be negative.  (If the second derivative at this point is zero, the 
point will be a saddle point.)  
 
The optimal power (minimal) is the power at that value of a that gives dW/da = 0  
and d2W/da2 > 0: 
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Set this equal to zero and solve for the optimal stride length a*: 
 

2/1

2

3

2*

0
82









=

=+
−

=

β
α

βα

g
Lva

L
mgv

a
mv

da
Wd &

 

 
Check to see if this extremum is a minimum using the second derivative. 
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 since α > 0, m > 0, v > 0 and a* > 0. ∴ a* is a minimum. 
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Substitute a* into the power equation and find the minimal power requirement: 
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Example stride analysis 
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Ergonomic Analysis - Scaling 
 
We will now show how the gait model can be scaled to allow easy comparisons for different 
people.  For example, how does the power requirement differ for different people walking at the 
same speed, etc. 
 
For two people (1 and 2) walking at the same speed, the difference in their respective power 
requirements is 
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where we have introduced the dimensionless variables mr = m2/m1, ar = a2/a1 and Lr = L2/L1. 
 
This type of analysis helps to rapidly answer questions of a relative nature.  For example, how 
could two different people walking at the same velocity have equal power requirements?  One 
way is for mr/ar = mrar/Lr = 1.   
 
 
Example ergonomic analysis 
 


