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TOPICS 
- general mass balance (conservation of mass) equation 
- special cases of the general mass balance 
- types of systems (batch=closed and continuous=open) and application of the general mass 
balance 
- general method of solution of mass balance problems 
- blood tracer example 
- cellular stoichiometry example 
- processes with recycle, bypass and purge 
- human iron inventory example 
- kinetics 
- microbial growth 
 
Systems Engineering in Biology 
 
At a basic life level, life processes convert certain raw materials, such as glucose, into other 
materials, such as proteins or DNA.  Processes that happen in one location, say inside one type of 
organelle, are linked to processes elsewhere, say other organelles in the same cell, other cells, or 
other organs.  To understand how these processes are coordinated, it is necessary to keep track of 
all the material that comes and goes in a biological system.  This leads to the concept of a mass 
balance.   
 
A mass balance is an accounting of the mass within a system that has one or more inlets or 
outlets.  The mass within a system may change with time, in which case we perform an 
unsteady-state mass balance, or the mass within a system may be constant over time, in which 
case we perform a steady-state mass balance.   
 

 
 
 
The concept of a mass balance is based on the simple statement that mass is conserved.  Except 
for nuclear processes, mass is neither created nor destroyed.  This is the Law of Conservation of 
Mass.  The molecules that make up the mass may change if chemical reactions occur, but the 
total mass does not change.  If one or more chemical reactions do occur in the system, 
stoichiometric relationships derived from balanced chemical reactions may be used to connect 
the consumption of one species with the production of another species.   
 

 

system 
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General Mass Balance Equation 
 
The general mass balance on a system is constructed as follows.  Consider a system with 
multiple inlets, j = 1 … # inlets, and outlets, k = 1 … # outlets, and multiple components, i = 1 
… # chemical species, that pass through the various inlets and outlets: 
 
 

 
 
Let’s consider how the mass (or moles) of the ith species in the system can change with time: 
 
 
 
 
 
 
 
 
 
Let ijm ,

&  represent the mass (or molar) flowrate of species i in input j, and ikm ,
&  represent the 

mass (or molar flowrate) of species i in outlet k.  Then, mathematically we write the mass 
balance on the total mass (or moles) of species i contained in the system as  
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where the term on the left is derivative of the mass (or moles) of i with respect to time.  The 
last term, Rsys,i is the rate at which species i is produced inside the system.  (If species i is 
consumed inside the system, then Rsys,i is a negative number.)  This is the mathematical 
equivalent of  
 
Amount of Accumulation of ith species  

 
= Total Amount of i in – Total Amount of i out + Amount i Generated by Reaction  

 

 

system 
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Special Cases of the General Mass Balance 
 
If we have the special case of steady-state operation, then the derivative with respect to time is 
zero, and we have 
 
steady-state 
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If we have the special case of a non-reacting system, then Rsys,i = 0, and we have 
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and a steady-state, non-reacting system follows 
 
steady-state, non-reacting 
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Types of Systems 
 
Two important classifications of systems are batch (closed) and continuous (open). 
 
batch:   everything is added to the system at some time to, a process takes place for some 

amount of time, and then the system is emptied (e.g., baking a cake in an oven) 
 
continuous:   material flows in and/or out of the system on a continuous basis (e.g., a running  

car engine) 
 
 
Industrially, there are many examples of each.  Many pharmaceutical manufacturing processes 
are batch.  Many petrochemical production processes are continuous.  Many physiological 
examples exist for each as well.  Digestion is approximately a batch process.  If you eat a big 
meal, some digestion has started before you finish eating.  This is considered a “semi-batch” 
process.  Batch processes are also key to the field of pharmacokinetics, the study of how drugs 
are distributed throughout the body over time – this is essential to defining dosage regimens. 
 
Some examples of continuous processes in the body include kidney dialysis, and blood 
circulation. 
 
NOTE, careful selection of the system is very important: performing mass balances for different 
(but related) systems will give you different types of insight to a problem.  In some cases, careful 
selection of system boundaries may permit a previously un-solvable mass balance to become 
solvable. 
 
Suppose we want to think about delivering a drug to the body by having a patient swallow a pill.  
The pill is digested completely after the input (ingestion) is done.  This is a batch process if you 
consider that (the system) = (the stomach in between fill and empty cycles).   
 
What if (the system) = (the pill)?   
 
What different types of information could be obtained? 
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Application of the general mass balance equations to different types of process systems. 
 
Batch 
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Between to and tfinal, there are no inlet or outlet flows, the system just reacts. 
 
Can a batch system be operated at steady-state?   

isysR ,0 =  

 
This would just mean that nothing happens. For the cake-baking analogy, we’d add our flour, 
sugar, etc., but then we wouldn’t turn the oven on. 
 
How to solve the batch material balance equation?  This is a differential equation that must be 
integrated by the separation of variables technique. 
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The left-hand side is readily integrated: 
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If species i does not participate in the reaction, then Rsys,i = 0 for that species and its mass does 
not change.  To solve such material balance problems, we need to have mathematical expressions 
for the reaction rate R.  Specifying such relationships is called kinetics. 
 
 
 



 42-101 Intro to BME (Spring 2005) 2.6 
 Topic 2.  Mass Balancing and Kinetics in Living Systems 
 
Continuous Systems 
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If we have the special case of steady-state operation, then the derivative with respect to time is 
zero, and we have 
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If we have the special case of a non-reacting system, then Rsys,i = 0, and we have 
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and a steady-state, non-reacting systems balance follows 
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Terminology note: steady-flow operation means that all of the flow rates in the system are 
constant, i.e. the flow rates, m& , don’t change over time.  For the purposes of Intro to BME, we 
will typically assume that all of our problems involving continuous processes are operated under 
steady-flow conditions. 
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Blood Tracer Experiment example (MMD example 2.4.4): 
 
 
A tracer is used to determine a patient’s blood flowrate.  For safety purposes, this tracer could be 
a normally occurring metabolite. The normal concentration of this tracer in the blood is 100 parts 
per million, where 1 ppm = 1 mg/kg.  Inject 1000 mg of tracer into the blood over a period of 
five minutes and measure the downstream concentration.  We find the downstream concentration 
is 4000 ppm.  Determine the mass flowrate of blood. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
system 

1. blood + 
tracer in 

3. blood + 
tracer out 

2. tracer in 
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Cellular Stoichiometry example: 
 
 
Consider the continuous aerobic growth of a bacterium on glucose and ammonia according to the 
stoichiometry: 
 

0.25 C6H12O6 + 0.20 NH3 + 0.37 O2  →  CH1.67N0.20O0.27 + 0.50 CO2 + 0.97 H2O 
 
A biotech company is interested in producing 100 g/hr of bacteria (on a dry basis).  A feed 
stream containing 0.27 g/L glucose and 0.019 g/L ammonia is available.  What feed stream flow 
rate, in g/hr, and O2 flow rate, in g/hr, will be required?  Assume all liquid streams have a density 
similar to water and that all O2 is consumed.  What will the composition of the product stream 
be? 
 
 
 
 
 
 
 

1. feed 3. product 

2. oxygen 

bioreactor 
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Kidney Function example. 
 
The job of the kidney is to filter out toxic metabolic products such as urea from the blood.  This 
happens in tiny structures called nephrons.  The first part of the nephron is the glomerulus, where 
a tufted network of capillaries is surrounded by a capsule called the Bowman’s capsule. Blood 
flowing into the tuft of capillaries, is laden with byproducts that are to be filtered.  Blood flowing 
out of the capillaries is free of byproducts.  The filtration is accomplished by the glomerular wall 
that serves as a semi-permeable membrane – it has fine pores that do not allow cells or proteins 
to pass out of the blood, but small molecules (such as water and urea) do pass.  The liquid that 
passes through the glomerular wall is called the glomerular ultrafiltrate, that is destined to 
become urine.  The rest of the nephron regulates the composition of the urine to maintain the 
body’s water and salt balance.  In the Bowman’s capsule, the composition of the glomerular 
ultrafiltrate is identical to that of blood, minus the cells and proteins.   
 

 
 
 
The blood flowing in the capillaries is pressurized by the heart so that it has a higher pressure 
than the glomerular ultrafiltrate. This hydrostatic pressure difference ∆P between the capillaries 
and the glomerular ultrafiltrate is what drives fluids across the glomerular wall for filtration.   
 
Fluid flows from regions of high hydrostatic pressure to regions of low hydrostatic 
pressure.   
 
If the hydrostatic pressure difference were too large, it could be possible for too much fluid to 
leak out of the capillaries.  The fluid flow driven by the hydrostatic pressure difference is 
counteracted by an osmotic pressure difference ∆Π that favors flow in the other direction (from 
the glomerular ultrafiltrate into the capillaries).   
 

afferent arteriole 

efferent arteriole glomerulus 

Bowman’s 
capsule 

blood 
flow 

high P low P 
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Fluid tends to flow from regions of low osmotic pressure to regions of high osmotic 
pressure. 
 
The net flow across the glomerular wall is determined by the competition between these two 
opposing pressure differences. 
 
The glomerular wall as a size-selective, semi-permeable membrane. 

 
 
Osmotic pressure depends on the concentration of solutes in the fluid.  A high solute 
concentration corresponds to a high osmotic pressure.  Since the glomerular wall passes water 
and all small solutes, but blocks all proteins, the glomerular ultrafiltrate has a low protein 
concentration (low osmotic pressure), while the blood in the capillaries has a high protein 
concentration (high osmotic pressure). 
 
Why does fluid flow from low to high osmotic pressure?  The reason lies in thermodynamics, but 
in essence, there is a driving force for the solvent (water) to dilute the fluid with a high solute 
concentration.  The solvent flows from the low concentration fluid to the high concentration fluid 
in order to equalize the solute concentrations.  The interesting issue is that the solutions will 
never have equal concentration, since the proteins can never pass through the membrane. To first 
order, we can approximate the osmotic pressure by  
 

2
21 CaCa +=Π   where the a constants are called virial coefficients, and C is the 

concentration of solute. Do not confuse the capital Greek letter Π used for osmotic pressure with 
the lower case Greek letter π = 3.14… 
 

blood glomerular 
ultrafiltrate

proteins 

Water, salts, 
urea, other small 
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The concentration of salt in the blood in the glomerulus capillaries Csalt

glom is equal to the salt 
concentration in the glomerular ultrafiltrate in the Bowman’s capsule, Csalt

bc. 
Csalt

glom = Csalt
bc = Csalt 

so the salts do not contribute to the osmotic pressure difference.  
 
 
 
As blood flows further and further through the capillaries in the glomerulus, it loses more and 
more water.  This has the effect of making the protein concentration in the blood higher and 
higher.  So, the osmotic pressure difference becomes higher and higher.  Eventually, the osmotic 
pressure difference exactly equals the hydrostatic pressure difference, and no more fluid passes 
out of the blood.  
 
Quantitative Model for Glomerular Ultrafiltration 
 
Our goal is to predict how the protein concentration changes in the blood between the inlet and 
the outlet of the glomerulus. A byproduct of this analysis will be a method to measure how leaky 
the glomerular wall is. 
 
We start by defining a volumetric flux of fluid across the glomerular wall Jv.  This is the volume 
of fluid that crosses the wall per unit area per unit time: 
 

( ) [ ]
timearea

volumePkJv ⋅
=∆Π−∆=  

 
The proportionality constant k is the hydraulic permeability of the glomerular wall.  It depends 
on the structure and health of the nephron tissue.  

Blood in 
glomerulus 

glomerular ultrafiltrate in 
Bowman’s capsule 

Protein 
concentration = C 
 
Π = aC 

Water flow 

Protein concentration = C 
 
 
Salt concentration = Csalt

 

Protein concentration = 0 
 
Π = 0 
 
Salt concentration = Csalt
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We will define the hydrostatic pressure of the blood inside the capillaries of the glomerulus as Pg 
and the hydrostatic pressure of the ultrafiltrate inside the Bowman’s capsule as Pbc, and  

bcg PPP −=∆  

 
Likewise, we define osmotic pressures similarly, and  

gbcg Π=Π−Π=∆Π  

 
 
In order to model the flux across the glomerular wall, we will need to keep track of the 
hydrostatic pressure gradient and the osmotic pressure gradient at all positions along the 
glomerulus.   Since the glomerulus is a complex, convoluted tuft of capillaries, we will 
approximate it with a much simpler geometry, a uniform tube of length L and radius R.  This 
tube is bathed by the fluid in the Bowman’s capsule.  Fluid enters the tube at the afferent (A) end 
and leaves at the efferent (E) end.  This simplifying approximation makes the problem tractable. 
 

 
 
Before beginning our analysis, let’s consider what information is available.  Micropuncture 
techniques make it possible to sample fluid from the afferent and efferent arterioles, but it is not 
possible to sample fluid from the points in between. Thus, we know typical values of the protein 
concentrations CA and CE at the afferent and efferent ends. 
 
CA ~ 90 mg/mL CE ~ 57 mg/mL 
 
We also know the values of the virial coefficients a1 and a2 for typical blood proteins,  
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From these we can estimate 
 ΠA ~ 35 mmHg ΠE ~ 19 mmHg 
 
Also using micropuncture, we can measure the hydrostatic pressure in the afferent and efferent 
arterioles.  There is only a slight pressure drop between the afferent and efferent ends, so we can 
approximate these pressures as being equal: 

L 

R 

A 

E 

0 
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PA ~ PE ~ 45 mmHg 
The pressure inside the Bowman’s capsule is PE ~ 10 mmHg, so there is a hydrostatic pressure 
difference ∆P = (45 mmHg-10 mmHg) = 35 mmHg that drives ultrafiltration. This is roughly 
constant along the entire length of the glomerulus, but the flux does decrease further down the 
glomerulus due to the increasing osmotic pressure difference. 
 
The other quantities we can measure by micropuncture are the afferent and efferent plasma 
flowrates QA and QE. 
 
Conservation of Blood Plasma Mass 
Our mathematical analysis begins with a material balance on the blood plasma in the capillaries. 
(Plasma is the name for the fluid portion of the blood minus cells and minus proteins.)  The 
density of the blood ρ does not change as it flows through the capillaries, so it will be acceptable 
to perform a balance on the blood volumetric flow rather than formally considering the plasma 
mass flow since Q = ρm& .  Consider an infinitesimally small cross-sectional slice of the capillary 
from x to x+dx.  The tube surface area corresponding to this small slice is dS. The flowrate 
entering is Qx and the flowrate leaving is Qx+dx.  Qx+dx is slightly smaller than Qx due to the flux 
across the glomerular wall.  The outward flow across the wall is JvdS. 
 

 
 
Starting from the general material balance equation for the volume V (equivalent to mass) of 
fluid in our small cross-section , we will cut out un-needed terms. 
 

genvdxxx RdSJQQ
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The kidney can be considered to operate at steady-state, so the time derivative on the left-hand 
side is zero, and there is no generation of blood in the capillary, so Rgen = 0. So, the plasma 
material balance becomes 
 

dSJQQ vxdxx −=−+   

 
Let’s divide both sides of the equation by dx 
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Since the surface area S of a tube of length x is S = 2πRx, the derivative 
 

R
dx
dS π2=  

 
For a tube whose total length is L, then we see that this derivative is simply equal to S/L. Our 
equation simplifies to  

L
SJ

dx
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v
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Take the limit as dx  0, and the term on the right is seen to be the definition of the derivative of 
Q with respect to x: 
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 [1] 

 
where Kf =kS is called the ultrafiltration coefficient. Eqn. [1] describes the conservation of blood 
plasma. 
 
Conservation of Protein Mass 
Next we perform a material balance on the protein in the blood plasma in the capillaries.  
Remember that protein does not pass out of the glomerular wall – the blood does not lose any 
protein.  The total amount of protein flowing in the blood is equal to QC.  Since the total amount 
of protein does not change in the blood, the mass balance equation can be reduced to  
 

( ) 0=
dx
QCd

    [2] 
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Equations [1] and [2] are the material balance equations.   
 
The derivative in equation [2] can be written via the chain ruleof calculus as 

( )
dx
dQC

dx
dCQ

dx
QCd

+=  

Substituting from eqn [2], we can then write 

0=+
dx
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or 
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Substituting eqn [1] into eqn [3], we get 
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Here we use our constitutive equation for osmotic pressure ∆Π = a1C+a2C2

   (remember that the 
osmotic pressure in Bowman’s capsule is zero, so ∆Π = Πg) 
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By solving this differential equation, we will be able to show how the protein concentration C 
varies along the length of the glomerulus.  But – we need to do a little more work.  Q varies with 
position due to the loss of plasma by ultrafiltration, and we know that the rate at which it is lost 
depends on C because of the changing osmotic pressure resistance to ultrafiltration.   
 
We do know (eqn. [2]) that the total amount of protein is a constant, or CQ = constant. We know 
QA and CA are available from micropuncture, so we know our constant is CQ = CAQA. 
 
Thus we write 

C
C

QQ A
A=   [6] 

 
For convenience, define a dimensionless concentration C* = C/CA.  Thus, eqn [6] is written as  

*C
Q

Q A=   [7] 
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We also define a dimensionless length x* = x/L.  Substituting eqn [7] for Q, x = Lx* and C = 
CAC* into eqn [5] we get 
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For the sake of clarity, let’s condense some of these collections of constants as 
 

P
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so eqn [8] can be written more concisely as 
 

( )2
21

2 **1*
*
* CACAFC

dx
dC

−−=   [9] 

 
You will learn this later, but to solve a differential equation, you need to specify a boundary 
condition.  Here we define an initial condition at x* = 0 (the afferent arteriole inlet to the 
glomerulus): 
 
at x* = 0 C* = 1   (because C = CA at the inlet) 
 
We can integrate [9] by separation of variables 
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but the integral is actually quite large and cumbersome to write out. Since we are not trying to 
emphasize the mathematical technique but instead want to emphasize the modeling method and 
the predicted behavior, I have instead solved eqn [9] numerically, using the computation 
software package Mathcad.  
 
The predicted behavior is shown here for QA = 1 nL/sec, CA = 57 g/L, and ∆P = 35 mm Hg, with 
Kf specified to be 0.0784×10-9 , with concentration in mg/mL plotted versus dimensionless 
distance x* = x/L: 
 
 

mg/mL 



 42-101 Intro to BME (Spring 2005) 2.19 
 Topic 2.  Mass Balancing and Kinetics in Living Systems 
 
 
 
 
 
 
 
 
 

0 0.2 0.4 0.6 0.8 1
50

60

70

80

9085.568

57

C i( )

10 xstar i( )  
 
Notice that the protein concentration is ~ 85 mg/mL by the end of the glomerulus (x*=1), close 
to the typically measured value. 
 
The osmotic pressure varies along the length of the glomerular capillaries as 

 
 
Notice that by the end of the 
glomerulus (x* = 1), the 
osmotic pressure difference is 
35 mmHg, matching the 
hydrostatic pressure difference 
between the glomerulus and 
Bowman’s capsule. Once these 
two pressures equalize, there is 
no more flux of fluid across the 
glomerular wall, so the protein 
concentration ceases to increase 
at the same position where the 
osmotic pressure reaches 35 
mmHg. 
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