
 42-101 Intro to BME (Spring 2005) 2.20 
 Topic 2.  Mass Balancing and Kinetics in Living Systems 
 
TOPICS – cont’d 
- processes with recycle, bypass and purge 
- human iron inventory example 
- unsteady mass balances and kinetics 
- microbial growth kinetics 
- pharmacokinetics 
 
RECYCLE, BYPASS and PURGE 
 
Consider how the body handles iron (See MMD 2.5.1) 
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Unsteady Mass Balances 
 
Recall the general mass balance analysis. 
 
The general mass balance on a system is constructed as follows.  Consider a system with 
multiple inlets j and outlets, k, and multiple components i that pass through the various inlets and 
outlets: 
 
 

 
 
Let ijm ,

&  represent the mass or molar flowrate of species i in input j, and ikm ,
&  represent the 

mass or molar flowrate of species i in outlet k.  Then, mathematically we write the mass balance 
on the total mass (or moles) of species i contained in the system as  
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where the term on the left is derivative of the mass (or moles) of i with respect to time.  The 
last term, Rsys,i is the rate at which species i is produced inside the system.  (If species i is 
consumed inside the system, then Rsys,i is a negative number.)  This is the mathematical 
equivalent of  
Amount in – Amount out + Amount Generated by Reaction = Amount of Accumulation 
 
Consider a pumping liquid into a vessel while liquid drains out the other end. 
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If we consider  m, the mass of water in the sink, as a function of time, we balance the inlet to the 
system and the outlet from the system and write: 
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Water is not generated in the sink, so R is zero.  If the inlet and outlet flow rates are not equal, m 
changes with time.  Thus if we specify constant values for inm&  and outm& , we find m as a 

function of time by integrating 
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This was a simple example where we had an unsteady mass balance without any generation term.  
Sometimes, unsteady mass balances will involve one or more generation terms (R).   
 
When we have generation terms, we are dealing with rate processes, or the subject of kinetics. 
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Example 
 
Consider cell growth in a batch fermentor.  All nutrients are provided at the start of the process, 
but they are not replenished as the cells consume them.  
 
If there are no inlets or outlets, then the general mass balance on any species i becomes 
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Suppose we have a batch fermentor that contains a large excess of nutrients (so we never have to 
worry about nutrients being depleted).  How does the biomass (mass of cells) in the fermentor 
change with time? 
 
 
Here we have a balance on one species, the cells.  It is observed experimentally that the rate of 
cell population increase is directly proportional to the cell population.  This is called Malthusian 
growth. So, if we define the mass of cells per unit volume in the fermentor as m, the rate of 
biomass increase can be written as 
 
 

mR isys µ=,  where µ is just a proportionality constant that can be measured experimentally. 

 
Then, the mass balance on biomass becomes, for a constant volume system, 
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The integral on the right hand side is the integral of a constant (k). The integral on the left gives 
the natural logarithm (ln) function: 
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where m(0) is the mass of cells originally in the fermentor at time t = 0.  We can express the 
biomass as a function of time by taking the exponential of both sides, since elnx = x: 
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This is an exponential function, which looks like this when plotted: 

 
 
Now we can answer some questions about the population behavior over time.  Often, it is 
important to know the population doubling time. How long will it take for the population to 
increase from m(0) to 2m(0)? 
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What units must k have?   (inverse time) 
 
How do we experimentally determine k?  Our analysis indicates that if we plot the ln(m) versus 
time, we should get a line with slope k and intercept ln(m(0)). 
 
 
 
In actual practice, cell growth only follows Malthusian growth for part of the time.  The 
complexity of cell process makes cell growth more complicated.  Often one observes something 
more like the dashed curve in this plot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
During the lag phase, the cells adapt to their environment.  Then, they grow at their fastest 
possible rate (exponential growth), until toxic metabolic byproducts build up and their nutrient 
supply starts to dwindle, at which point cells die faster than they multiply and the population 
begins to decrease. 
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It is possible to maintain a steady-state population in an open fermentor.  Consider a tank 
containing a concentration of cells m that has a steady inlet flow of nutrients, and a steady outlet 
flow of the broth that contains cells. The volumetric flowrate in equals the volumetric flowrate 
out = Q.  There are no cells in the inlet but the concentration of cells in the outlet is equal to the 
concentration inside the fermentor. We will assume that the nutrients are in excess and do not 
influence the growth rate. 
Find the relationship between Q, m(t) and µ for the condition where the total volume in the 
fermentor is constant ( steady-state volume). Note that the volume may be at steady-state, but the 
cell concentration does not necessarily have to be constant (m can be unsteady). 

 
 
 
Balance on total fluid volume at steady-state, with no generation: 
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Balance on cells: 
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Vessel volume V 
Biomass: m 

Qin = Q 
Ccells = 0 Qout = Q 

Ccells = m 
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Under what condition  is the cell concentration at steady-state?  When µ = QV, we have m(t) = 
mo for all t.   
 
If Q/V > µ, then the cell concentration decreases with time – the cell growth cannot keep up with 
the flow through the fermentor – this is called “washout” in the language of fermentation.  We 
literally lose our cells out the drain. 
 
 
 



 42-101 Intro to BME (Spring 2005) 2.34 
 Topic 2.  Mass Balancing and Kinetics in Living Systems 
 

 
 
 
 
 



 42-101 Intro to BME (Spring 2005) 2.35 
 Topic 2.  Mass Balancing and Kinetics in Living Systems 
 
 

 
 
 
 



 42-101 Intro to BME (Spring 2005) 2.36 
 Topic 2.  Mass Balancing and Kinetics in Living Systems 
 
 

 
 
 
 



 42-101 Intro to BME (Spring 2005) 2.37 
 Topic 2.  Mass Balancing and Kinetics in Living Systems 
 
Application of Unsteady-State Material Balances:  Pharmacokinetics 
 
Pharmacokinetics concerns the rate at which drugs are absorbed by the body, distributed among 
the various organs and tissue types and ultimately metabolized and/or excreted from the body.  
The objective of pharmacokinetics is to design dosage regimens so the drug concentration in the 
body remains in the therapeutically active range for the longest time possible, without exceeding 
the toxicity threshold.  The latter issue is critical – most drugs are very potent molecules, so 
whereas a low concentration may be beneficial, a high concentration can be lethal. 
 
Many issues need to be taken into account in pharmacokinetic modeling.  For example, different 
tissues can be quite different from other tissues in terms of their chemical characteristics.  
Likewise different drugs will differ in terms of their solubility characteristics.  Many drugs are 
nonpolar.  These will tend to have low solubility in the blood, but they will have high solubility 
in fatty tissues, which are much less polar than water.  Such drugs tend to accumulate in the fatty 
tissues and be slowly released over time.  (Some newer antibiotics exploit this phenomenon, so 
you only take the pills for a few days, but the antibiotic effect lasts for about 10 days.) 
 
The most common approach to pharmacokinetic modeling is to treat the body as a set of 
compartments and keep track of the drug concentration as it passes from one compartment to 
another.  This model requires rate information (hence the name pharmacokinetics). to describe 
how fast drug gets from one compartment to another.  
 
The simplest model is to treat the body as one compartment, but we can do better than that. In 
the compartmental model sketched below, the drug is taken as a solid pill (D) and enters the 
gastrointestinal tract (G), from which it passes to the rest of the body (B) and ultimately is 
converted to a metabolized form (M) or is excreted in the urine (U). The rate at which the drug 
gets from the source (pill) to the gastrointestinal tract is assumed to be a constant R, as long as 
the pill lasts (“zero order kinetics”).  The rate at which the drug gets from one compartment to 
the next is assumed to be directly proportional to the concentration of the drug in the 
compartment that it is leaving (called first order kinetics). The proportionality constants are 
called rate constants. 
 

 
We will use G, B, M, and U to represent the concentration of drug in the gastrointestinal tract, 
the rest of the body, converted to the metabolized form and excreted in the urine, respectively. 
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So, the rate at which drug enters the gastrointestinal tract is R.  The rate at which drug is 
absorbed to enter the rest of the body is kaG, and the rate at which the drug leaves the body to 
both the metabolized form and the urine is kmB + keB.  We assume that the passage of the drug 
from one compartment to another is irreversible.  Once it leaves it does not come back around.  
(This assumption is often dropped for drugs that can recirculate in the body for long times, but 
we will keep this assumption here.) 
 
 
This allows us to perform a material balance on each compartment. Initial conditions for each of 
these material balances are shown under each differential equation: 
 
 

pill:   R
dt
dD

−=    [1] 

 
   at t = 0, D = Do 
 

gastrointestinal tract: GkR
dt
dG

a−=   [2] 

 
   at t = 0, G = 0 
 

rest of body:  ( )BkkGk
dt
dB

ema +−=  [3] 

 
   at t = 0, B = 0 
 

metabolized form: Bk
dt

dM
m=    [4] 

 
   at t = 0, M = 0 
 

urine:   Bk
dt

dU
e=    [5] 

 
   at t = 0, U = 0 
 
 
The zero concentration boundary conditions imply that there is no drug in the compartment at the 
start (there is nothing left over from a previously taken pill – how could this be changed if there 
were leftover drug in the system?) 
 
Eqn. [1] is solved directly as  
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We solve eqn [2] for G(t) using the separation of variables method. 
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Now to find B(t), we plug the result for G(t) into eqn [3]: 
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This equation cannot be solved by the method of separation of variables, but it can be solved by 
the method of integrating factors (see p. 215 of the text for the general technique if you are 
interested).  Again, I emphasize that the method of solving this equation is not the point of 
this lecture.  The point is to set up the balance equations and see how useful they are. 
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The solution for B(t) is  
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We could proceed to solve for the urine and metabolized form, but the drug concentration in the 
body is most useful for dosage regimen design.  (Think of how it might be useful to solve for 
U(t) for drug testing purposes…) 
 
Let’s plot how the drug concentration in the body (B) varies with time.  For this calculation, t is 
in seconds, and I specified  
 

1

1

1

01.0

01.0

1.0

01.0

−

−

−

=

=

=

=

mink

mink

mink
Lmin

gR

m

e

a  

 

0 200 400 600 800 1000
0

0.2

0.4

0.6
0.5

0

B t( )

1 103×0 t  
 
The therapeutic window is defined as the region below the toxicity threshold and above the 
minimum concentration needed for a therapeutic effect.  If the therapeutic window were 
indicated by the lines on the graph, this would be a very successful dosage regimen.  The drug 
concentration in the body rapidly rises to within the therapeutic window and stays there.  This is 
not typical!  What we have shown here is the ideal of sustained release – the case of zero order 
kinetics, or a constant rate of drug release R from the pill (D).  This is a highly desirable 
condition, and companies have been formed around technologies that come close to zero order 
release.  The more typical case is where the drug release kinetics are first order. 
 
Then, eqn [1] changes to 

B(t), g/L 

time, min 
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r−= , which is solved by separation of variables for D = Do at t = 0 as 
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If we plug that into eqn [2] for the concentration in the gastrointestinal tract we get 
 

GkeDk
dt
dG

GkDk
dt
dG

a
tk

or

ar

r −=

−=

−

 

 
with G = 0 at t = 0, this is solved (by method of integrating factors again) as 
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Proceeding as above, to find the concentration in the rest of the body B, we plug the result for G 
into eqn [3] 
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with B = 0 at t = 0, the solution by the method of integrating factors is 
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If we set kr = 0.01min-1 and Do = 1 g/L, then this is graphed as  
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Notice how the drug concentration in the body rises rapidly but also passes through a maximum 
value and drops off again. 
 
What would happen if a second pill were taken after 200 minute?  The concentration in the body 
would rapidly proceed even higher.  This could potentially cause the concentration to exceed the 
toxicity threshold.  To play it safe, maybe the next pill should be taken after 800 min – but then 
the patient would have gone about 200 minutes with virtually no drug in the body, so there is no 
therapy happening.  This is the purpose of pharmacokinetic modeling.   
 
To capture the effect of leftover drug from one dose to the next, we would need to solve the 
equations with the initial condition for each dosage set to the concentration leftover from the 
does before.  In other words, if we take a second pill 200 min after the first pill when the 
concentration in the body is B = B200, then we restart the clock and set B = B200 at t = 0 and 
solve.   
 
Many more complicated compartmental models are used in pharmaceutical practice than the 
two-compartment, irreversible model we used here.  
 

B(t), g/L 

time, min 


