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TOPICS — cont’d

- processes with recycle, bypass and purge
- human iron inventory example

- unsteady mass balances and kinetics

- microbial growth kinetics

- pharmacokinetics

RECYCLE, BYPASS and PURGE

Consider how the body handles iron (See MMD 2.5.1)
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Unsteady Mass Balances
Recall the general mass balance analysis.
The general mass balance on a system is constructed as follows. Consider a system with

multiple inlets j and outlets, k, and multiple components i that pass through the various inlets and
outlets:

k
] —>
system
—_— e
- 5 —

Let nﬁj, ; represent the mass or molar flowrate of species i in input j, and m i

mass or molar flowrate of species i in outlet k. Then, mathematically we write the mass balance
on the total mass (or moles) of species i contained in the system as

; represent the

dm . all inlets all  outlets
sys,i —_ :
dr ij,i %mk,i + Rsys,i
J

where the term on the left is derivative of the mass (or moles) of i with respect to time. The
last term, Ryys; 1S the rate at which species 1 is produced inside the system. (If species iis
consumed inside the system, then Ryys; is a negative number.) This is the mathematical
equivalent of

Amount in — Amount out + Amount Generated by Reaction = Amount of Accumulation

Consider a pumping liquid into a vessel while liquid drains out the other end.
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in out

vessel — 5

If we consider m, the mass of water in the sink, as a function of time, we balance the inlet to the
system and the outlet from the system and write:

Water is not generated in the sink, so R is zero. If the inlet and outlet flow rates are not equal, m

changes with time. Thus if we specify constant values for I’i’lin and I’iflo ,we findmas a

ut
function of time by integrating

dm = (min B mout )dt

m(t) t
E')‘dm - g(mm B mout )dt

m(t)—0= (min — )(t ~0)
m(t) = (min B mout

This was a simple example where we had an unsteady mass balance without any generation term.
Sometimes, unsteady mass balances will involve one or more generation terms (R).

When we have generation terms, we are dealing with rate processes, or the subject of Kinetics.
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Example

Consider cell growth in a batch fermentor. All nutrients are provided at the start of the process,
but they are not replenished as the cells consume them.

If there are no inlets or outlets, then the general mass balance on any species i becomes

m .
sys,i

dt AN

Here we have a balance on one species, the cells. It is observed experimentally that the rate of
cell population increase is directly proportional to the cell population. This is called Malthusian
growth. So, if we define the mass of cells per unit volume in the fermentor as m, the rate of
biomass increase can be written as

sys.i = um where W is just a proportionality constant that can be measured experimentally.

Then, the mass balance on biomass becomes, for a constant volume system,

dm
<oy,

a
d_m — ,Udt
m
m(t) t

J
m(0) 0

The integral on the right hand side is the integral of a constant (k). The integral on the left gives
the natural logarithm (In) function:
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In[m(t)] - In[m(0)]= k[t - 0]

m(t

In mit) =
m(0)

where m(0) is the mass of cells originally in the fermentor at time t =0. We can express the

biomass as a function of time by taking the exponential of both sides, since ¢"™ = x:

y2/3

This is an exponential function, which looks like this when plotted:

Now we can answer some questions about the population behavior over time. Often, it is
important to know the population doubling time. How long will it take for the population to
increase from m(0) to 2m(0)?

2m(0) ;
n m(0) = H double

In(m)
In(2)

—H tdouble
_In(2)
double

Intercept =

# In(m(0))
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What units must k have? (inverse time)

How do we experimentally determine k? Our analysis indicates that if we plot the In(m) versus
time, we should get a line with slope k and intercept In(m(0)).

In actual practice, cell growth only follows Malthusian growth for part of the time. The
complexity of cell process makes cell growth more complicated. Often one observes something
more like the dashed curve in this plot.

In(m)
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Exponential
growth

Lag phase

During the lag phase, the cells adapt to their environment. Then, they grow at their fastest
possible rate (exponential growth), until toxic metabolic byproducts build up and their nutrient
supply starts to dwindle, at which point cells die faster than they multiply and the population
begins to decrease.
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It is possible to maintain a steady-state population in an open fermentor. Consider a tank
containing a concentration of cells m that has a steady inlet flow of nutrients, and a steady outlet
flow of the broth that contains cells. The volumetric flowrate in equals the volumetric flowrate
out = Q. There are no cells in the inlet but the concentration of cells in the outlet is equal to the
concentration inside the fermentor. We will assume that the nutrients are in excess and do not
influence the growth rate.

Find the relationship between Q, m(t) and p for the condition where the total volume in the
fermentor is constant ( steady-state volume). Note that the volume may be at steady-state, but the
cell concentration does not necessarily have to be constant (m can be unsteady).

Qn=0Q

— Qout = Q
Ceens =0 Ceells =m
5
Vessel volume V | ———

Biomass: m

Balance on total fluid volume at steady-state, with no generation:

dv

©=0-0=0

Balance on cells:

Vdm
=—0m+Vum
7 o Jz
dm_V,u—Q :[ﬂ_g}m
dt V V
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nmz[ﬂ_g}

m 14
o

m(t) = m, epr U — %)t}

Under what condition is the cell concentration at steady-state? When p = QV, we have m(t) =
m, for all t.

If Q/V >, then the cell concentration decreases with time — the cell growth cannot keep up with
the flow through the fermentor — this is called “washout” in the language of fermentation. We
literally lose our cells out the drain.
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Application of Unsteady-State Material Balances: Pharmacokinetics

Pharmacokinetics concerns the rate at which drugs are absorbed by the body, distributed among
the various organs and tissue types and ultimately metabolized and/or excreted from the body.
The objective of pharmacokinetics is to design dosage regimens so the drug concentration in the
body remains in the therapeutically active range for the longest time possible, without exceeding
the toxicity threshold. The latter issue is critical — most drugs are very potent molecules, so
whereas a low concentration may be beneficial, a high concentration can be lethal.

Many issues need to be taken into account in pharmacokinetic modeling. For example, different
tissues can be quite different from other tissues in terms of their chemical characteristics.
Likewise different drugs will differ in terms of their solubility characteristics. Many drugs are
nonpolar. These will tend to have low solubility in the blood, but they will have high solubility
in fatty tissues, which are much less polar than water. Such drugs tend to accumulate in the fatty
tissues and be slowly released over time. (Some newer antibiotics exploit this phenomenon, so
you only take the pills for a few days, but the antibiotic effect lasts for about 10 days.)

The most common approach to pharmacokinetic modeling is to treat the body as a set of
compartments and keep track of the drug concentration as it passes from one compartment to
another. This model requires rate information (hence the name pharmacokinetics). to describe
how fast drug gets from one compartment to another.

The simplest model is to treat the body as one compartment, but we can do better than that. In
the compartmental model sketched below, the drug is taken as a solid pill (D) and enters the
gastrointestinal tract (G), from which it passes to the rest of the body (B) and ultimately is
converted to a metabolized form (M) or is excreted in the urine (U). The rate at which the drug
gets from the source (pill) to the gastrointestinal tract is assumed to be a constant R, as long as
the pill lasts (“zero order kinetics™). The rate at which the drug gets from one compartment to
the next is assumed to be directly proportional to the concentration of the drug in the
compartment that it is leaving (called first order kinetics). The proportionality constants are
called rate constants.

ke
\U

We will use G, B, M, and U to represent the concentration of drug in the gastrointestinal tract,
the rest of the body, converted to the metabolized form and excreted in the urine, respectively.
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So, the rate at which drug enters the gastrointestinal tract is R. The rate at which drug is
absorbed to enter the rest of the body is k.G, and the rate at which the drug leaves the body to
both the metabolized form and the urine is k,,B + k.B. We assume that the passage of the drug
from one compartment to another is irreversible. Once it leaves it does not come back around.
(This assumption is often dropped for drugs that can recirculate in the body for long times, but
we will keep this assumption here.)

This allows us to perform a material balance on each compartment. Initial conditions for each of
these material balances are shown under each differential equation:

dD

ill: —=—R 1
p " [1]
att=0,D=D,
gastrointestinal tract: d—G =R-k G [2]
dt a
att=0,G=0
dB
rest of body: E = kaG - (km + ke )B [3]
att=0,B=0
M
metabolized form: d— =k B [4]
dt m
att=0,M=0
dU
urine: —=k B [5]
dt e
att=0,U=0

The zero concentration boundary conditions imply that there is no drug in the compartment at the
start (there is nothing left over from a previously taken pill — how could this be changed if there
were leftover drug in the system?)

Eqn. [1] is solved directly as
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D t

di::—Rjdz

DO 0

D=D —Rt
o

We solve eqn [2] for G(t) using the separation of variables method.

R—kaG

(j;d—szdt

rearrange

Now to find B(t), we plug the result for G(t) into eqn [3]:

éE:R@—é%fj—@m+kJB

This equation cannot be solved by the method of separation of variables, but it can be solved by
the method of integrating factors (see p. 215 of the text for the general technique if you are
interested). Again, I emphasize that the method of solving this equation is not the point of
this lecture. The point is to set up the balance equations and see how useful they are.
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The solution for B(t) is

a__ R {1 B e—(ke+km)z} - R - {e—kat - e—(ke +k )t}

k +k k +k
e m e m

We could proceed to solve for the urine and metabolized form, but the drug concentration in the
body is most useful for dosage regimen design. (Think of how it might be useful to solve for
U(t) for drug testing purposes...)

Let’s plot how the drug concentration in the body (B) varies with time. For this calculation, t is
in seconds, and I specified

R=0.01—%
Lmin
k = O.Imin_1
a
k= 0.01min~!
k =0.01min"!
m
05, 0.6
041 ﬁ —
B(t), g/L
02 ]
0 0 ] ] ] ]
0 200 400 600 800 1000

. ) 3
time, min Ax107,

The therapeutic window is defined as the region below the toxicity threshold and above the
minimum concentration needed for a therapeutic effect. If the therapeutic window were
indicated by the lines on the graph, this would be a very successful dosage regimen. The drug
concentration in the body rapidly rises to within the therapeutic window and stays there. This is
not typical! What we have shown here is the ideal of sustained release — the case of zero order
kinetics, or a constant rate of drug release R from the pill (D). This is a highly desirable
condition, and companies have been formed around technologies that come close to zero order
release. The more typical case is where the drug release kinetics are first order.

Then, eqn [1] changes to
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dD o : .
7 = _krD , which is solved by separation of variables for D =D, at t =0 as
t
—k t
D=De 7
0

If we plug that into eqn [2] for the concentration in the gastrointestinal tract we get

G _ bk G

dt r a

G _ipet i
dt r o a

with G =0 at t = 0, this is solved (by method of integrating factors again) as
k D _ _
Go o {e k t . kat}
k —k
a r

Proceeding as above, to find the concentration in the rest of the body B, we plug the result for G
into eqn [3]

kD ( _k —k
a _ . #{e e at}_(k +k)B
dt aka—kr m. e

with B =0 at t = 0, the solution by the method of integrating factors is

—k t -k t

krDo/(ka _kr)_ krDo/(ka _kr) e—(km+ke)f _ e ' n e “
k -k -k k -k —k k -k -k k —k —k
ro"m e a m e r "m e "a "m e

If we set k; = 0.01min™ and D, = 1 g/L, then this is graphed as
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0.247, 0.3

02~ 1

B(t), g/L

NOR | | |
0 200 400 600 800 1000

Q0. 1000

time, min

Notice how the drug concentration in the body rises rapidly but also passes through a maximum
value and drops off again.

What would happen if a second pill were taken after 200 minute? The concentration in the body
would rapidly proceed even higher. This could potentially cause the concentration to exceed the
toxicity threshold. To play it safe, maybe the next pill should be taken after 800 min — but then
the patient would have gone about 200 minutes with virtually no drug in the body, so there is no
therapy happening. This is the purpose of pharmacokinetic modeling.

To capture the effect of leftover drug from one dose to the next, we would need to solve the
equations with the initial condition for each dosage set to the concentration leftover from the
does before. In other words, if we take a second pill 200 min after the first pill when the
concentration in the body is B = By, then we restart the clock and set B = B;gp at t =0 and
solve.

Many more complicated compartmental models are used in pharmaceutical practice than the
two-compartment, irreversible model we used here.



