
Lecture 9
Interactive Rebasing



Merge vs. Rebase

A

B

D
C

E

M

master

feature
HEAD

git merge feature

master

HEAD

A

B

D
C

E

master

feature
HEAD

git rebase master

C'

E'

HEAD HEAD

HEADfeature

HEAD



Today

• More powerful rebasing



git rebase master

1. Move HEAD to merge base of 
current branch and feature

2. Calculate diff between D and C 
and apply to D, creating C’

3. Calculate diff between C’ and E 
and apply to C’, creating E’

4. Reset feature to E’

A

B

D
C

E

master

feature
HEAD

git rebase master

C'

E'

HEAD HEAD

HEADfeature

HEAD



What about conflicts?

• Just like merge conflicts, there can be conflicts when applying the 
diffs
• Resolve them like normal and use git rebase --continue



Interactive Rebasing

• Rebasing is super powerful!
• We can reorder, edit, remove, or amend commits!

git rebase -i <commitish>

Rebasing onto a commit allows you to change all of the commits in the 
commit history back to that commit.



Interactive Rebasing



Git Reset

• Moves branch pointers
• git reset --soft HEAD~
• git reset –hard HEAD~2



git commit --amend

• Add files or edit the commit message of the most recent commit



Force Pushing

• Rebasing, resetting, and amending commits all move branch pointers 
to different commits
• Require force pushing, since the changes are not fast-forwards



Activity/Homework

Fork and clone https://github.com/ilanbiala/mergesort. Rebase all of 
the commits on master into better organized and named commits by 
using reword, squash, and fixup.

You should have between 2-3 commits at the end. Push them to your 
fork and submit a pull request.

https://github.com/ilanbiala/mergesort

