
Lecture 4
More on Commits and Branches



Homework 3 Review



Review: The Git Commit Workflow (Edit, Add, Commit)

file1.txt (v1)
file2.txt (v1)
file3.txt (v1)

1. Make changes to files
vim file1.txt file3.txt

Working Directory

2. Add changes to the staging area
git add file1.txt

Staging Area

file1.txt (v2)
file2.txt (v1)
file3.txt (v1)

3. Commit changes in staging area
git commit -m “fixed bug in 

file1.txt”

List of commits

file1.txt (v1)
file2.txt (v1)
file3.txt (v1)

file1.txt (v1)
file2.txt (v1)

ab628cc

782cb4f

bb2df1a

file1.txt (v2)
file2.txt (v1)
file3.txt (v2)

file1.txt (v2)
file2.txt (v1)
file3.txt (v1)

H
E
A
D

H
E
A
D



What about new files?

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

Working Directory

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

Staging Area

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

List of commits

git add 
newfile.txt

file1.txt (v1)
file2.txt (v1)

file1.txt (v1)ab628cc

782cb4f

bb2df1a 
(HEAD)

No difference from an edit, use git add newfile.txt.



What about removing files?

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

Working Directory

___
file1.txt (v1)
file2.txt (v1)

Staging Area

file1.txt (v1)
file2.txt (v1)

List of commits

git rm
newfile.txt

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

file1.txt (v1)ab628cc

782cb4f

bb2df1a 
(HEAD)

git rm newfile.txt (also deletes newfile.txt from working directory!)



What if I want to undo changes in the Working Dir?

coolfile.txt (v2)
coolfile.txt (v1)

file1.txt (v1)
file2.txt (v1)

Working Directory Staging Area

coolfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

List of commits

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

file1.txt (v1)ab628cc

782cb4f

bb2df1a 
(HEAD)

git checkout -- coolfile.txt (Note staging area is unaffected)



What if I want to ‘unstage’ a file?

coolfile.txt (v2)
file1.txt (v1)
file2.txt (v1)

Working Directory

coolfile.txt (v2)
coolfile.txt (v1)

file1.txt (v1)
file2.txt (v1)

Staging Area

coolfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

List of commits

git reset
HEAD 
coolfile.txt

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

file1.txt (v1)ab628cc

782cb4f

bb2df1a 
(HEAD)

git reset HEAD coolfile.txt (Note WD is unaffected)



What if I want to start over and go back to exactly 
what the HEAD looks like (in both WD and SA)?

coolfile.txt (v2)
coolfile.txt (v1)

file1.txt (v2)
file1.txt (v1)
file2.txt (v1)

Working Directory

coolfile.txt (v2)
coolfile.txt (v1)

file1.txt (v2)
file1.txt (v1)
file2.txt (v1)

Staging Area

coolfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

List of commits

git reset --hard HEAD

newfile.txt (v1)
file1.txt (v1)
file2.txt (v1)

file1.txt (v1)ab628cc

782cb4f

bb2df1a 
(HEAD)

git reset --hard HEAD (overwrites entire WD!)





Summary



Last Time

B

A

C

D

E

F master HEAD

experiment

wildidea• Branches are pointers to 
specific commits

• Branches allow us to create 
commit histories that diverge

• We can merge diverged 
histories back together



git branch <newbranchname>

Example use:

git branch experiment

• Creates a new branch called “experiment” that points to wherever 
you are right now (i.e. wherever HEAD is right now)

B

A

master HEAD

experiment



git checkout <branchname>

Example use:

git checkout experiment

Switches the HEAD to the branch named “develop”

B

A

master HEAD

experiment



git reset --hard <commit_hash>

Example use:

git reset --hard HEAD~

Moves the current branch to point to a different commit

B

A

master HEAD

experiment



Naming Commits Relative to the HEAD

<commit-ish>~: The parent of the commit

<commit-ish>~n: The nth parent of the commit

<commit-ish> is anything that is or points to a commit:

• short hash a39dcf5

• branch name

• HEAD



Merging

git merge experiment

“Will replay the changes made on 
the experiment branch since it 
diverged from master (i.e. B) until 
its current commit (D) on top of 
master, and record the result in a 
new commit along with the 
names of the two parent 
commits.” (from git help merge)

B

A

C

D

E

F master HEAD

experiment

wildidea



Fast Forward Merges

• Occur when the branch being 
merged onto is an ancestor of the 
branch being in.

• No merge commit is made unless 
--no-ff flag is used

• Will never cause conflicts!

git merge experiment

B

A

C

D

E

master HEAD

experiment

wildidea



Three-Way Merges

• Occur when the branch being 
merged onto is not a descendent
of the branch being merged in.

• The branch being merged onto has 
“moved on” since the split.

• Creates a merge commit, can 
cause conflicts!

git merge experiment

Performs a “three way merge” 
between B, F, and D

B

A

C

D

E

F master HEAD

experiment

wildidea



MERGE CONFLICT

B

A

C

D

E

F
goodidea

master, 
HEAD

master, 
HEAD G



MERGE CONFLICT

This file is demo.txt

<<<<<<< HEAD
Here is another line. modified in master
=======
Here is another line. modified in goodidea
>>>>>>> goodidea



“How to fix a merge conflict”

• Run `git status` to find the files that 
are in conflict.

• For each of these files, look for lines 
like “<<<<<< HEAD” or “>>>>>> 
3de67ca” that indicate a conflict.

• Edit the lines to match what you 
want them to be.

• After you finish doing this for each 
conflict in each file, `git add` these 
conflicted files and run `git commit` 
to complete the merge.



Activity!

Start the homework!


