_ecture 2
Making Simple Commits

COMMENT DATE
% CREATED MAIN LOOP & TIMING CONTROL

. . ENABLED CONFIG FILE PARSING
Sign in on the MI5C BUGFIXES
attendance CODE Eggéﬁmaﬁorra
ShEEt! HERE HAVE CODE.

} ARAPABAA

ADKFISLKDFISDKLET
MY HANDS ARE TYPING LJORDS
HAAARAAAAANDS

AS A PROJECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

credit: https://xkcd.com/1296/

Course Website

https://www.andrew.cmu.edu/course/98-174/

https://www.andrew.cmu.edu/course/98-174/

Homework Reminders

* Great job gitting the homework done this week!

Remember not to do this:
Andrewid.zip/
question-2/
left-pad/
guestion-4.txt

Review of Last Lecture

* git init — creates a git repo in the current directory

* git clone <git url> — copies the remote git repo into the current
directory

* git log [--oneline] — lists all commits in the git repo, starting with the
most recent one

* git help <command>, git <command> --help, man git <command> —
brings up the man help page for the git command

The .git folder

* Every git repository has a .git directory in the toplevel project
directory

* This is where all git commit objects and metadata are stored
* Don’t delete it! Doing so deletes the repository
* Folders starting with a dot are hidden on UNIX

$ 1s -a

.g1t css f16 homework 1index.html Tlecturenotes slides

$ 1s .git B . _ _
COMMIT_EDITM5G config hooks 1info objects refs
HEAD description 1index Jlogs packed-refs

Today: The Git Commit Workflow

* Review: git log
* git diff

* git status

e git add

* git commit

* git show

-
p, &
Y

&

S
r..h,u
A

®
a0
I
=
®
e
T
i,
-
GO
C
2
—
®
(€4
Wl

From Last Time: git log

We

ecue £710- £—Imaster Fremotes/originimaster| Fixlssue #710: Version Penalty TJ <teddyjo@live.com= 2017-01-04 20:42:21

Fixissue #609: ‘Edit Information’ button visible TJ =teddyjo@live.com= 2016-12-30 22:03:49

Fixnumbering issue Aatish MNayak =aatishn@andrew.cmu.¢ 2016-12-30 22:023:27

Remove references to “develop” branch Aatish Nayak =aatishn@andrew.cmu.s 2016-12-30 22:01:14

i P ~ o . # Don'treturn HTML errors to non-html requests Chaskiel Grundman =cg2v@andrew.c 2016-02-11 10:25:31
issue #609: 'Edit Information’ button visible # Trap and report scheduler exceptions Chaskiel Grundman =cg2v@andrew.c 2016-05-31 16:00:42
B # Disconnect from database before running Moss Chaskiel Grundman =cg2v@andrew.c 2016-06-07 13:06:03

1. edu= # Include some useful metadata in exception reports Chaskiel Grundman =cg2vi@andrew.c 2016-05-31 16:44:48

@ Merge remote-tracking branch ‘origin/gradesheet_post-deploy_fixes' into dt = Chaskiel Grundman =cg2vi@andrew.c 2016-04-23 14:14:45

Gradesheet save on change only (#651) Billy Zhu =z billy@gmail.coms= 2016-04-07 17:51:46

#® fix error caused by manually typing new date Billy Zhu =yuxiangzi@andrew.cmu.edu: 2016-04-05 15:05:11

u.edus

elop™ branch

Also try git log --oneline:

Remo - e ’ lop™ branch
Don't return H arr to non-htm]l
Trap and report ~-}; uler ptions
. e running Moss
(ception r
_L1ng branch 'or 31n_gr1de3 at : : y_fixes' into dt

on change only

1 by manually t
F et_fe n_demand
from autola " Op creating_subm
from autolab/create_extension_w ew_due_date

pT'ICl
E the T'GI ,
end the subpr ptions to

ely open
Hlﬁ'ngr ade_done url

What is 2eae45f"?

 Commits are uniquely represented by SHA-1 hashes

* The first 6-7 characters of a hash are usually enough to identify it
uniquely from all the other commits in the repository

* This is called the short hash

https://en.wikipedia.org/wiki/SHA-1

What is a commit?

1. A snapshot of all the files in a project
at a particular time

2. A checkpoint in your project you can
come back to or refer to

3. The changes a commit makes over the
previous commit

Commits are identified by their SHA-1 hash

Git Diff

T gt diff

ditf --git a/demo.txt b/demo.txt
index 4td054e..TF58225 100644
--- a/demo.txt

++ b/demo.txt

This 15 an example of how git diff works!

Commits: Revisited

List of commits

* Editing a file takes its state from 1 particular

ohaafta [2
snapshot to the next (HEAD) files.txt (v1)
* When we edit a file, we can see it as a set of l
changes (a “diff”) from the snapshotted state
. filel.txt (v1)
Of that flle 782cb4f file2.txt (v1)
. . file3.txt (v1)
 Commits bundle up sets of changes to a list
of files l
ab628cc filel.txt (v1)

file2.txt (v1)

git show <commit hash>

$ git show 13586

: T] <teddyjo@live.com:
Fri Dec 30 19:08:49 2016 -0800

Fix 1ssue #609: "Edit Information' button wvisible

diff --git a/app/views/course_user_data/show.html.erb b/app/views/course_user_data/show.html.erb
index 942e9e3..9%ecaala 100755

-—- a/app/views/course_user_data/show.html.erb

++ b/app/views/course_user_data/show.html.erb

<lisCourse Average Tweak of <¥=raw tweak(@requestedlUser.tweak) ¥=</l1=
<% end %=
</ul=

<%= link_to raw('<span class="btn primary"=Edit Information</span='), edit_course_course_user_datum_g

diff --git afapEfviEWEfcnur5E_u5er_datafuﬁer.htm].Erb b/app/views/course_user_data/user.html.erb

index aZae9e3..bel513a 100755
-—- a/app/views/course_user_data/user.html.erb
++ b/app/views/course_user_data/user.html.erb

<lisCourse Average Tweak of <¥=raw tweak(@requestedlUser.tweak) ¥=</l1=
<% end %=
</ul=

<%= Tink_to raw('Edit Information</span:'), edit_course_user_path(@course,

The Git Commit Workflow: Edit

Working Directory

fi
fi
fi

el.txt (v2)
e2.txt (v1)
e3.txt (v2)

Make changes to files
vim filel.txt file3.txt

List of Changes

In filel.txt: add the line “here is a new line!”
between lines 3 and 4

The Git Commit Workflow: Add

Working Directory

fi
fi
fi

el.txt (v2)
e2.txt (v1)
e3.txt (v2)

Add the current differences
git add filel.txt file3.txt

List of Changes

In filel.txt: add the line “here is a new line!”
between lines 3 and 4

Staging Area

The Git Commit Workflow: Commit

List of Changes

Staging Area

In filel.txt: add the line “here is a new line!”
between lines 3 and 4

A In file3.txt: delete line 27

Commit the currently staged differences
git commit -m "fixed bug in filel and file3"

List of commits

HEAD gy

filel.txt (v2)
bb2dfla file2.txt (v1)

file3.txt (v2)

}

filel.txt (v1)
782cb4f file2.txt (v1)
file3.txt (v1)

!

filel.txt (v1)
ab628cC ey txt (v1)

git add

Example use:

git add filel.txt file2.txt

(or)

git add . (adds changes to all files in directory)

working directory

f‘
staging area
ging —\
git commit
repository ‘—J

* Creates a commit out of a snapshot of the staging area, and updates

HEAD.

. . working directory
IT commiIt
g git add
Lv staging area —\
Example use: git commit
git commit repository <J
(or)

git commit —m “commit message goes here”

* Creates a commit out of a snapshot of the staging area, and updates
HEAD.

Aside: commit HEAD

* The “most recent commit” has a special name: HEAD

Build: Drop io.js testing
Tests: Provide equal() arguments in correct order (actual, expected)
Data: avoid using delete on DOM nodes

Manipulation: Switch rnoInnerhtml to a version more performant in IE
Tests: Really fix tests in IE 8 this time
Tests: Make basic tests work in IE 8

Good commit messages

* Good:
Build: Don't install jsdom3 on Node.js 0.10 & 0.12 by default

* Bad:
bugfix lol get rekt

http://whatthecommit.com

http://whatthecommit.com/

git status

Shows files differing between the staging area and the working
directory (i.e. unstaged changes), the staging area and HEAD (i.e.
changes ready to commit), and untracked files

$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file=..." to unstage)

Changes not staged for commit:

Chang t staged f t
TP 14~ €3 T ax~ " o -~ wh L : L
(use "git add «file=..." to update what will be committed) . _
(use "git checkout -- <file>..." to discard changes in working directory)

Untracked files:
(use "git add <file=... include 1n what w11l be committed)

git diff

Example use:

(show unstaged changes)
git diff

(show staged changes)
git diff --cached

* Shows unstaged changes or staged changes

git show

Example use:
git show [commit hash (default is HEAD)]

* Shows the changes in the specified commit

