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“Experience is what you get...
...when you don't get what you want.”
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Debugging

As soon as we started programming, we found to our 
surprise that it wasn't as easy to get programs right 
as we had thought.  Debugging had to be discovered.  
I can remember the exact instant when I realized that 
a large part of my life from then on was going to be 
spent in finding mistakes in my own programs.

– Maurice Wilkes (1949)
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Outline

What is “Debugging”?What is “Debugging”?

Programming languagesProgramming languages
 Whitespace
 INTERCAL
 M

A debugging storyA debugging story

ConclusionsConclusions
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What is “Debugging”?

Debugging is resolving a clash between storiesDebugging is resolving a clash between stories
 Your hopeful story of achievement
 The world's sad tale of woe

The stories look alike!The stories look alike!
 At the beginning, they both start with main()...
 Key step: finding the divergence

Stories are fractalStories are fractal
 You can zoom in on them and get more detail each time
 The divergence is typically a tiny detail

● You will need to zoom in quite a lot
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“Count from 1 to 10” (partial listing)

A Whitespace ProgramA Whitespace Program

Features of WhitespaceFeatures of Whitespace
 Only space, tab, and line-feed encode program statements
 All other characters (A-Z, a-z, 0-9, etc.) encode comments
 Simple stack-based language
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Whitespace “Explained”

  

Statement Meaning
[Space][Space][Space]
[Tab][LF]

Push 1 onto stack

[LF][Space][Space][Space]
[Tab][Space][Space][Space]
[Space][Tab][Tab][LF]

Set a label at this point

[Space][LF][Space] Duplicate the top stack item
[Tab][LF][Space][Tab] Output the current value
... ...
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INTERCAL

Features of INTERCALFeatures of INTERCAL
 Designed late one night in 1972 by two Princeton students
 Deliberately obfuscated language

VariablesVariables
 16-bit integers, .1 through .65535
 32-bit integers, :1 through :65535

OperatorsOperators
 Binary: “mingle”, “select”
 Unary: AND, OR, XOR

 How are those unary???
 Simple: AND and's together adjacent bits in a word

 Simplest way to put 65536 in a 32-bit variable?
 DO :1 <- #0¢#256
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The language “M”

Features of MFeatures of M
 Also designed in the 1970's
 More widely used than Whitespace, INTERCAL

VariablesVariables
 32-bit integer variables: A, B, C, D, DI, SI, S
 One array, M[]

 Valid subscripts range from near zero to a large number
 But most subscripts in that range will crash your program!

 A stack, located in M[], generally pointed to by S 

StatementsStatements
 Lots of arithmetic and logical operations
 Input and output use a special statement called OUCH!
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“C” Example

Print out numbers 1-10Print out numbers 1-10

for (i = 1; i < 10; ++i)
{
  print_int(i);
}
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“M” Example

Print out numbers 1-10Print out numbers 1-10

Address Instruction Comment
00001000 MOV     $1,M[10] Init loop index
00001004 MOV     $10,M[11] Init loop limit

00001008 MOV     M[10],A Fetch loop index

00001012 MOV     M[11],B Fetch loop limit

00001016 COMPARE A,B Compare

00001020 EQUAL?  $1044 If so, done

00001024 PUSH    A Push loop index

00001028 ADD     $1,A Increment for next time

00001032 MOV     A,M[10] Store index for next time

00001036 CALL    $4000 print_int()

00001040 JUMP    -32 Top of loop
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Classifying Instructions

Print out numbers 1-10Print out numbers 1-10

Address Instruction Type
00001000 MOV     $1,M[10] Store
00001004 MOV     $10,M[11] Store

00001008 MOV     M[10],A Fetch

00001012 MOV     M[11],B Fetch

00001016 COMPARE A,B ALU

00001020 EQUAL?  $1044 Absolute branch

00001024 PUSH    A Stack

00001028 ADD     $1,A ALU

00001032 MOV     A,M[10] Store

00001036 CALL    $4000 Absolute branch

00001040 JUMP    -32 Relative branch
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“Reserved (Set to Zero)”
The SceneThe Scene

 Mid-1980's
 IBM “RT PC”
 “Multiprotocol adaptor”

 Intel 8051
 Some Intel bus bridge
 DMA engine
 RS-232/422 ports
 Some bizarre dial port

Key featuresKey features
 Narrow Intel bus bridge
 Protocol code loaded from 

host device driver
 Boot loader in ROM
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“Reserved (Set to Zero)”
MicrocodeMicrocode

 Intel 8051 binary
 Commanded by host to 

transfer data across bus 
to/from RAM

 Able to code/decode 
packet data onto/from wire

 Card could implement 
checksum and 
retransmission

File formatFile format
 Code size
 Entry point
 ...

Reserved (set to 0)
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The Fun Begins
First programFirst program

Send 1-byte constant to host port (generates interrupt)

Enter infinite loop

⇒ Works!
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The Fun Begins
First programFirst program

Send 1-byte constant to host port (generates interrupt)

Enter infinite loop

⇒ Works!

Second programSecond program

Program port #0 to be RS-232, no modem control, 9600 bps

Transfer packet from host via DMA

while (ptr < end)

  while (!IDLE(0))

    continue;

  output(*ptr++);

⇒ Hangs silently!
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Houston, We Have A Problem
Inquiry is hardInquiry is hard

 No way to inspect card – RAM, registers, etc.
 Everything is under control of boot loader or downloaded code

» Code wedges ⇒ no more data
 Only two forms of communication possible

 8-bit code sent by bridge with host interrupt

» Simple enough: out(port, val)

» Only 8 bits (more like 7)
 DMA

» Can send arbitrary data dumps

» Except it doesn't work

#include <laborious_debugging_session.h>#include <laborious_debugging_session.h>
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Time Passes...
Basic approachBasic approach

 Write a tiny program
 Download it
 See what tiny answer it returns (if any)

ResultsResults
 Most 8051 instructions appear to work

 Port input/port output (thankfully!)
 Arithmetic, shift/roll
 RAM load/store
 Relative branch

 Some instructions don't work so well
 Call/return
 Jump (absolute branch)

 ??? (????)
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Food for Thought?
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“Reserved (Set to Zero)”!!!!!
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Residual Amusement
Contacting the developers inside IBMContacting the developers inside IBM

 Very hard
 Intentionally very hard

 Insistence
 That's not how it works!
 The documentation is correct!
 We know how our product works!
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Residual Amusement
Contacting the developers inside IBMContacting the developers inside IBM

 Very hard
 Intentionally very hard

 Insistence
 That's not how it works!
 The documentation is correct!
 We know how our product works!

 Further insistence
 “Steve” no longer works in the group

» After some time, his notes turn up

» “It appears that the development version did that”

» “No card with that behavior ever shipped to customers”
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Lessons?
Is this just a horror story?Is this just a horror story?

 Are there lessons?

ObservationsObservations
 The problem wasn't “in the code”

 All programs downloaded to the card were correct

» Well, most
 The boot loader was also correct
 But the execution environment was (subtly) wrong

» printf()/gdb approach would address situation only diffusely

» ...if available (not even close!)

What is debugging really?What is debugging really?
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Debugging
Two storiesTwo stories

 Plan: Hopes and dreams for the future of humanity
 Observation: Tale of woe

Key observationKey observation
 They are mostly the same story!

 The beginnings are identical 
 Somewhere there is a tiny discrepancy
 The stories continue “in a similar vein” after the divergence
 One story ends in disaster
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Debugging
How to progress?How to progress?

 A deep understanding of the stories is necessary
 Branch vs. Jump!
 All abstractions are gone at that point

 Measuring which parts happen correctly is not easy 
 May require embedding test code in application
 May require writing entire test applications

This looks like science!This looks like science!
 Hypothesis
 Experimental design
 Measurement
 Analysis
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Debugging Suggestions

Move beyond “plot summaries”Move beyond “plot summaries”
 “My program dies”
 “My program dies with a segmentation fault”
 “My program dies with a segmentation fault in xxx()”

 That one is getting closer, but...

Deepen your level of detailDeepen your level of detail
 What was your story of hope, in detail?
 What parts of your story already happened?
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Measurement Techniques

““Obvious”Obvious”
 printf()
 single-step the program

Moving beyond the obviousMoving beyond the obvious
 Know your debugger

 breakpoints, watchpoints
 Those pesky registers (in assembly code)

 The values should always make sense – all of them

Writing codeWriting code
 Breakage of a complex data structure is, well complex
 Probably need code to check invariants

 Doing it by hand is fun at most once
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Record-Keeping

While you're workingWhile you're working
 Keep a “bug diary”

 What you've tried
 What you've learned
 What you don't know how to measure
 What results are confusing
 What to try next

After you find the bugAfter you find the bug
 Keep a “bug diary”

 Last week I found an xxx bug
 This week I found an xxx bug
 Maybe I should check for xxx bugs when I run into trouble

 This is part of the “Personal Software Process” (PSP)
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Asking for Help

““Plot summary” is not enoughPlot summary” is not enough
 We probaby have no idea what's wrong

 Really!

You should always have a measurement planYou should always have a measurement plan
 What is the next thing to measure?
 How would I measure it?

You may reach the end of your ropeYou may reach the end of your rope
 Some things are genuinely tricky to debug

 This is a good learning experience
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Asking for Help

When are you ready to ask for help?When are you ready to ask for help?
 You have a long, detailed story – this is critical!!! 

 “Story” often needs one or two pictures
 Parts of the story are clearly happening

 You have straightforward evidence, you are confident
 You have a measurement problem

 Too many things to measure?
 No idea how to measure one complicated thing?
 Measurement results “make no sense”?
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Summary

Debugging is about reconciling two storiesDebugging is about reconciling two stories
 “Plot summaries” aren't stories (you must zoom in)
 “If you don't know where you are going, you will wind up 

somewhere else.” — Yogi Berra 

Measure multiple things, use multiple mechanismsMeasure multiple things, use multiple mechanisms

You should “always” have a next measurement targetYou should “always” have a next measurement target

When you ask for help, bring a long storyWhen you ask for help, bring a long story
 ...which you will naturally be an expert on the first part of


