
15-410, F'111

Debugging
Oct. 27, 2011

Dave EckhardtDave Eckhardt

“Experience is what you get...
...when you don't get what you want.”

15-410, F'112

Debugging

As soon as we started programming, we found to our
surprise that it wasn't as easy to get programs right
as we had thought. Debugging had to be discovered.
I can remember the exact instant when I realized that
a large part of my life from then on was going to be
spent in finding mistakes in my own programs.

– Maurice Wilkes (1949)

15-410, F'113

Outline

What is “Debugging”?What is “Debugging”?

Programming languagesProgramming languages
 Whitespace
 INTERCAL
 M

A debugging storyA debugging story

ConclusionsConclusions

15-410, F'114

What is “Debugging”?

Debugging is resolving a clash between storiesDebugging is resolving a clash between stories
 Your hopeful story of achievement
 The world's sad tale of woe

The stories look alike!The stories look alike!
 At the beginning, they both start with main()...
 Key step: finding the divergence

Stories are fractalStories are fractal
 You can zoom in on them and get more detail each time
 The divergence is typically a tiny detail

● You will need to zoom in quite a lot

15-410, F'115

“Count from 1 to 10” (partial listing)

A Whitespace ProgramA Whitespace Program

Features of WhitespaceFeatures of Whitespace
 Only space, tab, and line-feed encode program statements
 All other characters (A-Z, a-z, 0-9, etc.) encode comments
 Simple stack-based language

15-410, F'116

Whitespace “Explained”

Statement Meaning
[Space][Space][Space]
[Tab][LF]

Push 1 onto stack

[LF][Space][Space][Space]
[Tab][Space][Space][Space]
[Space][Tab][Tab][LF]

Set a label at this point

[Space][LF][Space] Duplicate the top stack item
[Tab][LF][Space][Tab] Output the current value
... ...

15-410, F'117

INTERCAL

Features of INTERCALFeatures of INTERCAL
 Designed late one night in 1972 by two Princeton students
 Deliberately obfuscated language

VariablesVariables
 16-bit integers, .1 through .65535
 32-bit integers, :1 through :65535

OperatorsOperators
 Binary: “mingle”, “select”
 Unary: AND, OR, XOR

 How are those unary???
 Simple: AND and's together adjacent bits in a word

 Simplest way to put 65536 in a 32-bit variable?
 DO :1 <- #0¢#256

15-410, F'118

The language “M”

Features of MFeatures of M
 Also designed in the 1970's
 More widely used than Whitespace, INTERCAL

VariablesVariables
 32-bit integer variables: A, B, C, D, DI, SI, S
 One array, M[]

 Valid subscripts range from near zero to a large number
 But most subscripts in that range will crash your program!

 A stack, located in M[], generally pointed to by S

StatementsStatements
 Lots of arithmetic and logical operations
 Input and output use a special statement called OUCH!

15-410, F'119

“C” Example

Print out numbers 1-10Print out numbers 1-10

for (i = 1; i < 10; ++i)
{
 print_int(i);
}

15-410, F'1110

“M” Example

Print out numbers 1-10Print out numbers 1-10

Address Instruction Comment
00001000 MOV $1,M[10] Init loop index
00001004 MOV $10,M[11] Init loop limit

00001008 MOV M[10],A Fetch loop index

00001012 MOV M[11],B Fetch loop limit

00001016 COMPARE A,B Compare

00001020 EQUAL? $1044 If so, done

00001024 PUSH A Push loop index

00001028 ADD $1,A Increment for next time

00001032 MOV A,M[10] Store index for next time

00001036 CALL $4000 print_int()

00001040 JUMP -32 Top of loop

15-410, F'1111

Classifying Instructions

Print out numbers 1-10Print out numbers 1-10

Address Instruction Type
00001000 MOV $1,M[10] Store
00001004 MOV $10,M[11] Store

00001008 MOV M[10],A Fetch

00001012 MOV M[11],B Fetch

00001016 COMPARE A,B ALU

00001020 EQUAL? $1044 Absolute branch

00001024 PUSH A Stack

00001028 ADD $1,A ALU

00001032 MOV A,M[10] Store

00001036 CALL $4000 Absolute branch

00001040 JUMP -32 Relative branch

15-410, F'1112

“Reserved (Set to Zero)”
The SceneThe Scene

 Mid-1980's
 IBM “RT PC”
 “Multiprotocol adaptor”

 Intel 8051
 Some Intel bus bridge
 DMA engine
 RS-232/422 ports
 Some bizarre dial port

Key featuresKey features
 Narrow Intel bus bridge
 Protocol code loaded from

host device driver
 Boot loader in ROM

S
y
s
t
e
m

B
u
s

ROMP
CPU

RAM

Disk

8514

Etc.

Bridge
8-bit

RAM
8051

ROM

P
o

r t

P
o

r t

P
o

r t

DMA
Engine

15-410, F'1113

“Reserved (Set to Zero)”
MicrocodeMicrocode

 Intel 8051 binary
 Commanded by host to

transfer data across bus
to/from RAM

 Able to code/decode
packet data onto/from wire

 Card could implement
checksum and
retransmission

File formatFile format
 Code size
 Entry point
 ...

Reserved (set to 0)

Code size

Entry point

Data size

Checksum

Code
Code

Data

15-410, F'1114

The Fun Begins
First programFirst program

Send 1-byte constant to host port (generates interrupt)

Enter infinite loop

⇒ Works!

15-410, F'1115

The Fun Begins
First programFirst program

Send 1-byte constant to host port (generates interrupt)

Enter infinite loop

⇒ Works!

Second programSecond program

Program port #0 to be RS-232, no modem control, 9600 bps

Transfer packet from host via DMA

while (ptr < end)

 while (!IDLE(0))

 continue;

 output(*ptr++);

⇒ Hangs silently!

15-410, F'1116

Houston, We Have A Problem
Inquiry is hardInquiry is hard

 No way to inspect card – RAM, registers, etc.
 Everything is under control of boot loader or downloaded code

» Code wedges ⇒ no more data
 Only two forms of communication possible

 8-bit code sent by bridge with host interrupt

» Simple enough: out(port, val)

» Only 8 bits (more like 7)
 DMA

» Can send arbitrary data dumps

» Except it doesn't work

#include <laborious_debugging_session.h>#include <laborious_debugging_session.h>

15-410, F'1117

Time Passes...
Basic approachBasic approach

 Write a tiny program
 Download it
 See what tiny answer it returns (if any)

ResultsResults
 Most 8051 instructions appear to work

 Port input/port output (thankfully!)
 Arithmetic, shift/roll
 RAM load/store
 Relative branch

 Some instructions don't work so well
 Call/return
 Jump (absolute branch)

 ??? (????)

15-410, F'1118

Food for Thought?

S
y
s
t
e
m

B
u
s

ROMP
CPU

RAM

Disk

8514

Etc.

Bridge
8-bit

RAM
8051

ROM

P
or t

P
or t

P
or t

DMA
Engine

Reserved (set to 0)

Code size

Entry point

Data size

Checksum

Code
Code

Data

15-410, F'1119

“Reserved (Set to Zero)”!!!!!

S
y
s
t
e
m

B
u
s

ROMP
CPU

RAM

Disk

8514

Etc.

Bridge
8-bit

RAM
8051

ROM

P
or t

P
or t

P
or t

DMA
Engine

Load Address

Code size

Entry point

Data size

Checksum

Code
Code

Data

15-410, F'1120

Residual Amusement
Contacting the developers inside IBMContacting the developers inside IBM

 Very hard
 Intentionally very hard

 Insistence
 That's not how it works!
 The documentation is correct!
 We know how our product works!

15-410, F'1121

Residual Amusement
Contacting the developers inside IBMContacting the developers inside IBM

 Very hard
 Intentionally very hard

 Insistence
 That's not how it works!
 The documentation is correct!
 We know how our product works!

 Further insistence
 “Steve” no longer works in the group

» After some time, his notes turn up

» “It appears that the development version did that”

» “No card with that behavior ever shipped to customers”

15-410, F'1122

Lessons?
Is this just a horror story?Is this just a horror story?

 Are there lessons?

ObservationsObservations
 The problem wasn't “in the code”

 All programs downloaded to the card were correct

» Well, most
 The boot loader was also correct
 But the execution environment was (subtly) wrong

» printf()/gdb approach would address situation only diffusely

» ...if available (not even close!)

What is debugging really?What is debugging really?

15-410, F'1123

Debugging
Two storiesTwo stories

 Plan: Hopes and dreams for the future of humanity
 Observation: Tale of woe

Key observationKey observation
 They are mostly the same story!

 The beginnings are identical
 Somewhere there is a tiny discrepancy
 The stories continue “in a similar vein” after the divergence
 One story ends in disaster

15-410, F'1124

Debugging
How to progress?How to progress?

 A deep understanding of the stories is necessary
 Branch vs. Jump!
 All abstractions are gone at that point

 Measuring which parts happen correctly is not easy
 May require embedding test code in application
 May require writing entire test applications

This looks like science!This looks like science!
 Hypothesis
 Experimental design
 Measurement
 Analysis

15-410, F'1125

Debugging Suggestions

Move beyond “plot summaries”Move beyond “plot summaries”
 “My program dies”
 “My program dies with a segmentation fault”
 “My program dies with a segmentation fault in xxx()”

 That one is getting closer, but...

Deepen your level of detailDeepen your level of detail
 What was your story of hope, in detail?
 What parts of your story already happened?

15-410, F'1126

Measurement Techniques

““Obvious”Obvious”
 printf()
 single-step the program

Moving beyond the obviousMoving beyond the obvious
 Know your debugger

 breakpoints, watchpoints
 Those pesky registers (in assembly code)

 The values should always make sense – all of them

Writing codeWriting code
 Breakage of a complex data structure is, well complex
 Probably need code to check invariants

 Doing it by hand is fun at most once

15-410, F'1127

Record-Keeping

While you're workingWhile you're working
 Keep a “bug diary”

 What you've tried
 What you've learned
 What you don't know how to measure
 What results are confusing
 What to try next

After you find the bugAfter you find the bug
 Keep a “bug diary”

 Last week I found an xxx bug
 This week I found an xxx bug
 Maybe I should check for xxx bugs when I run into trouble

 This is part of the “Personal Software Process” (PSP)

15-410, F'1128

Asking for Help

““Plot summary” is not enoughPlot summary” is not enough
 We probaby have no idea what's wrong

 Really!

You should always have a measurement planYou should always have a measurement plan
 What is the next thing to measure?
 How would I measure it?

You may reach the end of your ropeYou may reach the end of your rope
 Some things are genuinely tricky to debug

 This is a good learning experience

15-410, F'1129

Asking for Help

When are you ready to ask for help?When are you ready to ask for help?
 You have a long, detailed story – this is critical!!!

 “Story” often needs one or two pictures
 Parts of the story are clearly happening

 You have straightforward evidence, you are confident
 You have a measurement problem

 Too many things to measure?
 No idea how to measure one complicated thing?
 Measurement results “make no sense”?

15-410, F'1130

Summary

Debugging is about reconciling two storiesDebugging is about reconciling two stories
 “Plot summaries” aren't stories (you must zoom in)
 “If you don't know where you are going, you will wind up

somewhere else.” — Yogi Berra

Measure multiple things, use multiple mechanismsMeasure multiple things, use multiple mechanisms

You should “always” have a next measurement targetYou should “always” have a next measurement target

When you ask for help, bring a long storyWhen you ask for help, bring a long story
 ...which you will naturally be an expert on the first part of

