“Experience is what you get...
...when you don't get what you want.”

Debuggin
Oct. 2 ,920%1

Dave Eckhardt

15-410, F'11

Debugging

As soon as we started programming, we found to our
surprise that it wasn't as easy to get programs right
as we had thought. Debugging had to be discovered.
| can remember the exact instant when | realized that
a large part of my life from then on was going to be
spent in finding mistakes in my own programs.

— Maurice Wilkes (1949)

15-410, F'11

Outline

What is “Debugging”?

Programming languages
= Whitespace
- INTERCAL
- M

A debugging story
Conclusions

15-410, F'11

What is “Debugging”?

Debugging is resolving a clash between stories

= Your hopeful story of achievement
= The world's sad tale of woe

The stories look alike!

= At the beginning, they both start with main()...
= Key step: finding the divergence

Stories are fractal

= You can zoom in on them and get more detail each time
= The divergence is typically a tiny detail
« You will need to zoom in quite a lot

15-410, F'11

A Whitespace Program

“Count from 1 to 10” (partial listing)

Features of Whitespace
= Only space, tab, and line-feed encode program statements
= All other characters (A-Z, a-z, 0-9, etc.) encode comments
= Simple stack-based language

15-410, F'11

Whitespace “Explained”

Statement Meaning
Space][Space][Space] Push 1 onto stack
‘Tab][LF]

LF][Space][Space][Space] Set a label at this point
'Tab][Space][Space][Space]
Space][Tab][Tab][LF]
'Space][LF][Space] Duplicate the top stack item
‘Tab][LF][Space][Tab] Output the current value

6 15-410, F'11

INTERCAL

Features of INTERCAL

= Designed late one night in 1972 by two Princeton students
= Deliberately obfuscated language

Variables

= 16-bit integers, .1 through .65535
= 32-bit integers, :1 through :65535

Operators
= Binary: “mingle”, “select”
= Unary: AND, OR, XOR
= How are those unary???
= Simple: AND and's together adjacent bits in a word
= Simplest way to put 65536 in a 32-bit variable?
= DO :1 <- #0¢#256

] 15-410, F'11

The language “M”

Features of M
= Also designed in the 1970's
= More widely used than Whitespace, INTERCAL

Variables
= 32-bit integer variables: A, B, C, D, DI, S|, S
= One array, M[]
= Valid subscripts range from near zero to a large number
= But most subscripts in that range will crash your program!
= A stack, located in M[], generally pointed to by S

Statements

= Lots of arithmetic and logical operations
= Input and output use a special statement called OUCH!

15-410, F'11

“C” Example

Print out numbers 1-10

for (1 =1; i < 10; ++1i)
{
print int(i);

}

15-410, F'11

“M” Example

Print out numbers 1-10

10

Address Instruction Comment
00001000 MOV $1,M[10] Init loop index
00001004 MOV $10,M[11] |nitloop limit
00001008 MOV M[10],A Fetch loop index
00001012 MOV M[11],B Fetch loop limit
00001016 COMPARE A,B Compare
00001020 EQUAL? $1044 If so, done
00001024 PUSH A Push loop index
00001028 ADD $1,A Increment for next time
00001032 MOV A,M[10] Store index for next time
00001036 CALL $4000 print_int()

00001040 JUMP -32 Top of loop

15-410, F'11

Classifying Instructions

Print out numbers 1-10

Address Instruction Type
00001000 MOV $1,M[10] Store
00001004 MOV $10,M[11] Store
00001008 MOV M[10],A Fetch
00001012 MOV M[11],B Fetch
00001016 COMPARE A,B ALU
00001020 EQUAL? S$1044 Absolute branch
00001024 PUSH A Stack
00001028 ADD $1,A ALU
00001032 MOV A,M[10] Store
00001036 CALL $4000 Absolute branch
00001040 JUMP -32 Relative branch

15-410, F'11

“Reserved (Set to Zero)”

The Scene
= Mid-1980's
= |IBM “RT PC”
= “Multiprotocol adaptor”
= Intel 8051
= Some Intel bus bridge
= DMA engine

= RS-232/422 ports
= Some bizarre dial port

Key features

= Narrow Intel bus bridge

= Protocol code loaded from
host device driver

= Boot loader in ROM

12

ROMP
CPU

Disk

8514

Etc.

mneCcw 3o0o~0n<®W

15-410, F'11

“Reserved (Set to Zero)”

Microcode
= Intel 8051 binary

- Commanded by host to Reserved (set to 0)

transfer data across bus :
to/from RAM Code size

= Able to code/decode Entry point
packet data onto/from wire :

= Card could implement
checksum and
retransmission

File format Code

= Code size Code

13 15-410, F'11

The Fun Begins

First program
Send 1-byte constant to host port (generates interrupt)
Enter infinite loop

= Works!

14 15-410, F'11

The Fun Begins

First program
Send 1-byte constant to host port (generates interrupt)
Enter infinite loop

= Works!

Second program

Program port #0 to be RS-232, no modem control, 9600 bps
Transfer packet from host via DMA
while (ptr < end)

while (IDLE(0))

continue;

output(*ptr++);

= Hangs silently!

15 15-410, F'11

Houston, We Have A Problem
Inquiry is hard

= No way to inspect card — RAM, registers, etc.
= Everything is under control of boot loader or downloaded code
» Code wedges = no more data
= Only two forms of communication possible
= 8-bit code sent by bridge with host interrupt
» Simple enough: out(port, val)
» Only 8 bits (more like 7)
= DMA
» Can send arbitrary data dumps
» Except it doesn't work

#include <laborious_debugging_session.h>

16 15-410, F'11

Time Passes...

Basic approach

= Write a tiny program
= Download it
= See what tiny answer it returns (if any)

Results

= Most 8051 instructions appear to work
= Port input/port output (thankfully!)
= Arithmetic, shift/roll
= RAM load/store
= Relative branch
= Some instructions don't work so well
= Call/return

= Jump (absolute branch)
= 2?22 (??7?7)

17

15-410, F'11

Food for Thought?

ROMP Reserved (set to 0
CPU S (:)
v Code size
RAM S Entry point
t Data size
_ e
Disk - Checksum
8514 B code
u
Etc. S Data

18 15-410, F'11

“Reserved (Set to Zero)”!!!!!

ROMP
CPU

RAM

Disk

8514

Etc.

w c @0 S DO ~0n< W

19

Code size

Entry point

Data size
Checksum

Code
Code

Data

15-410, F'11

Residual Amusement

Contacting the developers inside IBM

= Very hard
= Intentionally very hard
= Insistence
= That's not how it works!
= The documentation is correct!
= We know how our product works!

20 15-410, F'11

Residual Amusement

Contacting the developers inside IBM

= Very hard
= Intentionally very hard
= Insistence
= That's not how it works!
= The documentation is correct!
= We know how our product works!
= Further insistence
= “Steve” no longer works in the group
» After some time, his notes turn up
» “It appears that the development version did that”
» “No card with that behavior ever shipped to customers”

21 15-410, F'11

Lessons?

Is this just a horror story?
= Are there lessons?

Observations

= The problem wasn't “in the code”
= All programs downloaded to the card were correct
» Well, most
= The boot loader was also correct
= But the execution environment was (subtly) wrong
» printf()/gdb approach would address situation only diffusely
» ...if available (not even close!)

What is debugging really?

22 15-410, F'11

Debugging

Two stories

= Plan: Hopes and dreams for the future of humanity
= Observation: Tale of woe

Key observation

= They are mostly the same story!
= The beginnings are identical
= Somewhere there is a tiny discrepancy
= The stories continue “in a similar vein” after the divergence
= One story ends in disaster

23 15-410, F'11

Debugging

How to progress?

= A deep understanding of the stories is necessary
= Branch vs. Jump!
= All abstractions are gone at that point
= Measuring which parts happen correctly is not easy
= May require embedding test code in application
= May require writing entire test applications

This looks like science!
= Hypothesis
= Experimental design
= Measurement
= Analysis

24

15-410, F'11

Debugging Suggestions

Move beyond “plot summaries™
= “My program dies”
= “My program dies with a segmentation fault”

= “My program dies with a segmentation fault in xxx()”
= That one is getting cl/oser, but...

Deepen your level of detail

= What was your story of hope, in detail?
= What parts of your story already happened?

25

15-410, F'11

Measurement Techniques

“Obvious”
= printf()
= single-step the program

Moving beyond the obvious
= Know your debugger
= breakpoints, watchpoints

= Those pesky registers (in assembly code)
= The values should always make sense — all of them

Writing code
= Breakage of a complex data structure is, well complex

= Probably need code to check invariants
= Doing it by hand is fun at most once

26 15-410, F'11

27

Record-Keeping

While you're working
= Keep a “bug diary”
= What you've tried
= What you've learned
= What you don't know how to measure
= What results are confusing
= What to try next

After you find the bug
= Keep a “bug diary”
= Last week | found an xxx bug
= This week | found an xxx bug
= Maybe | should check for xxx bugs when | run into trouble
= This is part of the “Personal Software Process” (PSP)

15-410, F'11

Asking for Help

“Plot summary” is not enough

= We probaby have no idea what's wrong
- Really!

You should always have a measurement plan

= What is the next thing to measure?
= How would | measure it?

You may reach the end of your rope

= Some things are genuinely tricky to debug
= This is a good learning experience

28

15-410, F'11

29

Asking for Help

When are you ready to ask for help?

= You have a long, detailed story — this is critical!!!

= “Story” often needs one or two pictures
= Parts of the story are clearly happening

= You have straightforward evidence, you are confident
= You have a measurement problem

= Too many things to measure?

= No idea how to measure one complicated thing?

= Measurement results “make no sense”?

15-410, F'11

Summary

Debugging is about reconciling two stories

= “Plot summaries” aren't stories (you must zoom in)

= “If you don't know where you are going, you will wind up
somewhere else.” — Yogi Berra

Measure multiple things, use multiple mechanisms
You should “always” have a next measurement target
When you ask for help, bring a long story

= ...which you will naturally be an expert on the first part of

30 15-410, F'11

