
Identifying Brute Force Host Access Attempts

Joe McManus, joe@inotion.com
Aaron Shelmire, shelmire@psc.edu

December 5, 2008

Introduction
In our research we have studied the flow of traffic in an attempt to identify typical attack
patterns, the successful attacks, and the resulting behavior of the hosts that have been
attacked.

Many studies have performed work on vertical-scans and horizontal-scans. This sort of
scanning activity focuses on port-scanning although using different methods. A vertical
scan will scan several ports on a single host and a horizontal scan would be scanning one
port on many hosts. Our study is focusing on the actions that occur when the service has
already been found to exist. At this point the attacker will either try to exploit a known
vulnerability in the protocol, or will attempt to gain access through poorly-protected
account credentials.

We have focused on the following port/protocol pairs:
• 22/ssh
• 23/telnet
• 143,220,585,993/imap

These ports have been studied as the services that run on them require
username/password authentication and due to their popularity.

Attack Methods
Our study focuses on two similar attack methodologies. We are interested in finding
“brute force” password attacks. Password guessing attacks consist of two kinds random
character and dictionary attacks. Dictionary attacks are a simple attack which attempt to
gain access to a system through combinations of well known usernames passwords
(root/toor, guest/guest). Brute force attacks will use random characters for passwords,
typically with a list of known user accounts in an attempt to exhaust all the possible
passwords the user might have.

Dictionary Attacks
Dictionary Attacks consist of connecting to a service and attempting common usernames
and passwords. Attackers attempt to guess usernames based on common service accounts
e.g. apache, mysql, oracle, root, etc. These accounts are often configured as part of a base
unix or linux install or installed by administrators in an attempt to trouble shoot a service.
Additionally attackers will attempt common account usernames such as john, jsmith,
johnsmith as is common with how spam addresses are generated.

mailto:joe@inotion.com
mailto:shelmire@psc.edu

Often times after an account is set up an administrator may set the username and
password to be the same, or based on a dictionary word. These accounts and passwords
are well known to attackers, and are often employed in Password Guessing attacks.

These attacks follow a known pattern, and are easy to spot through system logs. The
attackers have lists of account names with corresponding passwords. A program then
iterates through the list trying each one of these account/password combinations. This
behavior will result in many connections. The vast majority of these attempts will fail.
Password Guessing attempts may be identified by looking for many repetitions of the
normal traffic patterns for failed authentication attempts between a pair of hosts.

Brute Force Attacks
Brute Force attacks are very similar to Dictionary attacks, although they differ in a few
important ways.

Brute Force attacks also focus on services that require presenting an account identifier
and an associated credential. These attacks often use the same username and password
based credentials that are used in Password Guessing attacks, although these attacks are
not limited to passwords and are often used against cryptographically generated
credentials.

Brute Force attacks are typically performed against known account names. Instead of
using only commonly used passwords, brute force attacks will try many combinations, in
an attempt to guess all possible combinations.

From the perspective of network flow data the attacks look the same. As with Password
Guessing attacks, Brute Force attacks have many failures and can be identified by
looking for repeated traffic of failure attempts.

Typical brute force attempts begin with a scan of a hosts looking for open ports. After
these ports are discovered a scan may come from the scanning host. However firewall
techniques like those listed above will often block these attempts. The attackers will
sometimes scan with one host and launch the brute force attack with another. This
complicates attacker discovery in flow data as you cannot assume every scanner will
launch a brute force attack.

A Case for Flow Data
As stated before we are studying the attempts of attackers to gain access to services
through brute-force and password-guessing attacks. These attacks are easy to identify
through system log files, but it is often hard to centralize the collection of all log files in
an organization. Many system administrators may build new computers and simply not
configure the log file mechanisms to send these messages to the central location. Other
times a user, perhaps a visiting employee from a partner company, may bring in a laptop
to use on the organizations network.

Network flow data is much easier for an organizations staff to control. There are a finite
amount of well-known entry/exit points for the networks under an organization’s assets.
If a way to identify these attacks could utilize this flow data were to be created, it could
ease the administrative burden of the organization.

However, there are well known patterns that allow identification of brute-force and
password guessing attacks through log analysis. With log analysis a password guessing
attack is typified by a few attempts at one username, followed by a few attempts at
another username. The password guessing attack will have many usernames that are not
valid. A brute-force attack will focus on a few usernames, and will have many attempts
against those usernames.

This differs from the view of the attacks seen with flow data. Still the brute-force and
password guessing attacks have certain characteristics that allow identification from the
flow data alone. These characteristics will affect the way the flow looks. In both cases the
two types of attacks will have the same appearance through the flow data. Both forms of
attack are typified by many failed authentication attempts. In some instances a successful
authentication attempt will occur. The exact details of how this view of the flow will
change are determined by the protocol, but the general concept is the same.

There are many open source plug-ins for host based firewalls such as IP Tables that will
lock out a system after multiple session attempts on connections to port 22/ssh from the
same IP address over a short period of time. Flow analysis helps to pick up these attempts
as we can look over long periods of time to determine if a host is attempting to
compromise a system.

Protocol Behavior
While all three protocols require authentication through the presentation of account
identifiers and secret credentials, each has slightly different behavior. The differentiation
of these behaviors is described through the protocol specification.

SSH brute-force/password-guessing attempts
The Secure Shell (SSH) protocol is the most common method of allowing remote shell
based access to systems. SSH is a protocol that utilizes encryption upon the network
traffic. The encrypted data makes the traffic hard to analyze with traditional Network
Intrusion Detection Systems, as the content portion of the packets is rendered useless.

SSH servers have some characteristics that ease network flow analysis. Most SSH servers
only allow a finite amount of password attempts before dropping the network connection
requiring an attacker to re-establish the connection, meaning a new flow will be
established. The default configuration for SSH servers allows only 5 attempts before
dropping the connection.

A valid SSH connection with authentication will require more than 14 packets. The first 3
packets are the typical 3-way handshake of SYN, SYN-ACK, ACK. Following this each
side will send an identification banner resulting in packets 4 and 5. At a minimum each
side will then send a packet in an attempt to negotiate the encryption algorithm to be used
bringing the total number of packets to 7. After the encryption algorithm has been
negotiated an encryption key must be generated by the SSH_MSG_KEXINIT packets
from each side resulting in a minimum total of 9 packets. The server and client must
agree upon the keys, and will then generate the actual symmetric keys to use for the
session exchanging them with the SSH_MSG_NEWKEYS packets, adding another 2
packets for a minimum total of 11. It’s at this point that the client requests an SSH service
via the SSH_MSG_SERVICE_REQUEST packet. If the client receives a
SSH_MSG_SERVICE_ACCEPT packet from the server the connection will continue.
This brings the total number of packets to 13, and allows the SSH Authentication
protocol to start. [2]

The SSH Authentication Protocol will begin with the server sending an
SSH_USERAUTH_REQUEST. If we assume the first of these packets will be using the
service_name of “password” the client can finally respond with a password string. Finally
the SSH server would respond with either a SSH_MSG_USERAUTH_SUCCESS or
SSH_MSG_USERAUTH_FAILURE packet. Before sending that final packet, the
minimum number of packets having traversed between the client and server numbers 15.
[1]

A network flow is typically thought of as only one side of the total network connection,
resulting in a minimum of 7 packets as part of a valid flow in which a password has been
sent. In actuality there will be more than 7 packets per side for a single authentication
attempt. These other packets include packets such as
SSH2_MSG_KEX_DH_GEX_REQUEST(1024<1024<8192),
SSH2_MSG_KEX_DH_GEX_INIT and SSH2_MSG_KEX_DH_GEX_REPLY.

Each password attempt will be sent as a separate packet, with a corresponding failure or
success notification received from the server. Due to the characteristic of many failures,
the SSH server will reset the connection more often than establishing a successful
authenticated connection. Since there will be a small amount of password attempts the
flows will not require many packets. Assuming that most SSH servers allow a less than
10 password attempts this type of traffic will take less than 30 packets per flow. These
characteristics will result in many flows originating from client hosts attempting to brute
force the servers. Additionally, because the amount of attempted connections will remain
static, the many flows associated with a client-server pair will be approximately the same
length in bytes.

Most SSH traffic is highly user driven. This means that the traffic will behave in a very
fluid manner, varying in packet size over time. Traffic that has a constant rate is more
indicative of a mechanical process, which would not be user driven. User driven traffic
will also have some gaps where only a few packets may be sent.

One conflict that presents itself is the case of SCP connections with small files. This
traffic will actually be very different from the authentication attempts. SCP traffic will
result in packets approaching the Maximum Transmission Unit (MTU). The MTU of this
traffic will either be 1500 bytes or 9000 bytes, both of which are much larger than any
password attempts that would be found.

This allows us to create a prototype for SSH brute-force and password guessing attacks.
Client-Server pairs engaging in this behavior will have many flows of a few packets (less
than 30), with a small amount of bytes being transmitted.

IMAP brute-force/password-guessing attempts
The IMAP protocol is a very popular protocol in use to read corporate email. It began use
as an unencrypted protocol, but has more recently been used in an TLS encrypted form.
This also makes the traffic generated hard to profile by deep-packet inspection Intrusion
Detection Systems.

Popular IMAP clients usually only allow a few password attempts before closing the
network connection. An attacker would typically use their own purpose built client for
these attacks. These clients would not reset the connection. It may be possible to tune an
IMAP server to timeout after a predetermined amount of authentication attempts, but the
default seems to not utilize this feature. Our testing showed that a TLS encrypted IMAP
flow from a client to a server requires a minimum of 9 packets to instantiate the session,
and a following 2 packets to complete a LOGIN attempt that has failed [See Appendix 1].

From testing done by us, we have noticed that typical IMAP clients have a very typical
behavior. A typical IMAP client will begin with a flow of many packets. This will
correspond with the initial authentication attempts, and then the retrieval of the mailbox
from the server. After this initial heavy flow, there will be a lull in traffic. After a time
period, the client will again check the mailbox, resulting in another flurry of packets 10
or more packets. This will vary depending upon how much mail has been sent to the
inbox, but the time period will be static. Typical time periods seem to be 1 minute. This
will result in burst-type traffic.

A brute-force or password guessing attempt will exhibit different traffic patterns. The
flow of traffic will remain relatively constant, with either a few packets sent every few
seconds or a constant stream of many packets being sent. This is indicative of a
mechanized process. However, all IMAP servers are mechanized processes. The
difference is in how most mail clients are configured. They will typically have flows that
have bursty traffic. These bursts will occur every time the client checks for more
messages. Typically a pause for a few minutes will occur, followed by a lot of traffic as
opposed to the brute-force or password guessing programs constant stream of packets.
Additionally the size of the packets in the traffic of brute-force and password guessing

programs will remain approximately constant, and will be smaller in size since only a few
bytes will be required for the IMAP protocol.

Telnet brute-force/password-guessing attempts
Our third protocol, Telnet, provides an unencrypted login directly to the command line
shells. At one time Telnet occupied the space that SSH currently does. However, due to
the unencrypted data flow, many organizations abandoned the use of Telnet.

Traditional Telnet connections are the perfect candidate for deep-packet inspection
Intrusion Detection Systems. More recent versions of Telnet have been made using
encryption schemes such as Kerberos, removing the usefulness of deep-packet inspection.

The Telnet protocol provides a unique challenge for analysis via network flow data. A
Telnet connection stays open while the authentication attempts are made. The server may
be configured to only allow a certain amount of authentication attempts, but the server
will typically cycle within the network connection, not requiring the client to re-establish
the connection.

Contrasting a typical Telnet session with a brute-force or password-guessing session may
be the only manner in which to identify such attacks. This still proves to be quite
challenging. A typical Telnet session will be user driven. This would result in an initial
burst of activity, followed by a constant but varying amount of activity. Brute-force and
password-guessing attacks will result in a stream of activity at a nearly constant rate.

Our Findings
We have already performed a thorough analysis of anonymized traffic for 20 days in the
fall of 2008 involving the IMAP and SSH protocols. Analysis of the Telnet protocol was
only touched on. Our models have had to vary considerably since the traffic is sampled at
the very low rate of 1 out of every 100 packets. In addition to the sampling rate, the
length of each flow is 60 seconds.

IMAP
With the IMAP traffic we have initially filtered based upon source and destination IP-
address pairs. We immediately drop all pairs that have less than 5 flows, as it is our
experience that a brute force or password guessing attack will last significantly longer
than 5 minutes. Each of those source and destination IPs are added to a list, and then used
as criteria for more filtering.

Due to the sampling characteristics of our data, the flows may have gaps were traffic is
not seen by the sensor for a few minutes, yet if we weren’t sampling the packets would
appear and generate a flow for that time period. It is because of this characteristic that we
drop all host/destination IP pairs that have gaps of more than 10 minutes. This is to allow

the sensor to miss the packets for 10-minutes of time. At this point we may still have
traffic from hosts that check mail in a time-span of less than 10 minutes.

The next criteria we use to drop packets is based upon the difference in the amount of
packets between flows. If we have more than 3 flows that vary by more than 20 packets
we drop the source/destination pair from consideration.

We next sum the total number of packets seen by the filter. A brute-force or password
guessing attack will generate a fair amount of traffic, more than likely more than 6000
packets. If this sum is less than 60 packets at the 1 out of 100 sampling rate, we drop the
source/destination pair from consideration.

Then we look at the duration times in the flow records. The IMAP protocol returns from
a failed authorization attempt very quickly. This allows the brute-force/password
guessing process to send a lot of traffic, resulting in the sensor catching many packets and
enabling it to generate duration timings. Most of the flows from these automated
processes will last for the entire duration of our flow time(60 seconds). Due to this
behavior we drop source/destination pairs that have many flows lasting less than 20
seconds.

Finally we check the average byte count of the flows. Sending simple LOGIN command
with a username and password does not require many bytes. If the average byte count is
above 200 bytes, we drop the source and destination pair from consideration.

In the flow data that we have this leaves us with a small list of source/destination IP pairs
to check for each day.

 …

IMAP Flows

Source IP
/Destination IP
pair

Source IP
/Destination IP
pair

Source IP
/Destination IP
pair

Source IP
/Destination IP
pair

> 5
Packets

Not a Scanner

> 500
bytes

Time Gap
< 10m

 Packet
Count > 20
Packets

Scanner

Avg Packet
Count ± 20

 Avg Bytes
< 200

 Duration
> 20s

Of these scanning hosts none of them had any data to let us believe they had been
compromised. However this data shows that the anonymized traffic that is 97.224.135
should be blocked at your perimiter.

SSH
Much of the analysis performed on the IMAP protocol translated to the SSH protocol. In
both instances you are looking for a mechanized process that is not typical of the traffic
associated with normal use of the protocol. We filtered each flow based upon source and
destination IP address. We also immediately dropped all source and destination IPs that
had less than 5 flow records.

The majority of traffic that appears in brute force/password guessing attacks upon SSH,
most traffic will be authentication attempts. The authentication attempt packets will be
much smaller than typical traffic. Our first instance of filtering utilizes this characteristic
to remove source and destination IP pairs that have average byte counts above 500.

 …

SSH Flows

Source IP
/Destination IP
pair

Source IP
/Destination IP
pair

Source IP
/Destination IP
pair

Source IP
/Destination IP
pair

More
Than 5
Packets

Not a Scanner

More than
500 bytes

Avg Time Gap
Less than
10m

Avg Packet
Count ± 20
Packets

Scanner

A mechanized brute-force/password guessing attack will be mechanized with a nearly
constant rate of data transmission. This will result in flows with very little gaps. We next
remove source/destination IP pairs that have gaps of 10 minutes or more between flows
over 24 hours. We also remove flows that have a difference of more than 20 packets
between flows.

The SSH protocol has a much slower authentication process than IMAP, resulting in less
packets sent over 60 seconds. This aspect along with the 1 out of 100 sampling rate
makes analysis incredibly difficult. The sensor usually only catches 1 packet per flow,
and sometimes misses a source/destination pairs flow for that minute, even when there
has been traffic. Having a smaller sampling rate and a longer flow length would enable
much more accurate analysis of the data.

Telnet
We believe the same methods of discovery as listed above can be used to
determine telnet attacks. We need to continue our work in this area but do
not foresee any problems. We have done some initial work which shows that
telnet scanning is more popular than imap scanning. However no further
work was completed.

Conclusion

The IMAP and telnet analysis showed no hosts compromised. The SSH analysis showed
that 2 hosts communicated back to the scanning hosts more than the minimum number of
packets. However with sampled data we have a problem of not seeing the entire
conversation between attacker and target.

What we would like to do going further would be to analyze the traffic of the
compromised hosts after the compromise has happened. It would be interesting to see if

they have become scanning hosts, used as malware hosts or bots for spam. To then study
the traffic from attacked hosts and automate the process so that when hosts are detected
that have been compromised alerts are sent off. Traffic is automatically studied and
plugins for firewall scripts like the ones mentioned above could be developed to drop the
machine off the network.

Appendix 1

The following are the results of watching the client side communications through
tcpdump while connecting to a TLS enabled IMAP server.

Tcpdump

tcpdump -vvv -i en1 dst host 192.168.66.176

tcpdump: listening on en1, link-type EN10MB (Ethernet), capture size 96 bytes

11:44:19.163400 IP (tos 0x0, ttl 64, id 29977, offset 0, flags [DF], proto TCP (6), length
64) 10.100.101.138.56079 > 192.168.66.176.imaps: S, cksum 0xe262 (correct),
3173928557:3173928557(0) win 65535 <mss 1460,nop,wscale 3,nop,nop,timestamp
148516321 0,sackOK,eol>

11:44:19.182675 IP (tos 0x0, ttl 64, id 14554, offset 0, flags [DF], proto TCP (6), length
52) 10.100.101.138.56079 > 192.168.66.176.imaps: ., cksum 0x514c (correct),
3173928558:3173928558(0) ack 1371966505 win 65535 <nop,nop,timestamp
148516321 2689487509>

11:44:19.247195 IP (tos 0x0, ttl 64, id 8500, offset 0, flags [DF], proto TCP (6), length
170) 10.100.101.138.56079 > 192.68.66.176.imaps: P 0:118(118) ack 1 win 65535
<nop,nop,timestamp 148516322 2689487509>

11:44:19.268360 IP (tos 0x0, ttl 64, id 12148, offset 0, flags [DF], proto TCP (6), length
52) 10.100.101.138.56079 > 192.168.66.176.imaps: ., cksum 0x4748 (correct),
118:118(0) ack 2509 win 65389 <nop,nop,timestamp 148516322 2689487592>

11:44:19.333460 IP (tos 0x0, ttl 64, id 19257, offset 0, flags [DF], proto TCP (6), length
378) 10.100.101.138.56079 > 192.168.66.176.imaps: P 118:444(326) ack 2509 win
65535 <nop,nop,timestamp 148516323 2689487592>

11:44:19.377461 IP (tos 0x0, ttl 64, id 5422, offset 0, flags [DF], proto TCP (6), length
52) 10.100.101.138.56079 >192.168.66.176.imaps: ., cksum 0x44c4 (correct),
444:444(0) ack 2568 win 65535 <nop,nop,timestamp 148516323 2689487704>

11:44:19.395663 IP (tos 0x0, ttl 64, id 4103, offset 0, flags [DF], proto TCP (6), length
52) 10.100.101.138.56079 > 192.168.66.176.imaps: ., cksum 0x43dc (correct),
444:444(0) ack 2781 win 65535 <nop,nop,timestamp 148516323 2689487723>

At this point the initial TLS handshake has occurred. The next two packets are sent
when the “AAA Login username passwd” command is sent.

11:44:50.340356 IP (tos 0x0, ttl 64, id 25236, offset 0, flags [DF], proto TCP (6), length
142) 10.100.101.138.56079 > 192.168.66.176.imaps: P 444:534(90) ack 2781 win 65535
<nop,nop,timestamp 148516633 2689487723>

11:44:53.365874 IP (tos 0x0, ttl 64, id 27647, offset 0, flags [DF], proto TCP (6), length
52) 10.100.101.138.56079 > 192.168.66.176.imaps: ., cksum 0xbd30 (correct),
534:534(0) ack 2850 win 65535 <nop,nop,timestamp 148516663 2689521699>

The next 4 packets are the next two attempts.

11:45:19.628748 IP (tos 0x0, ttl 64, id 15313, offset 0, flags [DF], proto TCP (6), length
142) 10.100.101.138.56079 > pscuxb.psc.edu.imaps: P 534:624(90) ack 2850 win 65535
<nop,nop,timestamp 148516925 2689521699>

11:45:22.653593 IP (tos 0x0, ttl 64, id 32344, offset 0, flags [DF], proto TCP (6), length
52) 10.100.101.138.56079 > 192.168.66.176.imaps: ., cksum 0x48fd (correct),
624:624(0) ack 2919 win 65535 <nop,nop,timestamp 148516956 2689550994>

11:45:36.318361 IP (tos 0x0, ttl 64, id 4976, offset 0, flags [DF], proto TCP (6), length
142) 10.100.101.138.56079 > 192.168.66.176.imaps: P 624:714(90) ack 2919 win 65535
<nop,nop,timestamp 148517092 2689550994>

11:45:39.345954 IP (tos 0x0, ttl 64, id 43333, offset 0, flags [DF], proto TCP (6), length
52) 10.100.101.138.56079 > 192.168.66.176.imaps: ., cksum 0x0683 (correct),
714:714(0) ack 2988 win 65535 <nop,nop,timestamp 148517123 2689567686>

The next four packets are actually concerned with closing the connection when the 3
minute timeout is received.

11:48:39.342198 IP (tos 0x0, ttl 64, id 47886, offset 0, flags [DF], proto TCP (6), length
52) 10.100.101.138.56079 > 192.168.66.176.imaps: ., cksum 0x3fe7 (correct),
714:714(0) ack 3057 win 65535 <nop,nop,timestamp 148518922 2689747731>

11:48:39.343283 IP (tos 0x0, ttl 64, id 60412, offset 0, flags [DF], proto TCP (6), length
52) 10.100.101.138.56079 > 192.168.66.176.imaps: ., cksum 0x3fe5 (correct),
714:714(0) ack 3058 win 65535 <nop,nop,timestamp 148518922 2689747732>

11:48:39.358642 IP (tos 0x0, ttl 64, id 38801, offset 0, flags [DF], proto TCP (6), length
89) 10.100.101.138.56079 > 192.168.66.176.imaps: P 714:751(37) ack 3058 win 65535
<nop,nop,timestamp 148518922 2689747732>

11:48:39.358775 IP (tos 0x0, ttl 64, id 54495, offset 0, flags [DF], proto TCP (6), length
52) 10.100.101.138.56079 > 192.168.66.176.imaps: F, cksum 0x3fbf (correct),
751:751(0) ack 3058 win 65535 <nop,nop,timestamp 148518922 2689747732>

^C

17 packets captured

349 packets received by filter

0 packets dropped by kernel

Connection Commands

openssl s_client -connect 192.168.66.176:993

CONNECTED(00000003)

depth=2
/C=US/ST=Astate/L=City/O=Organization/OU=SomeBranchofOrg/CN
=Org CA Server

verify error:num=19:self signed certificate in certificate
chain

verify return:0

Certificate chain

 0
s:/C=US/ST=Astate/L=City/O=Organization/OU=SomeBranchofOrg/
CN =192.168.66.176

i:/C=US/ST=Astate/L=City/O=Organization/OU=SomeBranchofOrg/
CN=Org CA web 2

1
s:/C=US/ST=Astate/L=City/O=Organization/OU=SomeBranchofOrg/
CN=Org CA web 2

i:/C=US/ST=Astate/L=City/O=Organization/OU=SomeBranchofOrg/
CN=OrgRoot CA server 2

2
s:/C=US/ST=Astate/L=City/O=Organization/OU=SomeBranchofOrg/
CN=OrgRoot CA server 2

i:/C=US/ST=Astate/L=City/O=Organization/OU=SomeBranchofOrg/
CN=OrgRoot CA server 2

Server certificate

-----BEGIN CERTIFICATE-----

+hlfa8r52+u+gcYbgEHbqMNXq4oZuh7hifuRA/2ftqHTGzwkh9ohs7

-----END CERTIFICATE-----

subject=/C=US/ST=Astate/L=City/O=Organization/OU=SomeBranch
ofOrg/CN =192.168.66.176

issuer=/C=US/ST=Astate/L=City/O=Organization/OU=SomeBrancho
fOrg/CN=Org CA web 2

No client certificate CA names sent

SSL handshake has read 2567 bytes and written 444 bytes

New, TLSv1/SSLv3, Cipher is AES256-SHA

Server public key is 2048 bit

SSL-Session:

 Protocol : TLSv1

 Cipher : AES256-SHA

 Session-ID:

XXX

Session-ID-ctx:

 Master-Key: XXXXXXXXXXXXXXXXXXXXXXXXXXXXX

 Key-Arg : None

 Start Time: 1223912659

 Timeout : 300 (sec)

 Verify return code: 19 (self signed certificate in
certificate chain)

* OK [CAPABILITY IMAP4REV1 I18NLEVEL=1 LITERAL+ SASL-IR
LOGIN-REFERRALS AUTH=GSSAPI AUTH=PLAIN AUTH=LOGIN]
192.168.66.176 IMAP4rev1 2007b.404 at Mon, 13 Oct 2008
11:44:19 -0400 (EDT)

AAA Login username passwd

AAA NO Invalid login credentials

AAA Login username passwd

AAA NO Invalid login credentials

AAA Login username passwd

AAA NO Invalid login credentials

* BYE Autologout (idle for too long)

References

1, Ylonen, T. “The Secure Shell (SSH) Authentication Protocol”, Request for Comments:
4252, January 2006.

2. Ylonen, T. “The Secure Shell (SSH) Transport Layer Protocol”, Request for
Comments: 4253, January 2006.

3. Crispin, M “Internet Message Access Protocol - Version 4rev1”, Request for
Comments: 3501, March 2003

4. Newman, C “Using TLS with IMAP, POP3, and ACAP”, Request for Comments:
2595, June 1999

