Traffic Management Systems

An Impact Analyses

Shuchi Muley
Mark Allen

Contents

(o] o] 1=Y g Y = =T o =T o L S UPRPPUPPRNS 3
Yo Yo T o - [o] o I SRR SPR 3
Traffic MANAZEMENToiiiieiee et e e et e e e e eta e e e s bteeeesbaeeeeaataeeesstaeeeansteeesansaeeesastaeesans sesnns 3
e ol doTolo] l 2 F K ot TSP PSP RP PO PPRPT 4
File Transter PrOtOCO] (FTP) .uueii oottt ettt e e e ettt e e e e e e e eaabt e e e e e e e ensbaaeeeeeseessssbeseeeeessannenes 4
Hyper-Text Transfer ProtoCol (HTTP)ooo ettt ettt ettt e e e e tee e e e eara e e e eeateeeeebseeeseanaeaaaaes 5

) AT 1o 1T 0= 40 XU T [T TR TP 5

) 0T o110 = 4V e 1Yo TR PP 5
Data SEUS ittt e a e e e s s e e s saa s e e s eaes 5
INternet2 NETWOIrK STIUCTUIE ...oouiiieiee ettt sttt et e b e beerees 6

o 01V o= Y I I 1Yo 11 SRR 6
[T 4 Tor- | B IF= YoYU USSR 7

] 2(0) PP P PP PPN 7
DY I g]] TSRS 8
FTP ANGIYSES — “12” ..ttt ettt e et e e et e e e st e e e e ettt e e e b aee e e sbeeeeansbaee e nstaeeennbeeeeanbaeeeantaean bes 8
FTP ANAIYSES — “13” .ttt ettt e e e et e e e e et e e e e ebteeeesbaeeeeaataeeeeabtaeeeebaeeeeaataeeeaartaeeearanaaans 14
WD ANIYSES — U127 ... ettt e e e e e e et e e e e e e e e et —r e e e e e e e ————aaeaeeeaa bt taeaeeeeaaanrrraeeaeeeannnnens 18
WD ANIYSES — U137 . i e ——aeaeaeeeeanbaraeaeeeeaaanrrraaeaeeeanannnns 22
ANGIYSES SUMIMATY 1niviieeeiiiiee ettt e sttt e e sttt e ssbaeeessabaeesssbeeessasseeeesssseesassseeesssssaeesanssaeesssseaeesnssenessnnsenen bes 28
oY [<To1 a1 Fo 1 UL YRR 28
(0 0T =T o= TSR 28
FUBUIE WWOTK .ttt st st st st st e b et e b e s bt e s bt e sheesaeesanesmteeat seeenneennees 28

(000 s Lol [V T 1o L3 29

Problem Statement

In the busy world of the Internet, users are pretty much able to derive any content they can imagine.
With the limited amount of bandwidth available to ISPs, the growing concern they may have is regarding
controlling the traffic to make improvements for efficiency. This project will serve as the analysis of the
technical impacts of implementing a traffic management system.

Approach

Our data analysis will consist of generalizing and profiling the data. The following categories are
specifically what we’re interested in (all other traffic will be disregarded):

e FTP

e Web (HTTP/HTTPS)

e Streaming Audio

e Streaming Video

After categorizing the data, we will classify each type of data based on its legitimacy. The data will be
classified as either legitimate business traffic or non-legitimate traffic, based on the destination and type
of traffic. For instance, a user may be streaming video from a valid news source (cnn.com) which is
legitimate traffic. Alternatively, another user may be streaming video from an illegitimate source, such
as youtube.com. Therefore, we will have categories of data divided by subsets of classifications.

e FTP
0 Legitimate FTP
0 lllegitimate FTP
e Web (HTTP/HTTPS)
0 Legitimate Web Traffic
0 lllegitimate Web Traffic
e Streaming Audio
0 Legitimate Streaming Audio
0 lllegitimate Streaming Audio
e Streaming Video
0 Legitimate Streaming Video
0 lllegitimate Streaming Video

After the classification, we will determine the impacts to the profiled data of multiple traffic
management providers.

Traffic Management
The first traffic management software we will use is Zeus Technology’s Zeus Extensible Traffic Manager
(ZXTM). http://www.zeus.com/products/zxtm/index.html

The second traffic management software is Secure Computing’s Secure Web Smart Filter.
http://www.securecomputing.com/index.cfm?skey=85

http://www.zeus.com/products/zxtm/index.html
http://www.securecomputing.com/index.cfm?skey=85

The third traffic management solution is ARA Network’s Traffic Monitor.
http://www.aranetworks.com/solutions/traffic monitor

Protocol Basics

File Transfer Protocol (FTP)

File Transfer Protocol, or FTP, is simply used for transferring files between a client and server. All
communication takes place over TCP. The server is the host listening on port 21 for control messages.
The client initiates a connection over an ephemeral port decided on by the client based on its operating
system and other factors. However, the data transfers take place over port 20. The term uploading
refers to when a client sends a file to the server, while downloading refers to when a client receives a
file from the server. In active FTP, the client opens a dynamic port, sends it to the server, and waits.
The server then initiates the data connection over port 20 on the server and the dynamic port for the
client. In passive mode, the server opens a dynamic port, sends it to the client, and waits. Here, the
client binds to the dynamic port. For our purposes, we will only look at active mode FTP.

Control Port:21

>

M Server

downioad
upload
Data Port:20

Ephameral Port: %o

Client

http://www.aranetworks.com/solutions/traffic_monitor

Hyper-Text Transfer Protocol (HTTP)

Hyper-Text Transfer Protocol is the protocol used by web hosts to serve resources, such as web pages
and other content, to clients. HTTP is a connection-oriented protocol (TCP) and, by default, takes place
over port 80. The client initiating the connection will use an ephemeral port to send the packet, but will
bind to the server’s listening port. Port 443 is used for HTTPS, which is Secure HTTP or HTTP with an
encryption key for secure communication. The encryption used is typically a Secure Socket Layer (SSL)
key, but sometimes Transport Layer Security (TLS) is used. In HTTP, the client performs an action against
a resource on the server. The action, or method, can be one of the eight defined in RFC 2616: HEAD,
GET, POST, PUT, DELETE, TRACE, OPTIONS, and CONNECT.

Listening Part: 80

Server

quest (METHOD)
Status/Data

Ephemeral Port: xoox

Client

Streaming Audio
Research incomplete at time of report.

Streaming Video
Research incomplete at time of report.

Data Sets

For our analysis of the impacts of a traffic management system, we will be using two data sets from
DatCat from the “Day In The Life”, or DITL, Internet Project. Both are Internet2 traffic collected from the
Abilene Network Juniper T-640 routers. Both data sets are NetFlow v5 data, sampled at 1/100. All non-
multicast (IPv4) addresses are anonymized by setting the last 11 bits to zero. The first data set, was
collected from January 9th, 2007 00:00 UTC to January 11", 2007 00:00 UTC (2 days). The second data
set was collected from March 19", 2008 00:00 UTC to March 20™, 2008 00:00 UTC (1 day).

http://www.datcat.org/

Internet2 Network Structure

The Internet2 structure consists of many partners which connect to each other over extremely high
speed connections, allowing their users to run demanding applications to work together. The
connections are only used to connect to each other and each partner has their own separate Internet
connection. Because of this, one should be able to see duplicate (however juxtaposed) entries when
analyzing the data traffic. This means one should be able to see a source IP as a destination IP in
another set of traffic. However, the assumption for this rule is that there are full network captures.
However, this may not be the case with the data that was obtained; the data was sampled at a rate of
1/100. With this sampling rate, we only get one out of every 100 flows that pass through the router.
Since each router is also sampling independently of each other, meaning packet travel time and time set
on the router were ignored, finding the same packets reversed somewhere else will prove to be quite
difficult. Anonymization will also play an important role here. Since every IP address was anonymized
by stripping the last eleven bits and setting them to zero, we will be unable to determine, or essentially
show definitive proof, that two packets talking to the same host coming from the same subnet are from
the same source. However, this is an assumption we have to take; otherwise, the data isn’t useful.

Physical Layout

The physical layout of the Internet2 network is a collection of several, logically different networks. The
networks are advanced IP networks, dynamic Circuit networks, and core optical networks. The map
below illustrates where the partners are physically located.

| .-
Internet 2-Network

- . .
cwena | T.p' INDIANA UNTVERSITY infinera | EJgniper Level] (3)
. Seattic WA
R
! b
Lo
| Fertland OR \‘ SO,
\ .
\ gy WY
J & Suisz 1D ___.---'E;:u;ﬁf--i Bastor Ma
| Tengsta C& i AW attai Y 3 IROX
| o | 7 ow Tork Y
i \.\"W- UT Rawiins WY G"f:zﬂ e T ,)_, CENIC
. t— s = , i
P e gl 5, Heartwall HE TN NE 7N " Prtsburgh P Philideiphia PA B Dmnlf‘?P e
A0 Reno N e P ..] Drexal University
% San Frascice CA B Lty LY _ Y Fd ' imlanagaks IN e GPN
(= Danwer CO L ¥ / 8 Washingion OC i -
| Senmywala’Ch R ¥ i it Indiana GigaPoP
| I : = Lot M0 Y | =% kol
D cnoear i, |/ Loutzwtna kY a LEARM
n Lais / / b
\ S Msten v / i LOMI
. 7
), Lo AsgulesiTa 4 Tua 0% 8 Nashwilla TH - Charloss M, MAGF1
‘\i Prosnty AZ AIbuguET e NM f | ~ MAX
T » ! : | P MCNC
", FRancha de & Fa MM e, | - \"-h'i'ﬂl-"-ﬂ Merit Matwark
LY ¥ - t | -~ % X
»- ! - ‘ i
- - \ MREN
Tucmn - —_) s T ‘\ Brmigumal ;:'1 NOX
N\g Vaknting T ; okl 11 . Jacasomiia FL o NYSERMet
- Pa AT —a— = Oregon Gigapop
@ loLemer? Regene ration e ADIoE ShE . -"-"f“_"’f“_‘?‘.,z % e R L aRdius FL | [Pacific Northwest GigaPoP
@ Inberned? Redundant Dropd Add She San Antosig ¢ YR T TN i w EIO:.': itw of Memphi
' p L oo = nIversity Bmphis
et Dmpiach o = University of Mew Mexico
' Istemet? Optical Seitehieg Hode © USF/FLR
B @ interned? Router Sie \l University of Utah/UEN

Figure 1 - Internet2 Network Physical Layout (http://www.internet2.edu/pubs/networkmap.pdf)

http://www.internet2.edu/pubs/networkmap.pdf

The image above shows many cities that contain partners for Internet2. The cities that we actually had
in our data sets were Atlanta, GA; Chicago, IL; Houston, TX; Kansas City, MO; Los Angeles, CA; New York,
NY; and Salt Lake City, UT.

Logical Layout
The image below is a logical representation of the Internet2 layout. As mention, each site has it’s own
Internet connection, but connects to each other over the Internet2 routers. This creates a ring of sites

‘\ p
} /,/\//
@mmﬂ, GhA ,vf Salt Lake City, UT

%

- //‘ \/

e

D
N
Chicago, IL
A &
/ \/ Kansas City, MO
‘ ‘t tA
3ROX

One partner is especially noteworthy for the purposes of this project. 3ROX, or Three Rivers Optical
Exchange, is based at Carnegie Mellon University. The primary focus of the Exchange is to provide high-
capacity, cost effective network connectivity to the university, local educational institutions,
government, and business in Western Pennsylvania and parts of West Virginia. Some of the more well-
known sites, besides CMU, include the Pennsylvania State University, Pittsburgh Supercomputing
Center, the University of Pittsburgh, and West Virginia University. This partner is not in our data, but
since the author’s attend Carnegie Mellon University, they felt it was worth mentioning.

Data Analyses

In analyzing the data, we split the data based on file name, which was, in essence, split by time. Half of
the files contained a 12, for time 12:00:00, and the rest contained 13, for time 13:00:00. In retrospect,
we should have split the analyses by city.

FTP Analyses - “12”

First, we took filtered out all “pass” files looking for any TCP connections that took place over port 21,
the default port for FTP control traffic:

Ill

rwfilter pass-*12.rw --pass=12.ftp.rw --aport=21 --proto=6 --print-vol --print-file

In order to figure out the major conversations, we had to sort. We can sort either by bytes or by

packets. First, we chose to sort by bytes:
rwsort 12.ftp.rw --out=12.ftp.rw.SORTED --fields=bytes

In order to view the data, we cut it using rwcut. We only wanted the major players, so we added the
“tail” to get the bottom 10 (which is actually the top 10 based on bytes):

rwcut 12.ftp.rw.SORTED --fields=sip,sport,dip,dport,bytes,packets,stime,etime | tail

siP dIP sPort dPort Bytes |packets sTime eTime
163.221.8.0 21 193.233.8.0 50458 15000 10 2008/10/12T12:51:58.835 2008/10/12T12:52:33.402
163.221.8.0 21 193.233.8.0 50458 15000 10 2008/10/12712:51:54.361 2008/10/12T12:52:33.060
128.113.24.0 21 193.233.8.0 63181 15620 11 2008/10/12T12:52:19.249 2008/10/12T12:52:50.711
134.174.136.0| 41159 (221.140.64.0 21 15620 11 2008/10/12712:39:19.821 2008/10/12712:40:16.812
163.221.8.0 21 193.233.8.0 50458 16500 11 2008/10/12T712:52:26.856 2008/10/12T12:52:58.305
163.221.8.0 21 193.233.8.0 50458 16500 11 2008/10/12T12:52:07.962 2008/10/12T12:53:02.856
134.174.136.0| 41159 (221.140.64.0 21 17040 12 2008/10/12712:43:20.818 2008/10/12712:44:06.819
128.113.24.0 21 193.233.8.0 63181 19880 14 2008/10/12T12:07:21.382 2008/10/12T12:08:10.216
128.113.24.0 21 193.233.8.0 63181 26980 19 2008/10/12T12:50:31.535 2008/10/12712:51:16.384
128.113.24.0 21 193.233.8.0 63181 51120 36 2008/10/12T12:51:20.243 2008/10/12T712:52:18.567

We can see from the output that there is a major FTP conversation between 163.221.8.0, 128.113.24.0
and 192.233.8.0. At first, one might conclude, since we only have the first 21 bits and the data is
sampled, that there is no conclusive proof that the conversation is between two specific hosts; it may be
between multiple hosts on both sides. However, for the purposes of this paper, we will assume that it is
between two hosts, due in large part to the ephemeral port being the same, 50,458, and 63181 for the

duration of the resulting conversation. This large conversation made me wonder how long the
conversation occurred and the total bytes and packets.

rwfilter 12.ftp.rw --aport=21 --saddr=163.221.8.0 --daddr=193.233.8.0 --proto=6 --pass=12.ftp.largel.rw
rwfilter 12.ftp.rw --aport=21 --saddr=128.113.24.0 --daddr=193.233.8.0 --proto=6 --pass=12.ftp.large2.rw

This gives me a file containing only the FTP conversation between these two pair of 2 addresses. | then
want to output the information for easy sorting in Microsoft Excel:

rwcut 12.ftp.largel.rw --fields=sip,dip,sport,dport,packets,bytes,dur
Based on the output, | was able to obtain the following information:
File 1: IP: 163.221.8.0

Packets: 1300
Bytes: 350,019
Duration: 3 hours

rwcut 12.ftp.large2.rw --fields=sip,dip,sport,dport,packets,bytes,dur
File 2: 1P: 128.113.24.0

Packets: 789
Bytes: 457,940
Duration: 1.1 hours

The timing, bytes, and packets are random enough to suggest the source IP is sending a large file or set
of files over a long period of time to the destination IP. After running the following commands:

rwfilter pass*.12.rw --sadd=163.221.8.0 --daddr=193.233.8.0 --proto=6 --pass=stdout | rwcut --
fields=sip,dip,sport,dport,packets,bytes,dur

rwfilter pass*.12.rw --sadd=128.113.24.0 --daddr=193.233.8.0 --proto=6 --pass=stdout | rwcut --
fields=sip,dip,sport,dport,packets,bytes,dur

The output yielded the same results as when specifying any port as 21. This means the only 2
communication these two IP address was over FTP (aside from any web traffic).

Looking back at one of the previous results, we also see the following:

134.174.136.0| 41159 |221.140.64.0 21 15620 11 2008/10/12T712:39:19.821 2008/10/12T12:40:16.812

134.174.136.0| 41159 |221.140.64.0 21 17040 12 2008/10/12T12:43:20.818 2008/10/12T12:44:06.819

Since the previous conversation enveloped any further communication in this conversation, we decided

to take a second look.

rwsort 12.ftp.second.large.rw --fields=stime | rwcut --fields=sip,dip,sport,dport,packets,bytes,dur

The output:
sIP dIP sPort dPort packets bytes duration

134.174.136.0 221.140.64.0 (41159 21 4 5680 33.901
134.174.136.0 221.140.64.0 (41159 21 1 1420 0
134.174.136.0 221.140.64.0 (41159 21 9 12780 56.396
134.174.136.0 221.140.64.0 (41159 21 5 7100 35.866
134.174.136.0 | 221.140.64.0 41159 |21 2 2840 2.283
134.174.136.0 221.140.64.0 (41159 21 11 15620 56.991
134.174.136.0 221.140.64.0 {41159 21 1 1420 0
134.174.136.0 221.140.64.0 (41159 21 5 7100 31.892
134.174.136.0 221.140.64.0 {41159 21 6 8520 48.581
134.174.136.0 221.140.64.0 (41159 21 7 9940 24911
134.174.136.0 221.140.64.0 {41159 21 12 17040 46.001
134.174.136.0 221.140.64.0 (41159 21 1 1420 0
134.174.136.0 | 221.140.64.0 41159 |21 4 5680 29.327
134.174.136.0 221.140.64.0 (41159 21 9 12780 48.469
134.174.136.0 221.140.64.0 {41159 21 1 1420 0
134.174.136.0 221.140.64.0 (41159 21 9 12780 47.683
134.174.136.0 | 221.140.64.0 41159 |21 2 2840 29.811
134.174.136.0 221.140.64.0 (41159 21 7 9940 47.276
134.174.136.0 221.140.64.0 (41159 21 3 4260 14.677
134.174.136.0 221.140.64.0 (41159 21 5 7100 19.671
134.174.136.0 221.140.64.0 (41159 21 2 2840 6.819

134.174.136.0 221.140.64.0 41159 |21 8 11360 50.087
134.174.136.0 221.140.64.0 41159 |21 3 4260 41.518
134.174.136.0 221.140.64.0 41159 |21 2 2840 29.061
134.174.136.0 221.140.64.0 41159 |21 2 1460 1.826

All the packets are transferred over ephemeral port 41159. However, since the data stream for FTP

traffic runs over port 20, we need to analyze the data for port 20.

rwfilter pass-*12.rw --pass=12.port20.rw --aport=20 --proto=6 --print-vol --print-file

rwsort 12.port20.rw --out=12.port20.rw.SORTED --fields=bytes

rwcut 12.port20.rw.SORTED --fields=sip,sport,dip,dport,bytes,packets,stime,etime | tail

The output:

Sip Sport Dip Dport| Bytes | Packets Stime Etime
130.14.24.0| 20 140.109.56.0| 57952 (1227000| 818 |2008/10/12T12:25:42.156 | 2008/10/12712:26:41.809
130.14.24.0| 20 140.109.56.0(57952 (1227000| 839 |2008/10/12T12:46:42.130|2008/10/12712:47:41.808
130.14.24.0| 20 140.109.56.0(57952 (1272000| 848 |2008/10/12T12:27:42.037 | 2008/10/12712:28:41.796
130.14.24.0| 20 140.109.56.0| 57952 (1317000 878 |2008/10/12T12:05:41.068 |2008/10/12T12:06:40.829
130.14.24.0| 20 140.109.56.0 {57952 |1368000| 912 |2008/10/12712:40:42.056 | 2008/10/12712:41:41.701
130.14.24.0| 20 140.109.56.0| 57952 (1378500 919 [2008/10/12T12:43:42.098 |2008/10/12T12:44:41.402
130.14.24.0| 20 140.109.56.0| 57952 | 1416000 944 |2008/10/12T12:23:42.137 | 2008/10/12712:24:41.751
130.14.24.0| 20 140.109.56.0 | 57952 | 1419000 946 |2008/10/12T12:22:41.985 |2008/10/12T12:23:41.707
130.14.24.0| 20 140.109.56.0| 57952 | 1461000 974 |2008/10/12T12:04:41.053 |2008/10/12T712:05:40.783
130.14.24.0| 20 140.109.56.0 {57952 | 1479000 986 |2008/10/12712:06:41.031 | 2008/10/12712:07:40.765

Based on this output, we see one major file transfer conversation going on here. In order to get the full

details of the session though, we need to filter on the port 20 file for these two addresses:

rwfilter 12.port20.rw --saddr=130.14.24.0 --daddr=140.109.56.0 --pass=stdout | rwcut --
fields=sip,sport,dip,dport,bytes,packets,stime,etime

Output:

sIP sPort dIP dPort bytes packets sTime eTime
130.14.24.0 20 140.109.56.0 57942 1138500 759 | 2008/10/12T712:00:41.115 2008/10/12712:01:40.325
130.14.24.0 20 140.109.56.0 57942 913500 609 | 2008/10/12T12:01:43.017 2008/10/12712:02:41.734
130.14.24.0 20 140.109.56.0 57942 1141500 761 | 2008/10/12T712:02:41.104 2008/10/12T712:03:40.820
130.14.24.0 20 140.109.56.0 57942 1111500 741 | 2008/10/12T712:03:41.122 2008/10/12T712:04:40.653
130.14.24.0 20 140.109.56.0 57942 1461000 974 | 2008/10/12712:04:41.053 2008/10/12T712:05:40.783
130.14.24.0 20 140.109.56.0 57942 1317000 878 | 2008/10/12712:05:41.068 2008/10/12T712:06:40.829
130.14.24.0 20 140.109.56.0 57942 1479000 986 | 2008/10/12712:06:41.031 2008/10/12T712:07:40.765
130.14.24.0 20 140.109.56.0 57942 1063500 709 | 2008/10/12T712:07:42.048 2008/10/12T712:08:41.659
130.14.24.0 20 140.109.56.0 57942 796500 531 | 2008/10/12T712:08:41.083 2008/10/12T712:09:22.005
130.14.24.0 20 140.109.56.0 57951 118500 79 | 2008/10/12T712:09:26.863 2008/10/12T712:09:40.729
130.14.24.0 20 140.109.56.0 57951 870000 580 | 2008/10/12T712:09:42.029 2008/10/12712:10:38.249
130.14.24.0 20 140.109.56.0 57951 652500 435 | 2008/10/12712:10:44.825 2008/10/12712:11:38.482
130.14.24.0 20 140.109.56.0 57952 3000 2 | 2008/10/12T12:11:41.591 2008/10/12712:11:41.591
130.14.24.0 20 140.109.56.0 57952 789000 526 | 2008/10/12T712:11:42.015 2008/10/12712:12:41.734
130.14.24.0 20 140.109.56.0 57952 490500 327 | 2008/10/12T712:12:42.012 2008/10/12T712:13:41.549
130.14.24.0 20 140.109.56.0 57952 420000 280 | 2008/10/12T712:13:42.128 2008/10/12712:14:40.915
130.14.24.0 20 140.109.56.0 57952 193500 129 | 2008/10/12T12:14:42.112 2008/10/12T712:15:40.530
130.14.24.0 20 140.109.56.0 57952 213000 142 | 2008/10/12T12:15:43.236 2008/10/12712:16:41.793
130.14.24.0 20 140.109.56.0 57952 370500 247 | 2008/10/12T712:16:42.202 2008/10/12T712:17:41.582
130.14.24.0 20 140.109.56.0 57952 291000 194 | 2008/10/12T12:17:41.315 2008/10/12712:18:39.712
130.14.24.0 20 140.109.56.0 57952 516000 344 | 2008/10/12T712:18:41.943 2008/10/12712:19:41.702
130.14.24.0 20 140.109.56.0 57952 747000 498 | 2008/10/12712:19:42.596 2008/10/12712:20:41.641
130.14.24.0 20 140.109.56.0 57952 672000 448 | 2008/10/12712:20:42.046 2008/10/12712:21:41.797
130.14.24.0 20 140.109.56.0 57952 1144500 763 | 2008/10/12T712:21:42.033 2008/10/12712:22:41.810
130.14.24.0 20 140.109.56.0 57952 1419000 946 | 2008/10/12712:22:41.985 2008/10/12T712:23:41.707
130.14.24.0 20 140.109.56.0 57952 1416000 944 | 2008/10/12712:23:42.137 2008/10/12712:24:41.751
130.14.24.0 20 140.109.56.0 57952 817500 545 | 2008/10/12T12:24:42.075 2008/10/12712:25:41.736
130.14.24.0 20 140.109.56.0 57952 1227000 818 | 2008/10/12712:25:42.156 2008/10/12T712:26:41.809
130.14.24.0 20 140.109.56.0 57952 342000 228 | 2008/10/12T712:26:42.071 2008/10/12T712:26:56.805
130.14.24.0 20 140.109.56.0 57966 654000 436 | 2008/10/12712:26:59.217 2008/10/12712:27:41.817
130.14.24.0 20 140.109.56.0 57966 1272000 848 | 2008/10/12712:27:42.037 2008/10/12712:28:41.796
130.14.24.0 20 140.109.56.0 57966 1044000 696 | 2008/10/12T12:28:42.083 2008/10/12712:29:41.760
130.14.24.0 20 140.109.56.0 57966 1198500 799 | 2008/10/12T12:29:42.362 2008/10/12T712:30:41.702
130.14.24.0 20 140.109.56.0 57966 690000 460 | 2008/10/12712:30:42.047 2008/10/12712:31:41.617
130.14.24.0 20 140.109.56.0 57966 669000 446 | 2008/10/12712:31:42.070 2008/10/12T712:32:41.762
130.14.24.0 20 140.109.56.0 57966 849000 566 | 2008/10/12T12:32:42.136 2008/10/12712:33:41.438
130.14.24.0 20 140.109.56.0 57966 759000 506 | 2008/10/12T12:33:43.323 2008/10/12T12:34:41.745
130.14.24.0 20 140.109.56.0 57966 1050000 700 | 2008/10/12T12:34:42.207 2008/10/12712:35:41.779
130.14.24.0 20 140.109.56.0 57966 384000 256 | 2008/10/12T12:35:42.061 2008/10/12T712:36:09.090
130.14.24.0 20 140.109.56.0 57971 394500 263 | 2008/10/12T12:36:11.983 2008/10/12712:36:41.785

130.14.24.0 20 140.109.56.0 57971 1005000 670 | 2008/10/12T12:36:42.049 2008/10/12T712:37:36.387
130.14.24.0 20 140.109.56.0 57971 1500 1 | 2008/10/12712:36:58.439 2008/10/12T712:36:58.439
130.14.24.0 20 140.109.56.0 57972 25500 17 | 2008/10/12712:37:39.113 2008/10/12T712:37:41.572
130.14.24.0 20 140.109.56.0 57972 885000 590 | 2008/10/12T12:37:42.082 2008/10/12T712:38:41.762
130.14.24.0 20 140.109.56.0 57972 936000 624 | 2008/10/12T712:38:42.069 2008/10/12T712:39:41.756
130.14.24.0 20 140.109.56.0 57972 1119000 746 | 2008/10/12T712:39:42.106 2008/10/12T712:40:41.742
130.14.24.0 20 140.109.56.0 57972 1368000 912 | 2008/10/12712:40:42.056 2008/10/12712:41:41.701
130.14.24.0 20 140.109.56.0 57972 1126500 751 | 2008/10/12T712:41:42.114 2008/10/12T712:42:41.632
130.14.24.0 20 140.109.56.0 57972 1072500 715 | 2008/10/12T712:42:42.095 2008/10/12712:43:41.704
130.14.24.0 20 140.109.56.0 57972 1378500 919 | 2008/10/12712:43:42.098 2008/10/12T712:44:41.402
130.14.24.0 20 140.109.56.0 57972 924000 616 | 2008/10/12T712:44:42.783 2008/10/12T712:45:41.649
130.14.24.0 20 140.109.56.0 57972 186000 124 | 2008/10/12T12:45:42.118 2008/10/12T712:45:50.343
130.14.24.0 20 140.109.56.0 57981 669000 446 | 2008/10/12712:45:53.354 2008/10/12712:46:41.728
130.14.24.0 20 140.109.56.0 57981 1258500 839 | 2008/10/12712:46:42.130 2008/10/12T712:47:41.808
130.14.24.0 20 140.109.56.0 57981 607500 405 | 2008/10/12712:47:41.932 2008/10/12T712:48:41.407
130.14.24.0 20 140.109.56.0 57981 885000 590 | 2008/10/12T12:48:42.251 2008/10/12T712:49:41.753
130.14.24.0 20 140.109.56.0 57981 715500 477 | 2008/10/12712:49:42.125 2008/10/12T712:50:41.687
130.14.24.0 20 140.109.56.0 57981 1054500 703 | 2008/10/12T12:50:42.185 2008/10/12T712:51:41.755
130.14.24.0 20 140.109.56.0 57981 1168500 779 | 2008/10/12T12:51:41.975 2008/10/12T712:52:41.748
130.14.24.0 20 140.109.56.0 57981 1140000 760 | 2008/10/12T12:52:42.088 2008/10/12T712:53:41.708
130.14.24.0 20 140.109.56.0 57981 943500 629 | 2008/10/12T12:53:42.139 2008/10/12T712:54:41.439
130.14.24.0 20 140.109.56.0 57981 721500 481 | 2008/10/12712:54:42.035 2008/10/12T712:55:41.551
130.14.24.0 20 140.109.56.0 57981 1150500 767 | 2008/10/12T12:55:42.098 2008/10/12T712:56:41.612
130.14.24.0 20 140.109.56.0 57981 1003500 669 | 2008/10/12T12:56:42.038 2008/10/12T712:57:38.753
130.14.24.0 20 140.109.56.0 57992 3000 2 | 2008/10/12T12:57:40.795 2008/10/12T12:57:40.795
130.14.24.0 20 140.109.56.0 57992 882000 588 | 2008/10/12T12:57:42.168 2008/10/12T712:58:41.665
130.14.24.0 20 140.109.56.0 57992 999000 666 | 2008/10/12T12:58:42.108 2008/10/12T712:59:41.655
130.14.24.0 20 140.109.56.0 57992 1144500 763 | 2008/10/12T712:59:42.069 2008/10/12T713:00:41.591

Over the course of 98 seconds, the source sent about 56,472,000 bytes in 37648 packets.

We then wanted to see what else was going on, if anything, between these 2 hosts. We would expect to
see some kind of control information being passed over port 21. We filtered all “pass” files for these 2
addresses in order to get a clear picture of what’s going on.

rwfilter --sadd=130.14.24.0
fields=sip,dip,sport,dport,packets,bytes,dur

pass*.12.rw --daddr=140.109.56.0 --proto=6 --pass=stdout | rwcut --

This yielded different results than above

The duration remained the same. However, the number of bytes sent was 56,477,059 in 37653 packets.

130.14.24.0 21 140.109.56.0 57889 1 52 | 2008/10/12T12:45:51.097 2008/10/12712:45:51.097
130.14.24.0 80 140.109.56.0 1493 1 507 | 2008/10/12T712:49:00.493 2008/10/12712:49:00.493
130.14.24.0 80 140.109.56.0 1495 3 4500 | 2008/10/12712:49:04.985 2008/10/12712:49:05.675

FTP Analyses - “13”

First, we took filtered out all “pass” files looking for any TCP connections that took place over port 21,

the default port for FTP control traffic:

rwfilter pass-*13.rw --pass=13.ftp.rw --aport=21 --proto=6 --print-vol --print-file

In order to figure out the major conversations, we had to sort.

packets. First, we chose to sort by bytes:

rwsort 13.ftp.rw --out=13.ftp.rw.SORTED --fields=bytes

We can sort either by bytes or by

In order to view the data, we cut it using rwcut. We only wanted the major players, so we added the

“tail” to get the bottom 10 (which is actually the top 10 based on bytes):

rwcut 13.ftp.rw.SORTED --fields=sip,sport,dip,dport,bytes,packets,stime,etime | tail

siP sPort siP dPort Bytes |packets sTime eTime
163.221.8.0 21 193.233.8.0 50458 24000 16 2008/10/12T13:37:07.663 2008/10/12713:38:04.387
163.221.8.0 21 193.233.8.0 50458 25500 17 2008/10/12T13:39:39.679 2008/10/12T13:40:35.260
163.221.8.0 21 193.233.8.0 50458 25500 17 2008/10/12713:40:21.827 2008/10/12713:41:16.853
163.221.8.0 21 193.233.8.0 50458 25500 17 2008/10/12T13:45:07.208 2008/10/12T13:45:58.897
163.221.8.0 21 193.233.8.0 50458 25500 17 2008/10/12T13:48:44.808 2008/10/12T13:49:40.118
163.221.8.0 21 193.233.8.0 50458 25500 17 2008/10/12T13:41:24.067 2008/10/12713:42:19.523
148.219.120.0| 3464 (83.212.216.0 21 26780 19 2008/10/12T13:29:15.084 2008/10/12T13:30:03.394
163.221.8.0 21 193.233.8.0 50458 28500 19 2008/10/12713:41:48.339 2008/10/12713:42:39.841
163.221.8.0 21 193.233.8.0 50458 30000 20 2008/10/12T13:48:25.844 2008/10/12713:49:18.339
163.221.8.0 21 193.233.8.0 50458 31500 21 2008/10/12T13:44:07.664 2008/10/12T13:45:04.778

We can see from the output that there is a major FTP control conversation between 163.221.8.0 and
192.233.8.0. At first, one might conclude, since we only have the first three octets and the data is
sampled, that there is no conclusive proof that the conversation is between two specific hosts; it may be
between multiple hosts on both sides. However, for the purposes of this paper, we will assume that it is
between two hosts, due in large part to the ephemeral port being the same, 50,458, for the duration of

the resulting conversation. This large conversation made me wonder how long the conversation
occurred and the total bytes and packets.

rwfilter 13.ftp.rw --aport=21 --sadd=163.221.8.0 --daddr=193.233.8.0 --proto=6 --pass=13.ftp.large.rw

This gives me a file containing only the FTP control conversation between these 2 addresses. | then
want to output the information for easy sorting in Microsoft Excel:

rwcut 13.ftp.large.rw --fields=sip,dip,sport,dport,packets,bytes,stime,etime
Based on the output, | was able to obtain the following information:

Packets: 1,873
Bytes: 1,441,067
Duration: 24 hours

The timing, bytes, and packets are random enough to suggest the source IP is sending a lot of control
information over a long period of time to the destination IP. | was also able to run the following
command:

rwfilter pass*.13.rw --sadd=163.221.8.0 --daddr=193.233.8.0 --proto=6 --pass=stdout | rwcut --
fields=sip,dip,sport,dport,packets,bytes,stime,etime

| also ran the command and saved the file as “13.ftp.second.large.rw”. The output yielded the same
results as when specifying any port as 21. This means the only 2 communication these two IP address
was over FTP (aside from any web traffic).

Looking back at one of the previous results, we also see the following:

148.219.120.0| 3464 (83.212.216.0

21 ’ 26780

19 ‘ 2008/10/12T13:29:15.084 2008/10/12T13:30:03.394

Since the previous conversation enveloped any further communication in this conversation, we decided
to take a second look.

rwsort 13.ftp.second.large.rw --fields=stime | rwcut --fields=sip,dip,sport,dport,packets,bytes,stime,etime

The output:

siP dIp sPort ([dPort | packets bytes sTime eTime
148.219.120.0 | 83.212.216.0 {2625 21 1 108 |2008/10/12T13:16:59.129 | 2008/10/12T13:16:59.129
148.219.120.0 | 83.212.216.0 |3464| 21 1 1460 |2008/10/12T13:28:47.084 | 2008/10/12T13:28:47.084
148.219.120.0 | 83.212.216.0 | 3464 | 21 4 3838 |2008/10/12T13:28:48.809 | 2008/10/12T13:29:03.937
148.219.120.0 | 83.212.216.0 |3464| 21 1 1460 |2008/10/12T13:28:58.993 | 2008/10/12713:28:58.993

148.219.120.0 | 83.212.216.0 | 3464 | 21 1 1460 |2008/10/12T13:29:03.911 | 2008/10/12T13:29:03.911
148.219.120.0 | 83.212.216.0 | 3464 | 21 5 5933 |2008/10/12T13:29:07.516 | 2008/10/12T13:29:35.817
148.219.120.0 | 83.212.216.0 | 3464 | 21 3 4380 |2008/10/12T13:29:08.668 | 2008/10/12713:30:01.781
148.219.120.0 | 83.212.216.0 | 3464 | 21 16 21127 |2008/10/12T13:29:14.338 | 2008/10/12T13:30:04.753
148.219.120.0 | 83.212.216.0 |3464| 21 19 26780 |2008/10/12713:29:15.084 | 2008/10/12713:30:03.394
148.219.120.0 | 83.212.216.0 | 3464 | 21 5 7300 |2008/10/12T13:29:21.180 | 2008/10/12T13:30:02.210
148.219.120.0 | 83.212.216.0 |3464| 21 14 20440 |2008/10/12713:29:42.747 | 2008/10/12713:30:30.702
148.219.120.0 | 83.212.216.0 | 3464 | 21 1 1460 |2008/10/12T13:30:06.779 | 2008/10/12T13:30:06.779
148.219.120.0 | 83.212.216.0 | 3464 | 21 4 5840 |2008/10/12T13:30:09.730 | 2008/10/12T13:30:15.459

As you can see, the first packet sent is 108 bytes, over ephemeral port 2625 occurred at 1:16:59 pm.

However, this is the only piece of that conversation we have. The rest of the packets are over

ephemeral port 3464. The conversation lasted about one minute and 22 seconds.

However, since the data stream for FTP traffic runs over port 20, we need to analyze the data for port

20.

rwfilter pass-*13.rw --pass=13.port20.rw --aport=20 --proto=6 --print-vol --print-file

rwsort 13.port20.rw --out=13.port20.rw.SORTED --fields=bytes

rwcut 13.port20.rw.SORTED --fields=sip,sport,dip,dport,bytes,packets,stime,etime | tail

The output:

Sip Sport Dip Dport | Bytes | Packets Stime Etime
130.14.24.0| 20 131.215.16.0 (53899 [3256500| 2171 |2008/10/12T13:49:08.729 |2008/10/12T13:49:36.917
130.14.24.0| 20 131.215.16.0(52260 3628500 | 2419 |2008/10/12T13:48:37.011|2008/10/12T13:49:07.444
130.14.24.0| 20 131.215.16.0 53899 4750500 | 3167 |2008/10/12T13:49:36.992 |2008/10/12T13:50:17.879
130.14.24.0| 20 131.215.16.0| 47147 | 4845000 | 3230 |2008/10/12T13:50:19.191|2008/10/12713:51:02.933
130.14.24.0| 20 131.215.16.0 47147 |5143500| 3429 |2008/10/12T13:50:19.486 |2008/10/12T13:51:02.980
130.14.24.0| 20 131.215.16.0|52260|5610000| 3740 |2008/10/12T13:47:39.098 | 2008/10/12T13:48:36.922
130.14.24.0| 20 131.215.16.0| 53899 6331500 | 4221 |2008/10/12T13:49:08.610 |2008/10/12T13:50:04.920
130.14.24.0| 20 131.215.16.0 53899 | 6429000 | 4286 |2008/10/12T13:49:09.190 |2008/10/12T13:50:04.937

130.14.24.0| 20 131.215.16.0 52260 | 6990000 | 4660 |2008/10/12713:48:04.997 | 2008/10/12713:49:04.922

130.14.24.0| 20 131.215.16.0(52260 | 7374000 | 4916 |2008/10/12713:48:04.988 | 2008/10/12713:49:04.923

Based on this output, we see one major file transfer conversation going on here. In order to get the full

details of the session though, we need to filter on the port 20 file for these two addresses:

rwfilter 13.port20.rw --saddr=130.14.24.0 --daddr=131.215.16.0 --pass=stdout | rwcut --
fields=sip,sport,dip,dport,bytes,packets,stime,etime

Output:
sIP sPort dIp dPort bytes | packets sTime eTime
130.14.24.0 | 20 131.215.16.0 | 52260 | 85500 57 2008/10/12713:47:07.932 2008/10/12T713:47:21.491
130.14.24.0 | 20 | 131.215.16.0 | 52260 | 1672500 | 1115 2008/10/12T13:47:08.348 2008/10/12T13:48:04.943
130.14.24.0 | 20 | 131.215.16.0 | 52260 | 1641000 | 1094 2008/10/12T13:47:09.128 2008/10/12T13:48:04.952
130.14.24.0 | 20 131.215.16.0 | 52260 | 5610000 | 3740 2008/10/12713:47:39.098 2008/10/12T713:48:36.922
130.14.24.0 | 20 | 131.215.16.0 | 52260 | 7374000 | 4916 2008/10/12T13:48:04.988 2008/10/12T13:49:04.923
130.14.24.0 | 20 131.215.16.0 | 52260 | 6990000 | 4660 2008/10/12T13:48:04.997 2008/10/12T13:49:04.922
130.14.24.0 | 20 | 131.215.16.0 | 52260 | 3628500 | 2419 2008/10/12T713:48:37.011 2008/10/12T13:49:07.444
130.14.24.0 | 20 131.215.16.0 | 52260 1500 1 2008/10/12T13:48:45.693 2008/10/12T13:48:45.693
130.14.24.0 | 20 131.215.16.0 | 52260 | 315000 210 2008/10/12713:49:05.002 2008/10/12713:49:07.811
130.14.24.0 | 20 | 131.215.16.0 | 52260 | 300000 200 2008/10/12T13:49:05.012 2008/10/12T13:49:07.758
130.14.24.0 | 20 131.215.16.0 | 53899 | 6331500 | 4221 2008/10/12713:49:08.610 2008/10/12T13:50:04.920
130.14.24.0 | 20 | 131.215.16.0 | 53899 | 3256500 | 2171 2008/10/12T713:49:08.729 2008/10/12T13:49:36.917
130.14.24.0 | 20 131.215.16.0 | 53899 1500 1 2008/10/12T13:49:09.181 2008/10/12T13:49:09.181
130.14.24.0 | 20 | 131.215.16.0 | 53899 | 6429000 | 4286 2008/10/12T13:49:09.190 2008/10/12T13:50:04.937
130.14.24.0 | 20 | 131.215.16.0 | 53899 | 4750500 | 3167 2008/10/12T13:49:36.992 2008/10/12T13:50:17.879
130.14.24.0 | 20 131.215.16.0 | 53899 | 1548000 | 1032 2008/10/12713:50:04.982 2008/10/12T13:50:18.257
130.14.24.0 | 20 | 131.215.16.0 | 53899 | 1573500 | 1049 2008/10/12T13:50:04.989 2008/10/12T13:50:18.201
130.14.24.0 | 20 131.215.16.0 | 53899 648 1 2008/10/12T13:50:18.201 2008/10/12T13:50:18.201
130.14.24.0 | 20 | 131.215.16.0 | 47147 | 1914000 | 1276 2008/10/12T13:50:19.142 2008/10/12T13:50:36.906
130.14.24.0 | 20 | 131.215.16.0 | 47147 | 4845000 | 3230 2008/10/12T13:50:19.191 2008/10/12T13:51:02.933

130.14.24.0 | 20 | 131.215.16.0 | 47147 | 5143500 | 3429 2008/10/12T13:50:19.486 2008/10/12T13:51:02.980

130.14.24.0 | 20 | 131.215.16.0 | 47147 1328 1 2008/10/12T13:50:26.766 2008/10/12T13:50:26.766

130.14.24.0 | 20 | 131.215.16.0 | 47147 | 2911500 | 1941 2008/10/12T13:50:37.000 2008/10/12T13:51:02.666

Over the course of 3 minutes and 29 seconds, the source sent about 66,324,476 bytes in 44,217 packets.

We then wanted to see what else was going on, if anything, between these 2 hosts. We would expect to
see some kind of control information being passed over port 21. We filtered all “pass” files for these 2
addresses in order to get a clear picture of what’s going on.

rwfilter pass*.13.rw --sadd=130.14.24.0 --daddr=131.215.16.0 --proto=6 --pass=stdout | rwcut --
fields=sip,dip,sport,dport,packets,bytes,stime,etime

Unfortunately, this yielded the same results as above, which indicates that there was no other
communication occurring between these two hosts (aside from any web traffic). Since the data is
sampled at 1:100 the command channel likely was small enough to not be in the sample set.

Web Analyses - “12”

Now we do further profiling of the data to find out the major clients and servers in the internet, serving

a high load.
rwuniq passweb*12.rw --fields=1 | sort-r-t"|" -k 2 |less
siP Records
128.30.48.0 207598
65.55.208.0 87982
140.211.160.0 87472
72.164.152.0 85542
130.14.24.0 68057
129.105.40.0 63870
204.179.120.0 51201
216.178.32.0 46614
68.142.208.0 46292
128.223.8.0 46077
65.55.104.0 41636
65.54.80.0 37872
64.107.248.0 37407
74.6.16.0 35922
128.112.128.0 34312
65.55.184.0 33666
128.112.136.0 32369
156.56.240.0 30233

65.55.8.0 26847
66.249.64.0 26601
128.112.152.0 25107
72.14.200.0 23481
163.18.104.0 22397
65.55.192.0 21258
208.111.168.0 20439
209.62.184.0 19317
131.95.120.0 19204
171.66.120.0 17888
65.55.24.0 17660
207.46.16.0 17383
65.55.200.0 16965
207.46.160.0 16901
204.153.48.0 16802
146.137.96.0 16322
140.234.24.0 14969
18.7.16.0 14895

Let’s further trim down the data for flows greater than 68057.

rwuniq passweb*12.rw --field=1 --flow=68057

sIP Records
140.211.160.0 87472
130.14.24.0 68057
65.55.208.0 87982
128.30.48.0 207598
72.164.152.0 85542

We filter the data further by finding out the number of bytes and packers sent across from the client.

rwuniq passweb*12.rw --field=1 --bytes --packets --flow=68057

siP Bytes Packets Records
140.211.160.0 477717550 374779 87472
130.14.24.0 148595262 123933 68057
65.55.208.0 8740601 143310 87982
128.30.48.0 254423770 239903 207598
72.164.152.0 158779537 143828 85542

Filtering further

rwuniq passweb*12.rw --field=1,3 --bytes --packets --flow=68057

siP sPort Bytes | Packets | Records
72.164.152.0 80 158698241 143738 85471
128.30.48.0 80 253913837 | 236503 204923
140.211.160.0 80 476931122 370825 85044

Since 128.30.48.0 has the maximum Records, we will try to identify the
that IP. Considering 128.30.48.0 as the source IP or client,

conversation taking place for

rwfilter passweb*12.rw --pass=stdout --saddr=128.30.48.0 | rwuniq --fields=2 | sort -r-t"|" -k 2

| head
dIp Records
64.34.192.0 5683
85.19.80.0 2543
153.91.0.0 1565
209.56.112.0 1302
192.149.56.0 1223
80.76.152.0 950
97.65.48.0 932
74.6.16.0 902
81.149.136.0 828

This data tells us that with 128.30.48.0 client was majorly served by the above Servers. With
64.34.192.0, 5683 records were transmitted.

Similarly, considering 128.30.48.0 as the server, we will find out the major client it served.

rwfilter passweb*12.rw --pass=stdout --daddr=128.30.48.0 | rwuniq --fields=1 | sort-r -t "|" -k 2

| head

siP Records
74.6.16.0 866
209.56.112.0 618
202.115.120.0 602
69.50.136.0 535
70.166.128.0 402
222.197.32.0 323
70.167.24.0 253

128.101.64.0 234
72.204.16.0 202

Let’s consider the first entry. Filtering out the conversation between the IP addresses 74.6.16.0 and
128.38.48.0,

rwfilter pass*.12.rw --sadd=74.6.16.0 --daddr=128.30.48.0 --proto=6 --pass=stdout | rwfilter --input-
pipe=stdin --dport=80 --fail=12.web.fail.rw --print-vol

Recs Packets Bytes Files
Total 866 1044 73885 1
Pass 866 1044 73885
Fail 0 0 0

This tells us that the only conversation between these two IP’s took place on port 80.

When we try to run the above command with the next set of IP addresses, we observed that for IP:
69.50.136.0, we got the following data.

rwfilter pass*.12.rw --sadd=69.50.136.0 --daddr=128.30.48.0 --proto=6 --pass=stdout | rwfilter --input-pipe=stdin
--dport=80 --fail=12.web.fail.rw --print-vol

Recs Packets Bytes Files
Total 535 582 405168 1
Pass 86 119 5282
Fail 449 463 399886

This shows that there is something else going on, on these IP addresses.
To further evaluate, we run the following command

rwfilter pass*.12.rw --sadd=69.50.136.0 --daddr=128.30.48.0 --proto=6 --pass=stdout | rwfilter --input-pipe=stdin
--aport=80,443 --fail=stdout | rwcut --fields=sip,dip,sport,dport,packets|less

We see that the conversation is happening on port 443 and 80. Port 443 is for SSL traffic so we can
ignore that data. Running the same set of commands on a couple of other IP addresses, we find that the

conversation is generally happening on port 80 and 443. Again, since the data is annonymized, some
uncertainty exists.

Next, we try to look further into the bytes and packets sent by two IP addresses. We run the following
command with 128.30.48.0 as client and 64.34.192.0 as server.

rwfilter passweb-*12.rw --pass=stdout --saddr=128.30.48.0 --daddr=64.34.192.0 |rwuniq --fields=1,2 --bytes --
packets |head

sIP dip Bytes
128.30.48.0 64.34.192.0

Packets
6430970 5938

This helps us in knowing the amount of data transferred between the two systems.

Web Analyses - “13”

In analyzing the web traffic,

rwfilter passweb-ATLA.13.rw --pass=13.atl.web.rw --aport=80,443 --proto=6 --print-vol

Results:
Recs Packets Bytes Files
Total| 412923 1315535 904240231 1
Pass| 400284 1273722 867758060
Fail 12639 41813 36482171

Instead of looking at the “pass” traffic, | wanted to see what else would be included in data since we
have over 12,000 records failing the filter.

rwfilter passweb-ATLA.13.rw --pass=13.atl.web.rw --aport=80,443 --proto=6 --print-vol --fail=13.atl.failweb.rw
We then used rwstats to see what other ports were being used:

rwstats 13.atl.failweb.rw --sport --count=10

Results:

sPort Records %_of_total | cumul_%
8080 3299 26.101749 |26.101749
10942 94 0.74373 |26.845478
10941 87 0.688346 |27.533824
3143 36 0.284833 |27.818657
44083 27 0.213624 |28.032281
12310 11 0.087032 |28.119313

43458 11 0.087032 |28.206345
2593 10 0.07912 |28.285466
3937 9 0.071208 |28.356674
54830 9 0.071208 |28.427882

As we can see, the largest port being used in the “fail” file is 8080, a commonly used port for web traffic
when trying to circumvent firewalls, proxies, or other administrative restrictions. The other ports listed
are ephemeral ports when connecting to the port 8080 servers. Based on this, we will not worry about
filtering the data beyond “passweb”.

Now, let’s get some general stats.

rwuniq passweb*13.rw --fields=1 | sort-r-t"|" -k 2 |less

Output (partial):

siP Records
128.30.48.0 | 217467
72.164.152.0 | 95110
140.211.160.0 | 92939
65.55.208.0 92858
204.179.120.0 | 66058
130.14.24.0 65177
129.105.40.0 | 62652
216.178.32.0 | 52987
65.55.104.0 43164
208.111.168.0 | 42079
65.54.80.0 39496
163.18.104.0 | 39423
65.55.184.0 39086

74.6.16.0 38794

64.107.248.0 | 37274

72.14.200.0 34928

65.55.192.0 33865

65.55.8.0 32016

209.62.184.0 | 31088

We can see the largest source IP is 128.30.48.0. Since this is Source IP, this must be a web server. |
wanted to see what ports it was serving out though, to determine if it was just some basic web pages or
something else:

rwfilter passweb*.13.rw --daddr=128.30.48.0 --proto=6 --pass=stdout | rwuniq --field=4 | sort -r-t"|" -k 2 | less

The results show 12,754 records over port 80 and 2 records over port 443. Everything else was an
ephemeral port and there was nothing over port 8080. Curious about the 443 traffic, | decided to look
into it more.

rwfilter passweb*.13.rw --daddr=128.30.48.0 --dport=443 --proto=6 --pass=stdout | rwcut --fields
sip,sport,dip,dport,bytes,packets

Results:
sIP sPort diP dPort | bytes | packets
99.226.152.0 | 60030 | 128.30.48.0 | 443 40 1
157.89.72.0 | 51962 | 128.30.48.0 | 443 40 1

As we can see, it was two random IP subnets sending over a base packet over 443. Although this
presents the question, what were those 2 source IPs doing, possibly scanning?

For 99.226.152.0:

rwfilter pass*.13.rw --saddr=99.226.152.0 --proto=6 --pass=stdout | rwcut --
fields=sip,sport,dip,dport,bytes,packets,stime,etime

Results:
siP sPort dIp dPort | bytes | packets sTime eTime
99.226.152.0 10068 129.255.0.0 33695 680 2 2008/10/12T13:13:57.314 | 2008/10/12T13:14:01.739
3724 66.71.56.0 2068 40 1 2008/10/12T13:14:53.663 | 2008/10/12T13:14:53.663

99.226.152.0

99.226.152.0 10068 129.255.0.0 33695 | 3000 2008/10/12713:15:58.938 | 2008/10/12T13:16:20.395
99.226.152.0 10068 129.255.0.0 33695 52 2008/10/12713:18:06.455 | 2008/10/12T13:18:06.455
99.226.152.0 10068 129.255.0.0 33695 52 2008/10/12713:19:15.515 | 2008/10/12T13:19:15.515
99.226.152.0 10068 129.255.0.0 33695 | 1500 2008/10/12713:19:18.756 | 2008/10/12713:19:18.756
99.226.152.0 49357 137.28.224.0 | 25886 280 2008/10/12T713:19:52.548 | 2008/10/12713:19:57.564
99.226.152.0 10068 129.255.0.0 33895 | 1500 2008/10/12713:20:01.749 | 2008/10/12T13:20:01.749
99.226.152.0 10068 129.255.0.0 33895 | 4500 2008/10/12713:20:54.493 | 2008/10/12713:21:26.198
99.226.152.0 10068 129.255.0.0 33695 | 1500 2008/10/12713:21:37.147 | 2008/10/12T13:21:37.147
99.226.152.0 10068 129.255.0.0 33895 | 1500 2008/10/12713:22:39.921 | 2008/10/12T13:22:39.921
99.226.152.0 3724 129.130.176.0 | 58314 715 2008/10/12713:23:23.393 | 2008/10/12T13:23:23.393
99.226.152.0 10068 129.255.0.0 33895 | 1500 2008/10/12T713:23:52.972 | 2008/10/12T13:23:52.972
99.226.152.0 10068 129.255.0.0 33695 52 2008/10/12713:24:32.412 | 2008/10/12T13:24:32.412
99.226.152.0 10068 129.255.0.0 29708 52 2008/10/12713:38:40.232 | 2008/10/12T13:38:40.232
99.226.152.0 10068 129.255.0.0 34213 66 2008/10/12T713:37:59.654 | 2008/10/12T13:37:59.654
99.226.152.0 10068 129.255.0.0 29708 | 4500 2008/10/12713:38:54.480 | 2008/10/12T13:39:08.842
99.226.152.0 3724 204.38.192.0 3641 40 2008/10/12713:46:52.471 | 2008/10/12T13:46:52.471
99.226.152.0 61922 129.130.208.0 3724 615 2008/10/12713:49:43.761 | 2008/10/12T13:49:43.761
99.226.152.0 60030 128.30.48.0 443 40 2008/10/12713:10:29.612 | 2008/10/12T13:10:29.612
99.226.152.0 51411 152.14.8.0 80 40 2008/10/12713:30:06.828 | 2008/10/12713:30:06.828

This IP has a unique traffic pattern. Some of the largest flows were taking place over ports 10068 and
3724 (source port) and 33695 (destination port). | tried to do some research on these ports to see if

they could tell me what was going on. According to

http://portforward.com/cportsnotes/battlenet/wow.htm, Port 3724 is used for the online game World
of WarCraft. The other ports did not appear to be specific to an application or game. However, since
they are so high, they may have been used for other online games. This would make sense with our
data sets: college students are highly active in online games. One can postulate that the users of the
games knew each other and knew of their network over the Internet2 connection and setup the gaming
server for their needs.

For 157.89.72.0:

http://portforward.com/cportsnotes/battlenet/wow.htm

rwfilter pass*.13.rw --saddr=157.89.72.0 --proto=6 --pass=stdout | rwuniq --fields=3 | sort-r-t"|" -k 2 | head

Results:

sPort Records
1304 205
4550 204
3872 15
3394 15
2528 15
1548 12
49186 8
3125 8
59082 6

Here, we can see the source port is either 1304 or 4550. 1304 is a non-standard port, but 4550,
according to a few web sites, is used for webcam traffic. This is something we should see when we do
streaming video.

Getting back to the original largest web server, | wanted to see some other information about it. First,
the client with the most packets then the one based on bytes:

rwfilter passweb*.13.rw --pass=stdout --daddr=128.30.48.0 --dport=80 --proto=6 | rwcut --
fields=sip,sport,dip,dport,packets,bytes | sort-r-t"|" -k 5 | head

siP sPort dIP dPort | packets | bytes
74.6.16.0 59129 | 128.30.48.0 80 83 4316
74.6.16.0 59129 | 128.30.48.0 80 64 3328
74.6.16.0 59129 | 128.30.48.0 80 46 2392
74.6.16.0 36358 | 128.30.48.0 80 17 884
211.69.200.0 | 1419 | 128.30.48.0 80 14 560
74.6.16.0 37923 | 128.30.48.0 80 13 676
211.69.200.0 | 1419 | 128.30.48.0 80 13 520
202.115.88.0 | 2165 | 128.30.48.0 80 11 464
211.69.200.0 | 1419 | 128.30.48.0 80 11 440

rwfilter passweb*.13.rw --pass=stdout --daddr=128.30.48.0 --dport=80 --proto=6 | rwcut --
fields=sip,sport,dip,dport,packets,bytes | sort-r-t"|" -k 6 | head

siP sPort dIP dPort | packets | bytes

74.6.16.0 59129 | 128.30.48.0 80 83 4316
74.6.16.0 59129 | 128.30.48.0 80 64 3328
74.6.16.0 59129 | 128.30.48.0 80 46 2392
163.28.32.0 | 64018 | 128.30.48.0 80 1 1400
74.6.16.0 36358 | 128.30.48.0 80 17 884
163.28.32.0 | 50532 | 128.30.48.0 80 1 851
211.69.200.0 | 1416 | 128.30.48.0 80 1 745
99.233.176.0 | 50112 | 128.30.48.0 80 1 683
163.28.32.0 | 50748 | 128.30.48.0 80 1 683

So we can see the IP subnet of 74.6.16.0is sending the most packets and the most bytes. We noticed the
results weren’t the same for both commands though. For the results based on bytes, we see a few IPs
receiving 1 packet with 683-1400 bytes (the IPs differ and the byte sizes differ). We’re unsure what was
going on between these two, but perhaps there was a relatively large web page being served.

So | then wanted to see what was the largest web server that handled only HTTPS traffic.

rwfilter passweb*.13.rw --dport=443 --proto=6 --pass=stdout | rwuniq --fields=dip | sort-r-t"|" -k 2 | head

diP Records

65.55.184.0 39898
65.55.192.0 22702
65.55.200.0 21041

65.55.8.0 20771
207.46.16.0 14672
65.55.24.0 14598
65.55.48.0 14588
65.54.224.0 13091
65.55.152.0 12630

Based on these results, | then need to determine if any of these IPs appear to serve unsecure web traffic
as well. To determine this | ran the following command for each of these IPs:

Rm 13.temp.rw && rwfilter passweb*.13.rw --daddr=<IP> --proto=6 --dport=80,8080 --pass=13.temp.rw --print-
vol

The failures of this command will be 443 traffic and ephemeral port traffic (which | am ignoring). We
didn’t use --dport=443, because then the failures would be 80, 8080, and ephemeral port traffic, which
won’t give us the desired results. Unfortunately, running this for each of these 10 IPs yielded no results
were the passes were zero, or even close to zero.

Here, a bash script or c-shell script would be beneficial to run against all results in the above command
(not just the top 10).

Analyses Summary

In analyzing the FTP traffic, we found that there were many instances of control traffic that had
no corresponding data traffic. We also found the reverse was true, instances of data traffic with no
control traffic. However, the two major roadblocks here are the anonymization and the sampling. By
only sampling 1/100 flows, we are essentially missing 99% of the flows. This means locating the
complementary flows between FTP control and FTP data was very difficult. The anonymization was also
a problem. The data was anonymized in such a unique way that we cannot be certain two flows with
the same source IP and destination IP are in fact from the same source client and destination client. We
can make that assumption (which we did), but there is no empirical proof. This made classifying the FTP
traffic very difficult.

The web traffic was also uniquely affected by the sampling and more so by the anonymization.
We were able to get some good conversations, but again, it’s very difficult to get the clear
understanding of what’s going on when you can’t be certain that two flows next to each other in a time
series are from the same host. Perhaps one person found a site, then shared it with everyone on the
same subnet. We’'ll never know the truth due to the anonymization.

Project Closure

Technically, this project isn’t closed. However, for the purposes of this coursework, it is. We faced
many challenges, as evident in the incompleteness and the analyses summary. There is also much more
work to be done.

Challenges

Logistically, we lost focus frequently. We would begin down a path and then work on a tangent
guestion. We would follow that tangent for awhile, which would prompt questions about different
traffic. Not all of this is evident in this report, but many different lines of problems were investigated.
Other challenges faced were regarding not having someone manage the project and ensure the
resources were staying on task. Resource availability was also an issue; one of us is a full time employee
that works well over 50 hours a week and the other is a full time student with many classes. Trying to
find time to meet and work together was a problem. Technically, | already spoke about the issues with
sampling and anonymization. Based on the layout of the network, we may have chosen a poor data set
for this problem statement. We also don’t have the technical skills needed to work on a project this size.

Future Work

There are a few things left to do on this project. The first is the continuation of the classification and the
categorization. The next step is reviewing and investigating the traffic management systems. This will
help us determine the impact they would have on the traffic. After completing a more final report,
there should be some data validation to ensure the commands run were technically sound and the

report is accurate. Having someone with more technically abilities, both in Unix and with the SiLK tool
suite, would help greatly with this project.

Conclusions
In conclusion, this project was an excellent beginning point the benefit of Network Situational
Awareness and how the SiLK tools work as an enabler of the NetSA concept.

	Problem Statement
	Approach
	Traffic Management
	Protocol Basics
	File Transfer Protocol (FTP)
	Hyper-Text Transfer Protocol (HTTP)
	Streaming Audio
	Streaming Video

	Data Sets
	Internet2 Network Structure
	Physical Layout
	Logical Layout
	3ROX

	Data Analyses
	FTP Analyses – “12”
	FTP Analyses – “13”
	Web Analyses – “12”
	Web Analyses – “13”
	Analyses Summary

	Project Closure
	Challenges
	Future Work
	Conclusions

