
IPTABLES(8) IPTABLES(8)

NAME
iptables − IP packet filter administration

SYNOPSIS
iptables -[ADC] chain rule-specification [options]
iptables -[RI] chain rulenum rule-specification [options]
iptables -Dchain rulenum [options]
iptables -[LFZ] [chain] [options]
iptables -[NX] chain
iptables -Pchain target [options]
iptables -Eold-chain-name new-chain-name

DESCRIPTION
Iptables is used to set up, maintain, and inspect the tables of IP packet filter rules in the Linux kernel. Sev-
eral different tables may be defined.Each table contains a number of built-in chains and may also contain
user-defined chains.

Each chain is a list of rules which can match a set of packets. Eachrule specifies what to do with a packet
that matches.This is called a ‘target’, which may be a jump to a user-defined chain in the same table.

TARGETS
A firewall rule specifies criteria for a packet, and a target. If the packet does not match, the next rule in the
chain is the examined; if it does match, then the next rule is specified by the value of the target, which can
be the name of a user-defined chain or one of the special valuesACCEPT, DROP, QUEUE, or RETURN.

ACCEPTmeans to let the packet through.DROP means to drop the packet on the floor. QUEUE means to
pass the packet to userspace (if supported by the kernel). RETURNmeans stop traversing this chain and
resume at the next rule in the previous (calling) chain.If the end of a built-in chain is reached or a rule in a
built-in chain with target RETURNis matched, the target specified by the chain policy determines the fate
of the packet.

TABLES
There are current three independent tables (which tables are present at any time depends on the kernel con-
figuration options and which modules are present).

-t, --table
This option specifies the packet matching table which the command should operate on.If the ker-
nel is configured with automatic module loading, an attempt will be made to load the appropriate
module for that table if it is not already there.

The tables are as follows: filter This is the default table. It contains the built-in chains INPUT (for
packets coming into the box itself), FORWARD (for packets being routed through the box), and
OUTPUT (for locally-generated packets). nat This table is consulted when a packet that creates a
new connection is encountered.It consists of three built-ins: PREROUTING (for altering packets
as soon as they come in), OUTPUT (for altering locally-generated packets before routing), and
POSTROUTING (for altering packets as they are about to go out).mangleThis table is used for
specialized packet alteration. It has two built-in chains: PREROUTING (for altering incoming
packets before routing) and OUTPUT (for altering locally-generated packets before routing).

OPTIONS
The options that are recognized byiptablescan be divided into several different groups.

COMMANDS
These options specify the specific action to perform.Only one of them can be specified on the command
line unless otherwise specified below. For all the long versions of the command and option names, you
need to use only enough letters to ensure thatiptablescan differentiate it from all other options.

Aug 11, 2000 1

IPTABLES(8) IPTABLES(8)

-A, --append
Append one or more rules to the end of the selected chain.When the source and/or destination
names resolve to more than one address, a rule will be added for each possible address combina-
tion.

-D, --delete
Delete one or more rules from the selected chain.There are two versions of this command: the
rule can be specified as a number in the chain (starting at 1 for the first rule) or a rule to match.

-R, --replace
Replace a rule in the selected chain.If the source and/or destination names resolve to multiple
addresses, the command will fail. Rulesare numbered starting at 1.

-I, --insert
Insert one or more rules in the selected chain as the given rule number. So, if the rule number is 1,
the rule or rules are inserted at the head of the chain.This is also the default if no rule number is
specified.

-L, --list
List all rules in the selected chain.If no chain is selected, all chains are listed.It is legal to spec-
ify the -Z (zero) option as well, in which case the chain(s) will be atomically listed and zeroed.
The exact output is affected by the other arguments given.

-F, --flush
Flush the selected chain.This is equivalent to deleting all the rules one by one.

-Z, --zero
Zero the packet and byte counters in all chains.It is legal to specify the-L, --list (list) option as
well, to see the counters immediately before they are cleared. (See above.)

-N, --new-chain
Create a new user-defined chain by the given name. Theremust be no target of that name already.

-X, --delete-chain
Delete the specified user-defined chain.There must be no references to the chain.If there are,
you must delete or replace the referring rules before the chain can be deleted.If no argument is
given, it will attempt to delete every non-builtin chain in the table.

-P, --policy
Set the policy for the chain to the given target. Seethe sectionTARGETS for the legal targets.
Only non-user-defined chains can have policies, and neither built-in nor user-defined chains can be
policy targets.

-E, --rename-chain
Rename the user specified chain to the user supplied name.This is cosmetic, and has no effect on
the structure of the table.

-h Help. Give a (currently very brief) description of the command syntax.

PARAMETERS
The following parameters make up a rule specification (as used in the add, delete, insert, replace and
append commands).

-p, --protocol [!] protocol
The protocol of the rule or of the packet to check.The specified protocol can be one oftcp, udp,
icmp, or all , or it can be a numeric value, representing one of these protocols or a different one.A
protocol name from /etc/protocols is also allowed. A"!" argument before the protocol inverts the
test. Thenumber zero is equivalent toall . Protocolall will match with all protocols and is taken
as default when this option is omitted.

-s, --source[!] address[/mask]
Source specification.Addresscan be either a hostname, a network name, or a plain IP address.
Themaskcan be either a network mask or a plain number, specifying the number of 1’s at the left

Aug 11, 2000 2

IPTABLES(8) IPTABLES(8)

side of the network mask. Thus, a mask of24 is equivalent to 255.255.255.0. A "!" argument
before the address specification inverts the sense of the address. The flag--src is a convenient alias
for this option.

-d, --destination[!] address[/mask]
Destination specification.See the description of the-s (source) flag for a detailed description of
the syntax.The flag--dst is an alias for this option.

-j, --jump target
This specifies the target of the rule; i.e., what to do if the packet matches it.The target can be a
user-defined chain (other than the one this rule is in), one of the special builtin targets which
decide the fate of the packet immediately, or an extension (seeEXTENSIONS below). If this
option is omitted in a rule, then matching the rule will have no effect on the packet’s fate, but the
counters on the rule will be incremented.

-i, --in-interface [!] [name]
Optional name of an interface via which a packet is received (for packets entering theINPUT ,
FORWARD and PREROUTING chains). Whenthe "!" argument is used before the interface
name, the sense is inverted. If the interface name ends in a "+", then any interface which begins
with this name will match.If this option is omitted, the string "+" is assumed, which will match
with any interface name.

-o, --out-interface[!] [name]
Optional name of an interface via which a packet is going to be sent (for packets entering the
FORWARD, OUTPUT andPOSTROUTING chains). Whenthe "!" argument is used before the
interface name, the sense is inverted. If the interface name ends in a "+", then any interface which
begins with this name will match.If this option is omitted, the string "+" is assumed, which will
match with any interface name.

[!] -f , --fragment
This means that the rule only refers to second and further fragments of fragmented packets. Since
there is no way to tell the source or destination ports of such a packet (or ICMP type), such a
packet will not match any rules which specify them.When the "!" argument precedes the "-f" flag,
the rule will only match head fragments, or unfragmented packets.

-c, --set-countersPKTS BYTES
This enables the administrater to initialize the packet and byte counters of a rule (duringINSERT,
APPEND, REPLACE operations)

OTHER OPTIONS
The following additional options can be specified:

-v, --verbose
Verbose output.This option makes the list command show the interface address, the rule options
(if any), and the TOS masks.The packet and byte counters are also listed, with the suffix ’K’, ’M’
or ’G’ for 1000, 1,000,000 and 1,000,000,000 multipliers respectively (but see the-x flag to
change this).For appending, insertion, deletion and replacement, this causes detailed information
on the rule or rules to be printed.

-n, --numeric
Numeric output.IP addresses and port numbers will be printed in numeric format.By default, the
program will try to display them as host names, network names, or services (whenever applicable).

-x, --exact
Expand numbers.Display the exact value of the packet and byte counters, instead of only the
rounded number in K’s (multiples of 1000) M’s (multiples of 1000K) or G’s (multiples of 1000M).
This option is only relevant for the-L command.

--line-numbers
When listing rules, add line numbers to the beginning of each rule, corresponding to that rule’s
position in the chain.

Aug 11, 2000 3

IPTABLES(8) IPTABLES(8)

--modprobe=<command>
When adding or inserting rules into a chain, usecommand to load any necessary modules (targets,
match extensions, etc).

MATCH EXTENSIONS
iptables can use extended packet matching modules.These are loaded in two ways: implicitly, when-p or
--protocol is specified, or with the-m or --match options, followed by the matching module name; after
these, various extra command line options become available, depending on the specific module.You can
specify multiple extended match modules in one line, and you can use the-h or --help options after the
module has been specified to receive help specific to that module.

The following are included in the base package, and most of these can be preceded by a! to invert the
sense of the match.

tcp
These extensions are loaded if ‘--protocol tcp’ is specified. It provides the following options:

--source-port [!] [port[:port]]
Source port or port range specification. This can either be a service name or a port number. An
inclusive range can also be specified, using the formatport:port. If the first port is omitted, "0" is
assumed; if the last is omitted, "65535" is assumed.If the second port greater then the first they
will be swapped. Theflag --sport is an alias for this option.

--destination-port [!] [port[:port]]
Destination port or port range specification. The flag--dport is an alias for this option.

--tcp-flags[!] mask comp
Match when the TCP flags are as specified.The first argument is the flags which we should exam-
ine, written as a comma-separated list, and the second argument is a comma-separated list of flags
which must be set.Flags are:SYN ACK FIN RST URG PSH ALL NONE . Hence the com-
mand
iptables -A FORWARD -p tcp --tcp-flags SYN,ACK,FIN,RST SYN
will only match packets with the SYN flag set, and the ACK, FIN and RST flags unset.

[!] --syn
Only match TCP packets with the SYN bit set and the ACK and FIN bits cleared.Such packets
are used to request TCP connection initiation; for example, blocking such packets coming in an
interface will prevent incoming TCP connections, but outgoing TCP connections will be unaf-
fected. Itis equivalent to --tcp-flags SYN,RST,ACK SYN. If the "!" flag precedes the "--syn",
the sense of the option is inverted.

--tcp-option [!] number
Match if TCP option set.

udp
These extensions are loaded if ‘--protocol udp’ is specified.It provides the following options:

--source-port [!] [port[:port]]
Source port or port range specification.See the description of the--source-port option of the TCP
extension for details.

--destination-port [!] [port[:port]]
Destination port or port range specification.See the description of the--destination-port option
of the TCP extension for details.

icmp
This extension is loaded if ‘--protocol icmp’ is specified.It provides the following option:

--icmp-type [!] typename
This allows specification of the ICMP type, which can be a numeric ICMP type, or one of the
ICMP type names shown by the command
iptables -p icmp -h

Aug 11, 2000 4

IPTABLES(8) IPTABLES(8)

mac
--mac-source[!] address

Match source MAC address. Itmust be of the form XX:XX:XX:XX:XX:XX. Note that this only
makes sense for packets entering thePREROUTING , FORWARD or INPUT chains for packets
coming from an ethernet device.

limit
This module matches at a limited rate using a token bucket filter: it can be used in combination with the
LOG target to give limited logging. A rule using this extension will match until this limit is reached
(unless the ‘!’ flag is used).

--limit rate
Maximum average matching rate: specified as a number, with an optional ‘/second’, ‘/minute’,
‘/hour’, or ‘/day’ suffix; the default is 3/hour.

--limit-b urst number
The maximum initial number of packets to match: this number gets recharged by one every time
the limit specified above is not reached, up to this number; the default is 5.

multiport
This module matches a set of source or destination ports. Up to 15 ports can be specified. It can only be
used in conjunction with-p tcp or -p udp.

--source-port [port[,port]]
Match if the source port is one of the given ports.

--destination-port [port[,port]]
Match if the destination port is one of the given ports.

--port [port[,port]]
Match if the both the source and destination ports are equal to each other and to one of the given
ports.

mark
This module matches the netfilter mark field associated with a packet (which can be set using theMARK
target below).

--mark value[/mask]
Matches packets with the given unsigned mark value (if a mask is specified, this is logically
ANDed with the mark before the comparison).

owner
This module attempts to match various characteristics of the packet creator, for locally-generated packets.
It is only valid in theOUTPUT chain, and even this some packets (such as ICMP ping responses) may
have no owner, and hence never match.

--uid-owner userid
Matches if the packet was created by a process with the given effective user id.

--gid-owner groupid
Matches if the packet was created by a process with the given effective group id.

--pid-owner processid
Matches if the packet was created by a process with the given process id.

--sid-owner sessionid
Matches if the packet was created by a process in the given session group.

state
This module, when combined with connection tracking, allows access to the connection tracking state for
this packet.

Aug 11, 2000 5

IPTABLES(8) IPTABLES(8)

--statestate
Where state is a comma separated list of the connection states to match.Possible states are
INVALID meaning that the packet is associated with no known connection,ESTABLISHED
meaning that the packet is associated with a connection which has seen packets in both directions,
NEW meaning that the packet has started a new connection, or otherwise associated with a con-
nection which has not seen packets in both directions, andRELATED meaning that the packet is
starting a new connection, but is associated with an existing connection, such as an FTP data trans-
fer, or an ICMP error.

unclean
This module takes no options, but attempts to match packets which seem malformed or unusual.This is
regarded as experimental.

tos
This module matches the 8 bits of Type of Service field in the IP header (ie. including the precedence bits).

--tos tos
The argument is either a standard name, (use
iptables -m tos -h
to see the list), or a numeric value to match.

TARGET EXTENSIONS
iptables can use extended target modules: the following are included in the standard distribution.

LOG
Turn on kernel logging of matching packets. Whenthis option is set for a rule, the Linux kernel will print
some information on all matching packets (like most IP header fields) via the kernel log (where it can be
read withdmesgor syslogd(8)).

--log-level level
Level of logging (numeric or seesyslog.conf(5)).

--log-prefix prefix
Prefix log messages with the specified prefix; up to 29 letters long, and useful for distinguishing
messages in the logs.

--log-tcp-sequence
Log TCP sequence numbers. This is a security risk if the log is readable by users.

--log-tcp-options
Log options from the TCP packet header.

--log-ip-options
Log options from the IP packet header.

MARK
This is used to set the netfilter mark value associated with the packet. It is only valid in themangletable.

--set-mark mark

REJECT
This is used to send back an error packet in response to the matched packet: otherwise it is equivalent to
DROP. This target is only valid in the INPUT , FORWARD and OUTPUT chains, and user-defined
chains which are only called from those chains.Several options control the nature of the error packet
returned:

--reject-with type
The type given can beicmp-net-unreachable, icmp-host-unreachable, icmp-port-unr eachable,
icmp-proto-unreachable, icmp-net-prohibitedor icmp-host-prohibited, which return the appro-
priate ICMP error message (port-unreachable is the default). The option echo-reply is also
allowed; it can only be used for rules which specify an ICMP ping packet, and generates a ping
reply. Finally, the optiontcp-resetcan be used on rules which only match the TCP protocol: this
causes a TCP RST packet to be sent back.This is mainly useful for blockingidentprobes which

Aug 11, 2000 6

IPTABLES(8) IPTABLES(8)

frequently occur when sending mail to broken mail hosts (which won’t accept your mail other-
wise).

TOS
This is used to set the 8-bit Type of Service field in the IP header. It is only valid in themangletable.

--set-tostos
You can use a numeric TOS values, or use
iptables -j TOS -h
to see the list of valid TOS names.

MIRR OR
This is an experimental demonstration target which inverts the source and destination fields in the IP header
and retransmits the packet. It is only valid in theINPUT , FORWARD andPREROUTING chains, and
user-defined chains which are only called from those chains.Note that the outgoing packets areNOT seen
by any packet filtering chains, connection tracking or NAT , to avoid loops and other problems.

SNAT
This target is only valid in thenat table, in thePOSTROUTING chain. Itspecifies that the source address
of the packet should be modified (and all future packets in this connection will also be mangled), and rules
should cease being examined. Ittakes one option:

--to-source <ipaddr>[-<ipaddr>][:port-port]
which can specify a single new source IP address, an inclusive range of IP addresses, and option-
ally, a port range (which is only valid if the rule also specifies-p tcp or -p udp). If no port range
is specified, then source ports below 512 will be mapped to other ports below 512: those between
512 and 1023 inclusive will be mapped to ports below 1024, and other ports will be mapped to
1024 or above. Where possible, no port alteration will occur.

DNAT
This target is only valid in thenat table, in thePREROUTING andOUTPUT chains, and user-defined
chains which are only called from those chains.It specifies that the destination address of the packet
should be modified (and all future packets in this connection will also be mangled), and rules should cease
being examined. Ittakes one option:

--to-destination<ipaddr>[-<ipaddr>][:port-port]
which can specify a single new destination IP address, an inclusive range of IP addresses, and
optionally, a port range (which is only valid if the rule also specifies-p tcp or -p udp). If no port
range is specified, then the destination port will never be modified.

MASQUERADE
This target is only valid in thenat table, in thePOSTROUTING chain. It should only be used with
dynamically assigned IP (dialup) connections: if you have a static IP address, you should use the SNAT tar-
get. Masqueradingis equivalent to specifying a mapping to the IP address of the interface the packet is
going out, but also has the effect that connections areforgottenwhen the interface goes down. Thisis the
correct behavior when the next dialup is unlikely to have the same interface address (and hence any estab-
lished connections are lost anyway). It takes one option:

--to-ports <port>[-<port>]
This specifies a range of source ports to use, overriding the default SNAT source port-selection
heuristics (see above). Thisis only valid with if the rule also specifies-p tcp or -p udp).

REDIRECT
This target is only valid in thenat table, in thePREROUTING andOUTPUT chains, and user-defined
chains which are only called from those chains.It alters the destination IP address to send the packet to the
machine itself (locally-generated packets are mapped to the 127.0.0.1 address).It takes one option:

--to-ports <port>[-<port>]
This specifies a destination port or range or ports to use: without this, the destination port is never
altered. Thisis only valid with if the rule also specifies-p tcp or -p udp).

Aug 11, 2000 7

IPTABLES(8) IPTABLES(8)

EXTRA EXTENSIONS
The following extensions are not included by default in the standard distribution.

ttl
This module matches the time to live field in the IP header.

--ttl ttl Matches the given TTL value.

TTL
This target is used to modify the time to live field in the IP header. It is only valid in themangletable.

--ttl-set ttl
Set the TTL to the given value.

--ttl-dec ttl
Decrement the TTL by the given value.

--ttl-inc ttl
Increment the TTL by the given value.

ULOG
This target provides userspace logging of matching packets. Whenthis target is set for a rule, the Linux
kernel will multicast this packet through anetlink socket. One or more userspace processes may then sub-
scribe to various multicast groups and receive the packets.

--ulog-nlgroup <nlgroup>
This specifies the netlink group (1-32) to which the packet is sent.Default value is 1.

--ulog-prefix <prefix>
Prefix log messages with the specified prefix; up to 32 characters long, and useful fro distinguish-
ing messages in the logs.

--ulog-cprange<size>
Number of bytes to be copied to userspace. A value of 0 always copies the entire packet, regard-
less of its size. Default is 0

--ulog-qthreshold<size>
Number of packet to queue inside kernel. Setting this value to, e.g. 10 accumulates ten packets
inside the kernel and transmits them as one netlink multpart message to userspace.Default is 1
(for backwards compatibility)

DIAGNOSTICS
Various error messages are printed to standard error. The exit code is 0 for correct functioning.Errors
which appear to be caused by invalid or abused command line parameters cause an exit code of 2, and other
errors cause an exit code of 1.

BUGS
Check is not implemented (yet).

COMPATIBILITY WITH IPCHAINS
This iptables is very similar to ipchains by Rusty Russell.The main difference is that the chainsINPUT
andOUTPUT are only traversed for packets coming into the local host and originating from the local host
respectively. Hence every packet only passes through one of the three chains; previously a forwarded
packet would pass through all three.

The other main difference is that-i refers to the input interface;-o refers to the output interface, and both
are available for packets entering theFORWARD chain.

iptables is a pure packet filter when using the default ‘filter’ table, with optional extension modules.This
should simplify much of the previous confusion over the combination of IP masquerading and packet filter-
ing seen previously. So the following options are handled differently:
-j MASQ
-M -S
-M -L

Aug 11, 2000 8

IPTABLES(8) IPTABLES(8)

There are several other changes in iptables.

SEE ALSO
The iptables-HOWTO, which details more iptables usage, the NAT -HOWTO, which details NAT , and the
netfilter-hacking-HOWTO which details the internals.

AUTHORS
Rusty Russell wrote iptables, in early consultation with Michael Neuling.

Marc Boucher made Rusty abandon ipnatctl by lobbying for a generic packet selection framework in ipta-
bles, then wrote the mangle table, the owner match, the mark stuff, and ran around doing cool stuff every-
where.

James Morris wrote the TOS target, and tos match.

Jozsef Kadlecsik wrote the REJECT target.

Harald Welte wrote the ULOG target, TTL match+target and libipulog.

The Netfilter Core Team is: Marc Boucher, James Morris, Harald Welte and Rusty Russell.

Aug 11, 2000 9

