95-706

Lecture 5

Patterns for Assigning
Responsibilities

Richard J. Orgass
H. John Heinz III School of Public Policy and Management
Carnegie Mellon University

Carnegie Mellon 1

5_Ppatterns.ag 10f 5_Pattens.ag March 1, 2000

Agenda

Objectives

Interaction Diagrams

Responsibilities and Methods
Responsibilities and Interaction Diagrams
Patterns

e Expert Pattern
e (Creator Patters

Carnegie Mellon 2

5_Patterns.ag 20f 5_Patterns.ag March 1, 2000

Objectives, References

® Objectives
¢ Define patterns
e Learn to apply five patterns (two today)

m References
e Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995. ISBN 0-201-63361-2.
* Craig Larman. Applying UML and Patterns. An Introduction to
Object-Oriented Analysis and Design. Prentice-Hall, 1998.
ISBN 0-13-748880-7

Carnegie Mellon 3

5_Patterns.ag 30f 5_Patterns.ag March 1, 2000

Introductory Comments

® Object-oriented system consists of
e objects sending messages to other objects to complete
operations
m Contracts -- First guess at responsibilities and post
conditions for system operations
e startup
* enterltem
e endSale
e makePayment
® Interaction Diagrams show a solution
e in terms of interacting objects
e that satisfy these responsibilities
m Patterns applied during the creation of interaction
diagrams showing responsibility assignments and
collaborations.

Carnegie Mellon 4

5_Pattems.ag 40f5_Patierns.ag March 1, 2000

Interaction Diagrams

® Interaction diagrams are one of the most important
artifacts create§ in object-oriented analysis and design.
m Skillful assignment of responsibilities that occurs while
creating interaction diagrams is very important.
® Time and effort spend on
* generation
e careful consideration of responsibility assignment
® absorbs a significant part of the design effort of a project.
m Codified
® patterns
e principles
¢ idioms
B can be applied to improve the quality of designs.

Carnegie Mellon 5
Responsibilities
I

® contract or obligation of a type or class

® related to behavioral obligations of an object
B two types

e knowing

e doing

® Doing Responsibilities

¢ doing something itself

* initiating action in other objects

e controlling and coordinating activities in other objects
®m Knowing Responsibilities

* knowing about private encapsulated data

e knowing about related objects

e knowing about things it can derive or calculate

Carnegie Mellon 6

5_Patterns.ag 6 0f 5_Patterns.ag March 1, 2000

Assigning Responsibilities to Objects

®m Assignment occurs during OOD
e Example
0 "A Sale is responsible for printing itself." (doing)
0 "A Sale is responsible for knowing its date." (knowing)
¢ Knowing Responsibilities often inferred from conceptual
model
0 illustrates attributes and associations
® Translation of Responsibilities into classes and methods
e influenced by the granularity of responsibility
0 "provide access to relatlional databases" may involve
4+ hundreds of classes
4+ hundreds of methods
0 '"print a sale" may involve
+ only a single or few methods
® Methods and Responsibilities are Different
* responsibilities are implemented using methods

Carnegie Mellon ¥4

5_Pattems.ag 7 of 5_Pattems.ag March 1, 2000

Responsibilities and

Interaction Diagrams

® Diagram indicates
e Sale objects have responsibility to print themselves
0 invoked with a print message
0 handled by a print method
¢ Fulfillment of responsibility requires
0 collaboration with SalesLineltem objects asking them to print

implies Sale objects have a —
responsibility to print 1*: [for each] sli := next() :
themselves :SalesLineltem

rint() —= i 2:print() —=

sli:SalesLineltem

Carnegie Mellon 8

5_Patterns.ag 8 of 5_Patterns.ag March 1, 2000

Patterns

®m Experienced developers (object-oriented and other)
e build up a repertoire of
0 general principles
0 idiomatic solutions
* to guide them in the creation of software
® Patterns are Codified
* principles
e idioms
* given aname

Carnegie Mellon 9

5_Patterns.ag 9 0f 5_Patterns.ag March 1, 2000

Example Pattern

Pattern Name: Expert
Solution: Assign a responsibility to
tl%e class that has tKe
information needed to
fulfill it.

What is the most basic
principle by which to
assign responsibilities to
objects?

Problem it Solves:

Carnegie Mellon 10

5_Pattems.ag 10 of 5_Patters.ag March 1, 2000

Patterns

® A pattern is a named problem/solution pair that can be
applied in new contexts, with advice on how to apply it
in novel situations.

B "One person’s pattern is another person’s primitive
building block™ is an object technology adage illustrating
the vagueness of what can be called a pattern.

m Will skip what is appropriate to label a pattern

m Focus on pragmatic value of using the pattern style as a
vehicle for presenting and remembering useful software
engineering principles.

Carnegie Mellon 11

5_Patterns.ag 11 0f 5_Patterns.ag March 1, 2000

Patterns -- 2

® Patterns do not contain new ideas
e serve to codify existing
0 knowledge
0 idioms
0 principles
e the more honed and widely used, the better
m Patterns have suggestive names
e Advantages
0 supports chunking
0 incorporating the concept into our understanding and memory
e Facilitates communication
® Naming a complex idea such as a pattern is an example of
abstraction
* reducing complex form to a simple idea by eliminating detail

® Use concise names for patterns

Carnegie Mellon 12

5_Patterns.ag 12 of 5_Patterns.ag March 1, 2000

Naming Patterns Improves
Communication

Example discussion

Fred:

e "Where do you think we should place the responsibility for
printing a Sale? I think Model-View Separation would work
well -- how about a SaleReportView?"

Wilma:

e '"Ithink Expert is a better choice since it is a simple 1print and
the Sales has all the data required in the printout -- let the
Sale do it."

Fred:

e "Ok, I Agree."

Chunking design idioms and principles with commonly
understood names facilitates communication.

Carnegie Mellon

5_Patterns.a

Patterns

Discussion Summary

e Skillful assignment of responsibilities is extremely important
in OOD

e Assignment of Responsibilities often occurs during creation
of interaction diagrams

e Patterns are named problem/solution pairs that codify good
advice and principles often related to the assignment of
responsibilities.

Patterns describe fundamental principles of assigning

responsibilities to objects.

Carnegie Mellon

5_Patterns.ag 14 of 5_Patterns.ag March 1, 2000

Applying Patterns

First Five Patterns:

e Expert

e C(Creator

e High Cohesion
e Low Coupling
e Controller
These address

* basic, common questions
e fundamental design issues

Carnegie Mellon

5_Patterns.ag 15 of 5_Patterns.ag March 1, 2000

9 13 of 5_Patterns.ag March 1, 2000

13

14

15

Setting the Stage

® (Class model may define
* dozens or hundreds of software classes
® Application may require
* hundreds or thousands of responsibilities to be fulfilled
® During OOD, when interactions between objects are
defined we make choices about the assignment of
responsibilities to classes.
= Done well, systems tend to be
* easier to understand
* maintain

* extend
® More opportunities to reuse components in future
applications.
Carnegie Mellon 16

5_Pattems.ag 16 of 5_Patters.ag March 1, 2000

Expert Pattern

® Problem:
e What is the most basic principle by which responsibilities are
assigned in object-oriented design?

® Solution:

. Assiﬁn a responsibility to the information expert -- the class
that has the information necessary to fulfill the
responsibility.

® Example:

* In the point-of-sale aplplication, some class needs to know

the grand total of a sale.

m By Expert, look for that class that has the information
needed to determine the total.

Carnegie Mellon 17

5_Patterns.ag 17 of 5_Patterns.ag March 1, 2000

Expert Example

® In POST apI)lication, some class needs to know the grand
total of a sale.

® Start assigning responsibilities by clearly stating the
responsibility.

® By this advice, the statement is:
e Who should be responsible for knowing the grand total of
the sale?

m By Expert, we should look for that class of objects that has
the information needed to determine the total.

Carnegie Mellon 18

5_Patterns.ag 18 of 5_Patterns.ag March 1, 2000

Expert Example -- 2

® Associations of the Sale class.

Sale
date
time
Contains
1 *
Product
Sales ” Specification
Lineitem Described-by S
description
quantity price
UpPC
Carnegie Mellon 19

5_Pattems.ag 19 of 5_Pattems.ag March 1, 2000

Expert Example -- 3

® What information is needed to determine the grand total?
* Must know about all the SalesLineltem instances of a sale
® The sum of their subtotals

® Only a Sale instance knows this, therefore, by Expert, Sale
is the correct object for this responsibility.

® [tis the information expert.

m Collaboration diagram showing result of discussions so far

1*: [for each] sli := next() Sale
) date

time

2: st := subtotal() l
total()

T

sli:Sal ineltem ‘ :SalesLineltem M
SalesLineltem
quantity

New method r O

Carnegie Mellon 20

5_Patterns.ag 20 of 5_Patterns.ag March 1, 2000

(s}

subtotal()

Expert Example -- 4

m Collaboration Diagram to compute the sum.

t:=total() =™ PRIk i 17: [for each] sli := next() Sale

L date
time

2: st := subtotal() $
total()
sli:SalesLineltem :SaleslLineltem
L e gL SalesLineltem

quantity

2.1: p = price() ¢
subtotal()

:Product Product
Specification Specification

description
price
UPC

Carnegie Mellon 21

5_Patterns.ag 21 of 5_Patterns.ag March 1, 2000

Expert Example --5

® SalesLineltem
e to fulfill it’s responsibility of knowing and answering it’s
subtotal
0 must know the product price
0 ProductSpecification is Expert on answering its price
® Therefore, a message must be sent to ProductSpecification
asking its price.

Carnegie Mellon 22

5_Ppatterns.ag 22 of 5_Patterns.ag March 1, 2000

Expert Example -- 6
Assigned Reponsibilities

Class Responsibility

Sale knows sale total

SalesLineltem knows line item total
ProductSpecification knows product price

Carnegie Mellon 23

5_Patterns.ag 23 of 5_Patterns.ag March 1, 2000

Benefits of Expert Pattern

® Encapsulation is maintained
® objects use their own information to fulfill tasks
e supports low coupling which leads to more robust and
maintainable systems
e Low Coupling is a pattern discussed next class.
® Behavior is distributed across classes that have the
required information
* encourages more cohesive "lightweight" class definitions that
are easier to understand and maintain
e High Cohesion is supported (more in next class).

Carnegie Mellon 24

5_Patterns.ag 24 of 5_Patterns.ag March 1, 2000

Creator Pattern
Solution

B Assign class B the responsibility for creating an instance of
class A if one of the following is true:
* B aggregates A objects.

0 Example: Sale and SaleLineltem

B contains A objects.

B records instances of A objects.

B closely uses A objects.

B has the initializing data that will be passed to A when it is

created. That is, B is an Expert WRT creating A.

® Jf more than one case applies, prefer a class B which
aggregates or contains members of class A.

Carnegie Mellon 25

5_Ppatterns.ag 25 of 5_Patterns.ag March 1, 2000

Creator Pattern
Problem

® Who should be responsible for creating new instances of a
class?
* One of most common activities in an OO system.
e Useful to have general principle for assigning creation
responsibilities.

®m Well assigned responsibility for object creation means
e low coupling is achieved
* increased clairty of design
e (much) better encapsulation and reusability

Carnegie Mellon 20

5_Patterns.ag 26 of 5_Patterns.ag March 1, 2000

Creator Pattern
Example

= Consmler the point-of-sale application.
Who should be responsible for creating a SalesLineltem
instance?
* By creator, look for class that aggregates, contains...
SalesLineltem instances.
e Consider partial conceptual model:

Sale
date
time
Contains
1*
Product
Sales Specification

Lineitem | Described-by

description
quantity price

Carnegie Mellon =i 27

5_Patterns.ag 27 of 5_Patterns.ag March 1, 2000

Creator Pattern

Example -- 2

® A Sale object contains and aggregates many SalesLineltem
objects.

m (Creator suggests Sale is a good candidate to be responsible
for allocating SalesLineltem objects.

® Hereis a collaboration diagram for the design

—

makelineltem(quantity) ale Sale

date

time
¢ " makeLineltem()
total()
:SalesLineltem

Carnegie Mellon 28

5_Ppatterns.ag 28 of 5_Patterns.ag March 1, 2000

Creator Pattern
Discussion

® Creator guides responsibility assignment by creation of
objects
* How is destruction of objects dealt with?

® Basic intent
e find a creator which needs to be connected to created object
in any event.
* Selecting such a creator supports low coupling.

® Common Relationships between classes shown in class
diagrams
e Aggregate aggregates Part
e Container contains Content
e Recorder records Recorded
. B%I creator pattern, all are good candidates for creators of
objects

Carnegie Mellon 29

5_Patterns.ag 29 of 5_Patterns.ag March 1, 2000

