94-812 Technology for International Development

Access
Networking
Mobile

Learning objectives

- Awareness of the underlying technology
- Knowledge of basic terminology
- Improved mental model of the Internet & mobile
- Personal calibration of global Internet access data

Access in Terms of Development

- Access to hardware
 - Computing devices
 - Desktop PCs, laptops
 - Mobile phones, tablets
- Access to software
 - Working (legal, supported) operating system software
 - Applications (office applications, content authoring applications...)
- Internet access
 - Broadband, dialup, satellite...
 - Wireless
 - At home vs community shared (e.g. at an Internet café)
- Access to information and services
 - For business, government services, entertainment, education, etc.
- Access to produce information and provide services
 - To use the technologies to create new information and provide it and/or services to others.

Hardware Access

- There has been plenty of activity:
 - Recycling hardware to developing countries
 - (Sometimes becomes dumping hazardous waste in countries)
 - ComputerReach (computerreach.org)
 - Reputable local (Pittsburgh) enterprise
 - Have placed > 9500 computers in 24 states and 30 countries
 - Work with local organizations in each location
 - Building cheap hardware
 - OLPC http://laptop.org/
 - Aakash Low Cost Tablet (Datawind India)
 - Intel EduWise notebook, Classmate PC
 - Raspberry Pi
 - State of ICTD Research article found 50 such projects

Network Access

- Understanding the *layers* of a network is useful for understanding what network access means.
- Important network "Layers"
 - Application
 - Communicate email messages, web pages, Tweets, etc. reliably between devices.
 - Transport: TCP
 - Assemble unbounded set of IP messages into an ongoing, two-way, stream of information between any two devices on the Internet.
 - Internet: IP
 - Send single message hopping from network to network to get from device A to device B on any interconnected network.
 - Data link
 - Communicates information, messages made up of collections of 0's and 1's, across a single network.
 - E.g. Ethernet
 - Physical:
 - Gets signals from device A to B (computers, routers, printers) on a single network.
 - E.g. electrical signals on a wire, light pulses on a fiber, radio waves to a satellite
 - These signals represent 0's and 1's

Physical and Data Link Network Layer

How the data travels via cable or radio waves.

- The "Last Mile" problem is how does it get to your house village, business, school...
 - Copper loop: Dialup, DSL
 - Coaxial bus: Cable
 - Fiberoptic (e.g. Verizon FIOS)
 - Wireless: Wifi, wifi mesh,WiMax

A failed wind-powered wifi experiment in Nauru

The last 10km in Rwanda

Wifi Mesh

Source: http://www.green-wifi.com

Source: http://www.sensorsmag.com/networking-communications/standards-protocols/wireless-mesh-networks-968

WiMax

- Similar to wifi in functionality
 - High speed internet access
- Much longer distances:
 - Wifi: 100 feet (depending on conditions)
 - WiMax: 30 miles (depending on conditions)

Backhaul / Internet Backbone

- Last Mile networks are assembled and backhauled to larger collection points
- The Internet backbone is made up of the very top layer, very high speed, very long distance, networks (major commercial and government).
- Technologies at the Physical / Data Link layer:
 - Fiber-optic
 - Copper Cable
 - Microwave
 - Satellite

Microwave in Rural Alaska

30 miles Nuiqsut to Oooguruk

Source: http://terra.gci.com/maps-locations/terra-vision-map

© Joe Mertz – Technology for International Development

Laying cable

- Terrestrial
 - Long distance cables often laid along railroad rights of way
 - http://www.youtube.com/watch?v=OtmKECNb78k
 - Africa terrestrial:
 - http://www.africabandwidthmaps.com/fibrereach/
- Undersea:
 - https://youtu.be/iipPJdqdljY?t=124 (until 9:50)

Maps

- Undersea Cables:
 - http://www.submarinecablemap.com/
 - Where do they go?
 - ?Who owns them?
- Satellite Coverage:
 - http://www.intelsat.com/flash/coverage-maps/index.html

Bandwidth growth

International Internet Bandwidth Growth by Region, 2011-2015

Source: TeleGeography

https://www.telegeography.com/research-services/global-internet-geography/

Normalized to Netflix

- Netflix is 36% of North American Internet traffic
 - http://fortune.com/2015/10/08/netflix-bandwith/
- Bandwidth to Africa is only 2900Gbps
 - https://www.telegeography.com/press/press-releases/2015/08/26/african-internet-capacity-growth-continues-to-lead-world/index.html
- Netflix standard definition requires 0.7Gbps
- Therefore 10M people watching Netflix in Africa could totally consume their incoming bandwidth
 - There are 1.2B people in Africa
 - 0.8% of the population watching Netflix would use up 100% of the bandwidth
- BTW, Netflix is not a big player in Africa.
 - Nollywood films are more popular, and are not on Netflix (techcrunch)
 - As of Jan 2016, it is in Africa, source Netflix via techcrunch.com
 - They have a Point of Presence in South Africa, so some video traffic need not come from abroad.

Internet Layer

- Fiber, satellite, etc create individual networks.
 - (Physical and data link layers)
- How are these interconnected to create one Internet?
 - (IP layer)

Routers

- The Internet is an interconnection of all these networks
- Routers provide switching and intelligently direct information toward its destination.
- Because it is massively interconnected, there are multiple routes a given packet of information can take.
 - Was originally designed this way during the Cold War to withstand a nuclear attack.
 - Routers share information with each other so that each can make smart decisions on where to send any packet of data.

Internet Protocol (IP)

- Internet Protocol (IP) is the protocol that manages getting a packet of data to its destination.
- Routing is an IP-level activity.
- IP address is a (unique) numerical address of all devices connected to the Internet
 - E.g. 128.2.55.120
 - E.g. when at my desk, my laptop has 2 of them
 - it has wired and wifi capability, so is on 2 networks

Transport Protocol: TCP

- Other part of TCP/IP, which you might have heard of.
- TCP/IP together is what makes it easy to build applications that send data from one place to another reliably
 - E.g. www, email, Skype (UDP)
- IP moves small packets of data from device A to B
- TCP moves whole streams of information (files, email messages, movies) from A to B (via IP) by breaking it up into IP packets and reassembling at the destination.

Move to NY analogy

- Roads and highways
 - Physical Network (fiber, satellite, etc)
- Uber
 - IP Internet Protocol
 - Hire a car to go from here to New York
- UberMove (fictional)
 - TCP Transport Protocol
 - Breaks your furniture, clothing, books, etc into boxes that fit into multiple Uber cars, sends them all out independently to NY, everything reassembled there.

Application Protocols

- Above IP and TCP ride application protocols:
 - IMAP & POP receive email
 - SMTP send email
 - FTP file transfer
 - RTP stream audio and video
 - HTTP web
 - And many others...

The Role of Standards

- TCP and IP are standards.
 - Once adopted, many could build upon them.
 - Like a language, if you have a group that shares a language, communication can flourish.
- Similarly, the WWW was not engineered.
 - No one laid out a detailed plan for where all the pieces would be.
- Rather, 3 simple standards were defined:
 - HTTP to get info from one place to another
 - URL to uniquely address that info
 - HTML to be able to display and link info
- A lot of additional standards have been built upon this initial success.

Standards Takeaway Message

- Systems don't always need to be engineered
 - E.g. like a database
- They can evolve when a good set of open standards are agreed upon.
 - All words in bold-italic are critical.

Review

- Physical networks send signals interpreted as 0/1
- Data Link protocols send messages of 0/1 as information on a single network.
- IP, operating in computers and routers, interconnect these networks into an internetwork (Internet) getting small data packets from one place to its destination
- TCP moves larger streams of information from source to destination computers.
 - So TCP/IP provides a standard way to have applications communicate across the Internet.
- Applications communicate information, over TCP, specific to their purpose (email, web sites, etc).

Cellular

 Only so many radio channels channels channels channels 11-2011 - 2011-20 are available channels channels channels 1-10 1-10 1-10 for mobile channels channels channels 21-30 21 - 3021 - 30communication channels channels channels 11 - 2011 - 2011 - 20channels channels channels 1-10 1-10 1-10 channels channels channels 21 - 3021 - 3021-30 channels channels channels 11-20 11-20 11 - 20

Figure 6: Reusing spectrum with the cellular concept [22]

Image source: How America's Fragmented Approach to Public Safety Wastes Money and Spectrum http://web.si.umich.edu/tprc/papers/2005/438/Peha_Public_Safety_Communications_TPRC_2005.pdf

US Spectrum

STATES FREQUENCY ALLOCATIONS THE RADIO SPECTRUM RADIO SERVICES COLOR LEGEND

Voice & Data

- CDMA Verizon, and backhaul elsewhere
- GSM, most of the world
- Mobile Broadband:

Second generation (2G) from 1991:				
Speeds in kbit/s	down and up			
GSM CSD	9.6			
• CDPD	up to 19.2			
 GSM GPRS (2.5G) 	56-115			
• GSM EDGE (2.75G)	up to 237			
,				

Third generation (3G) from 2001:					
Speeds in Mbit/s	down	и			
UMTS W-CDMA	0.4				
UMTS HSPA	14.4	5.			
UMTS TDD	16				
CDMA2000 1xRTT	0.3	0.			
CDMA2000 EV-DO	2.5-4.9	0.15			
GSM EDGE-Evolution	1.6	0			

down	ир			
0.4				
14.4	5.8			
16				
0.3	0.15			
2.5-4.9	0.15-1.8			
1.6	0.5			

Fourth generation (4G) from 2006:

Speeds in Mbit/s	down	ир
HSPA+	21-672	5.8-168
Mobile WiMAX (802.16)	37-365	17–376
LTE	100-300	50-75
LTE-Advanced:		
while moving at high speeds	100	
while stationary or moving at low speeds	up to 1000	

MBWA (802.20)

Source: https://en.wikipedia.org/wiki/Mobile_broadband

Stats....

- The following are International Telecommunications Union (ITU) statistics
- Source: http://www.itu.int/ITU-D/ict/statistics/

Stats....

- The International Telecommunications Union (ITU) collects useful statistics on fixed and mobile broadband penetration globally.
- Review interesting highlights at:
 - http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2013.pdf
- And here is an interesting way to explore data per country:
 - http://www.itu.int/net4/itu-d/icteye/
- They also have tabular data if you want to do analysis.

ITU Access Statistics

Note: * Estimate

Source: ITU World Telecommunication /ICT Indicators database

Source: http://www.itu.int/en/ITU-D/Statistics/Documents/statistics/2016/Stat_page_all_charts_2016.xls

ITU Access Statistics

Mobile network coverage and evolving technologies

Note: * Estimates. Mobile network coverage refers to the population that is covered by a mobile network.

Source: ITU.

Source: http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2016.pdf

ITU Access Statistics

Mobile-broadband subscriptions

Source: http://www.itu.int/en/ITU-D/Statistics/Documents/facts/ICTFactsFigures2016.pdf

Mobile broadband is cheaper than fixed

Distributed Systems - Mertz & McCarthy

Mobile use varies by country

Source: http://connect.icrossing.co.uk/wp-content/uploads/2013/01/iCrossing_2013_Mobile_Market_Share.gif Data from StatCounter

Bottom Line

- In the foreseeable future, mobile devices will be the most prevalent way that people access the Internet.
- So if you are thinking about technology for development, mobile is the platform that will reach the most individuals.

Broadband speed by country

