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An Economic Interpretation of
Optimal Control Theory

By ROBERT DORFMAN*

Capital theory is the economics of time.
Its task is to explain if, and why, a lasting
instrument of production can be expected
to contribute more to the value of output
during its lifetime than it costs to produce
or acquire. From the explanation, it de-
duces both normative and descriptive con-
clusions about the time-path of the ac-
cumulation of capital by economic units
and entire economies.

Traditionally, capital theory, like all
other branches of economics, was studied
in the context of stationary equilibrium.
For example, the stationary state of the
classical economists, and the equilibrium
of Bohm-Bawerk’s theory of the period of
production, both describe the state of
affairs in which further capital accumula-
tion is not worthwhile. A mode of analysis
that is confined to a distant, ultimate posi-
tion is poorly suited to the understanding
of accumulation and growth,! but no other
technique seemed available for most of the
history of capital theory.

For the past fifty years it has been per-
ceived, more or less vaguely, that capital
theory is formally a problem in the cal-
culus of variations.? But the calculus of
variations is regarded as a rather arcane
subject by most economists and, besides,
in its conventional formulations appears
too rigid to be applied to many economic
problems. The application of this con-
ceptual tool to capital theory remained

* The author is professor of economics at Harvard
University.

1 A point made most forceably by Joan Robinson in
[9] and elsewhere.

? Notable examples are Hotelling [6] and Ramsey [8].
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peripheral and sporadic until very re-
cently, and capital theory remained bound
by the very confining limitations of the ul-
timate equilibrium.

All this has changed abruptly in the past
decade as a result of a revival, or rather
reorientation, of the calculus of variations
prompted largely by the requirements of
space technology.? In its modern version,
the calculus of variations is called optimal
control theory. It has become, deservedly,
the central tool of capital theory and has
given the latter a new lease on life. As a re-
sult, capital theory has become so pro-
foundly transformed that it has been
rechristened growth theory, and has come
to grips with numerous important practical
and theoretical issues that previously could
not even be formulated.

The main thesis of this paper is that
optimal control theory is formally identical
with capital theory, and that its main in-
sights can be attained by strictly economic
reasoning. This thesis will be supported by
deriving the principal theorem of optimal
control theory, called the maximum prin-
ciple, by means of economic analysis.

I. The Basic Equations

In order to have a concrete vocabulary,
consider the decision problem of a firm
that wishes to maximize its total profits
over some period of time. At any date t,
this firm will have inherited a certain stock
of capital and other conditions from its

3 The twin sources of the new calculus of variations
are R. Bellman [4] and L. S. Pontryagin, et al. [7]. Bell-
man emphasized from the first the implications of his
work for economics.
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past behavior. Denote these by &(t). With
this stock of capital and other facilities %
and at that particular date t, the firm is in
a position to take some decisions which
might concern rate of output, price of out-
put, product design, or whatnot. Denote
the decisions taken at any date by x(t).
From the inherited stock of capital at the
specified date together with the specified
current decisions the firm derives a certain
rate of benefits or net profits per unit of
time. Denote this by =(k(t), 2(t), t).* This
function # determines the rate at which
profits are being earned at time t as a re-
sult of having % and taking decisions #.

Now look at the situation as it appears
at the initial date t=0. The total profits
that will be earned from then to some ter-
minal date T is given by:

> T
W ke, x) = f u(k, x, t)dt
v

which is simply the sum of the rate at
which profit is being earned at every in-
stant discounted to the initial date (if de-
sired) and added up for all instants.’ In
this notation % does not denote an ordinary
number but the entire time path of the
decision variable 2 from the initial date to
T. This notation asserts that if the firm
starts out with an initial amount of capital
ko and then follows the decision policy
denoted by %, it will obtain a total result,
W, which is the integral of the results
obtained at each instant; these results in
turn depending upon the date of the
pertinent instant, the capital stock then
and the decision applicable to that mo-
ment. The firm is at liberty, within limits,
to choose the time path of the decision
variable ¥ but it cannot choose indepen-
dently the amount of capital at each in-

4In the sequel we shall often omit the time-argu-
ments in the interest of simplicity, and thus write
simply u(k, x, t).

5 The argument t allows the introduction of any dis-
counting formula that may be appropriate.

stant; that is a consequence of the capital
at the initial date and the time path chosen
for decision variable. This constraint is
expressed by saying that the rate of change
of the capital stock at any instant is a
function of its present standing, the date,
and the decisions taken. Symbolically

dk
k= — = k5 1).

@, dt

3
Thus the decisions taken at any time have
two effects. They influence the rate at
which profits are earned at that time and
they also influence the rate at which the
capital stock is changing and thereby the
capital stock that will be available at
subsequent instants of time.

These two formulas express the essence
of the problem of making decisions in a
dynamic context. The problem is to select
the time path symbolized by % so as to
make the total value of the result, W, as
great as possible taking into account the
effect of the choice of # on both the in-
stantaneous rate of profit and the capital
stock to be carried into the future. This is
truly a difficult problem, and not only for
beginners. The essential difficulty is that
an entire time path of some variable has to
be chosen. The elementary calculus teaches
how to choose the best possible number to
assign to a single variable or the best
numbers for a few variables by differen-
tiating some function and setting partial
derivatives equal to zero. But finding a
best possible time path is an entirely dif-
ferent matter and leads into some very ad-
vanced mathematics. The strategy of the
solution is to reduce the problem which,
as it stands, requires us to find an entire
time path, to a problem which demands us
to determine only a single number (or a
few numbers), which is something we
know how to do from the ordinary cal-

¢ The dot will be used frequently to denote a rate of
change with respect to time.
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culus. This transformation of the problem
can be performed in a number of ways. One
way, which dates back to the eighteenth
century, leads to the classical calculus of
variations. Another way, which will be
followed here, leads to the maximum prin-
ciple of optimal control theory. This
method depends very heavily on intro-
ducing the proper notation. First, intro-
duce a formula for the value that can be
obtained by the firm starting at an arbi-
trary date t with some amount of capital
k and then following an arbitrary decision
policy x until the terminal date. It is

T
W (ke X, t) = f ulk, x,7)dr
t

which, of course, is just a generalization of
the W formula introduced previously.

Now break W up into two parts. Think
of a short time interval of length A begin-
ning at time t. A is to be thought of as
being so short that the firm would not
change x in the course of it even if it could.
Then we can write

W (k, ;, t) = u(k, x, t)A

@ + f ' w[k(t), x, r]dr.

t

This formula says that if the amount of
capital available at time t is £ and if the
policy denoted by % is followed from then
on, then the value contributed to the total
sum from date t on consists of two parts.
The first part is the contribution of a short
interval that begins at date t. It is the rate
at which profits are earned during the
interval times the length of the interval. It
depends on the current capital stock, the
date, and the current value of the decision
variable, here denoted by x;. The second
part is an integral of precisely the same
form as before but beginning at date t+A.
It should be noticed that the starting
capital stock for this last integral is not
k(t) but k(t+A). This fact, that the capital

stock will change during the interval in a
manner influenced by «x;, will play a very
significant role. We can take advantage of
the fact that the same form of integral has
returned by writing

W(ks, %, t) = w(k, 11, )A + W(keya, %, t + A)

where the changes in the subscripts are
carefully noted.

Now some more notation. If the firm
knew the best choice of x from date t on, it
could just follow it and thereby obtain a
certain value. We denote this value, which
results from the optimal choice of x by V*,
as follows

V¥(key 1) = max Wk, x, t).

Notice that V* does not involve % as an
argument. This is because x has been
maximized out. The maximum value that
can be obtained beginning at date t with
capital 2 does not depend on % but is the
value that can be obtained in those condi-
tions from the best possible choice of %.
Now suppose that the policy designated by
2y is followed in the short time interval
from t to t+A and that thereafter the best
possible policy is followed. By formula (2)
the consequence of this peculiar policy can
be written as

V(kt, Xy t) = u(kt, Xty t)A + V*(kH.A, t + A).

In words, the results of following such a
policy are the benefits that accrue during
the initial period using the decision x; plus
the maximum possible profits that can be
realized starting from date t4+A with
capital k(t4A) which results from the
decision taken in the initial period.

Now we have arrived at the ordinary
calculus problem of finding the best pos-
sible value for x,. If the firm adopts this
value, then V of the last formula will be
equal to V*. The calculus teaches us that
one frequently effective way to discover a
value of a variable that maximizes a given
function is to differentiate the function
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with respect to the variable and equate the
partial derivative to zero. This is the
method that we shall use. But first we
should be warned that this method is not
sure-fire. It is quite possible for the partial
derivatives to vanish when the function is
not maximized (for example, they may
vanish when it is minimized), and cases are
not rare in which the partial derivatives
differ from zero at the maximum. We shall
return to these intricacies later. For the
present we assume that the partial deriva-
tive vanishes at the maximum, differ-
entiate V(ks, x., t) with respect to x:, and
obtain

J
A — u(k, x¢, t)
('?-x,
3 s
+ — V*k(t+ a),t+A) =0.
axg

The trouble with that formula, aside from
the fact that the function V* is still un-
known, is that we are told to differentiate
V* with respect to x,, whereas it does not
involve x, explicitly. To get around this,
notice

av* av*  ak(t + A)

Both of these expressions merit some anal-
ysis and we shall start with the second.
Since we are dealing with short time pe-
riods we can use the approximation

E(t + A) = k(t) + kA

That is, the amount of capital at t+4A is
equal to the amount of capital at t plus
the rate of change of capital during the
interval times the length of the interval.
Remembering formula (1), £ depends on
Xyo

k = f(k, Xty t).
Thus we can write

dk(t + A) A af
dx,  om,

Turn, now, to the first factor, dV*/ok.
This derivative is the rate at which the
maximum possible profit flow from time
t+A on changes with respect to the
amount of capital available at t4-A. It is,
therefore, the marginal value of capital at
time t+4A, or the amount by which a unit
increment in capital occurring at that time
would increase the maximum possible
value of W. We denote the marginal value
of capital at time t by A(t), defined by

At —6V*k
()—'a_k (7t)'

Inserting these results in formula (3), we

obtain

ou of
4) A——4At+2)A—=0

axg, Xy
and furthermore, the constant A can be
cancelled out. We have one more simpli-
fication to make before arriving at our
first important conclusion. The marginal
value of capital changes gradually over
time and so, to a sufficiently good approxi-
mation,

At + A) = \(t) + A(D)A.

That is, the marginal value of capital at
t+Ais the marginal value at t plus the rate
at which it is changing during the interval
multiplied by the length of the interval.
Insert this expression in equation (4), after
cancelling the common factor A in the
equation as written, to obtain

ou a )
St )\(t)—~f—+ A(t)A Y _o.
ax; E)xt 6xg
Now allow A to approach zero. The third
term becomes negligibly small in com-
parison with the other two. Neglecting
it, there results:

du ]
) —+2 g = 0.

oxy dxy

This is our first major result and con-
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stitutes about half of the maximum prin-
ciple. It makes perfectly good sense to an
economist. It says that along the optimal
path of the decision variable at any time
the marginal short-run effect of a change in
decision must just counter-balance the
effect of that decision on the total value
of the capital stock an instant later. We
see that because the second term in the
equation is the marginal effect of the cur-
rent decision on the rate of growth of
capital with capital valued at its marginal
worth, N\. The firm should choose x at
every moment so that the marginal im-
mediate gain just equals the marginal
long-run cost, which is measured by the
value of capital multiplied by the effect of
the decision on the accumulation of capi-
tal.

Now suppose that x, is determined so as
to satisfy equation (5). On the assumption
that this procedure discovers the optimal
value of xy, V(ks, %, t) will then be equal to
its maximum possible value or V*(%, t).
Thus

V*(k, t) =u(k,x, t)A + V*(R(t-+ A), t+ A).

Now differentiate this expression with re-
spect to k. The derivative of the left-hand
side is by definition A(t). The differentia-
tion of the right-hand side is very similar
to the work that we have already done and
goes as follows:

]

ou a4
AMt) =4 —+ o V*(k(t + A),t + A)

ok

ou  Ak(t + A)
A—+—-—

ok

I

At + A)

A6"+(1 +a aj)o\+‘m)
Py Py

d d 3
A—1‘+>\+A>\—1+Ax+>\—f
dk dk 3k

I

Al

We can ignore the term in A% and make the
obvious cancellations to obtain

(6) —A=—42

This is the second major formula of the
maximum principle and possesses an
illuminating economic interpretation.

To a mathematician, A is the rate at
which the value of a unit of capital is
changing. To an economist, it is the rate at
which the capital is appreciating. —\(t) is
therefore the rate at which a unit of capital
depreciates at time t. Accordingly the
formula asserts that when the optimal
time path of capital accumulation is fol-
lowed, the decrease in value of a unit of
capital in a short interval of time is the sum
of its contribution to the profits realized
during the interval and its contribution to
enhancing the value of the capital stock at
the end of the interval. In other words, a
unit of capital loses value or depreciates as
time passes at the rate at which its poten-
tial contribution to profits becomes its
past contribution.

This finding is reminiscent of the figure
of speech employed by the nineteenth
century capital theorists. They said that
a capital good embodied a certain amount
of value which it imparted gradually to
the commodities that were made with its
assistance. That is just what is going on
here. Each unit of the capital good is
gradually decreasing in value at precisely
the same rate at which it is giving rise to
valuable outputs, either currently saleable
or stored for the future in accumulated
capital. We can also interpret —\ as the
loss that would be incurred if the acquisi-
tion of a unit of capital were postponed
for a short time.

I1. The Maximum Principle

In effect we have been led to construct
the auxiliary or Hamiltonian function

H = u(k1 %, t) + )\(t)f(kl %, t):

to compute its partial derivative with re-
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spect to x, and to set that partial deriva-
tive equal to zero. This construction has
substantial economic significance. If we
imagine H to be multiplied by A, we can
see that it is the sum of the total profits
earned in the interval A plus the accrual
of capital during the interval valued at its
marginal value. HA is thus the total con-
tribution of the activities that go on during
the interval A, including both its direct
contribution to the integral W, and the
value of the capital accumulated during
the interval. Naturally, then, the decision
variable x during the current interval
should be chosen so as to make H as great
as possible. It is for this reason that the
procedure we are describing is called the
maximum principle. A simple and {re-
quently effective way to do this is to choose
a value of the control variable for which
the partial derivative vanishes, as we have
done.

We have also, in effect, computed the
partial derivative of H with respect to %
and equated that partial derivative to
—X. The common sense of this operation
can be seen best from a modified Hamil-
tonian,

H*

Il

/)
u(k, x, t) + (—)\k
dt

w(k, x, t) + Nk -+ Ak

H*A is the sum of the profits realized dur-
ing an interval of length A and the increase
in the value of the capital stock during the
interval, or in a sense, the value of the total
contribution of activities during the inter-
val to current and future profits.” If we
maximize H* formally with respect to «
and % we obtain:

Ju 3
1 A"‘:‘f‘=

— 4+ 0,
ox dax

ou of .
—+A=4+Ar=0,
ok ok

7 H* differs from H by including capital gains.

which are equations (5) and (6).

Of course, the firm cannot maximize H*
with respect to & since k is not a variable
subject to choice. But we now see that
equations (5) and (6) advise the firm to
choose the time-paths of x and N\ so that
the resultant values of %k are the ones it
would choose, if it could do so, to make the
sum of profits and increment in capital
value as great as possible in every short
time interval.

As a technical note, in differentiating H,
the marginal value \ is not regarded as a
function of x and k, but as a separate
time path which is to be determined op-
timally.

Now we have before us the basic ideas of
the maximum principle. There is naturally
much more to the method than these two
formulas. A good deal of mathematical
elaboration is required before the two
formulas can be implemented, and we shall
indicate later some of the complications
that can arise. But there is one additional
feature that has to be mentioned before we
have finished dealing with fundamentals.
This concerns the boundary conditions;
for example, the amount of capital avail-
able at the beginning of the planning peri-
od and the amount required to be on hand
on the terminal date.

To see how these boundary data affect
the solution to the problem, consider how
the three basic formulas operate. They are:

(1) k= f(k, x, t)
_ n of
(11 — A2 =0
ox ox
(111 AR
ok ok

The first of these is part of the data of the
problem. It specifies how capital grows at
any instant as a result of its current stand-
ing and the choices made. The other two
formulas are the main results of the maxi-
mization principle. Formula II says that
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the choice variable at every instant should
be selected so that the marginal immediate
gains are in balance with the value of the
marginal contribution to the accumulation
of capital. Formula IIT says that capital
depreciates at the same rate that it con-
tributes to useful output.

The three formulas are conveniently
written and remembered in terms of the
Hamiltonian. In this form they are:

@) 2k
oA
oH
Ir — =0
an -
0H
111 — = — .
() -

Notice the reciprocal roles played by £ and
A in these equations. The partial deriva-
tive of H with respect to either is simply
related to the time-derivative of the other.
These three formulas jointly determine
completely the time paths of the choice
variable, the capital stock, and the value
of capital. We shall start at time zero with
a certain capital stock and a certain initial
value for capital. Now look at formula II
written out a bit more explicitly:

(ID) 2 u(k, x, t) + A(t) 2 Sk, x,t) ="0.
dx dx

With % and X known, this formula deter-
mines the value of x, the choice variable.?
Putting this value in formula I we obtain
k, the rate at which the capital stock is
changing. Putting it in formula III we
similarly obtain A the rate at which the
value of a unit of capital is changing. Thus
we know the capital stock and the value of
a unit of capital a short time later. Using
these new values, we can repeat our sub-

® Some mathematical complications arise here. We
assume that with £, A, and t given, formula (II) is
satisfied by a unique value of x.

stitutions in the three formulas and so find,
in order, a new value of the choice variable,
a new rate for the change in the capital
stock and a new rate for the change in the
value of capital. Repeating this cycle over
and over again, we can trace through the
evolution of all the variables from time
zero to time T.

In short, these three formulas working
together determine the optimal paths of all
the variables starting out from any given
initial position. In another sense, then, the
problem of the choice of an optimal path
has been reduced to a much simpler prob-
lem, the problem of choosing an optimal
initial value for the value of a unit of
capital. This is not by any means an easy
problem, but it is obviously a great deal
easier than finding an entire optimal path
without the aid of these formulas.

IT1. The Boundary Conditions

We can now mention the role of bound-
ary conditions. They are of two sorts.
Initial conditions describe the state of the
firm or economy at the initial date, t=0.
In particular, they set forth the initial
stock of capital. Terminal conditions
prescribe the values of some, or all, of the
variables at the terminal date, t="T. For
example, the problem may require that
the firm have at least some specified stock
of capital, say K on hand at the terminal
date, which can be imposed by including
k(T) > K in the conditions of the problem.
Or, again, if the problem is strictly one of
maximizing profits during a finite interval,
0 to T, it is clear that capital on hand at
date T cannot contribute to that objec-
tive; it exists too late to be of service before
date T. Such a problem gives rise to the
terminal condition \(T)=0.

Now we have seen that the three equa-
tions (I), (II), (III) jointly determine the
entire evolution of x, &, and \ once the
starting values have been prescribed. In
particular they determine the terminal
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values. We have only® to determine a set
of starting values that leads to acceptable
terminal values to find an entire time path
that satifies the necessary conditions for
being optimal. In our example, since the
initial capital stock is given, the critical
initial value to be dctermined is A(0), the
marginal value of capital at the initial
date. The three basic formulas, abstract
though they may appear, in fact con-
stitute a constructive solution to the prob-
lem of choosing an optimal time path.
They are a solution, in principle, of the
problem of optimal capital accumulation.
We have now found that the old-fash-
ioned technique of equating margins, used
with a little ingenuity, leads to the maxi-
mum principle, which is the fundamental
theorem of optimal control theory.

IV. An Example

About the simplest known example of
the application of these principles to an
economic problem is the derivation of the
socially optimal path of capital accumula-
tion for a one-sector economy with an ex-
ponentially growing population and pro-
duction under constant returns to scale.!®

Let us set forth some notation and data.
N(t) is population at date t. Since popula-
tion grows exponentially, at rate n, say,

N(t) = N(0)et.

It will save clutter if we assume N(0)=1
(measured in hundreds of millions of
people). Denote per capita consumption by
¢ and the utility enjoyed by a person con-
suming at rate ¢ by #(c). The total utility
enjoyed by all the persons alive at time t
with per capita consumption at rate ¢ is

emu(c).

Let p be the social rate of time preference.

% Only! Reputations have been made by solving this
problem in important instances.

10 A more extended discussion of a very similar model
can be found in Arrow (1].

Then the importance at time 0 of the con-
sumption achieved at time t is

) e~Ptertu(c) = e u(c).

A defensible social objective for a society
with time horizon T (conceivably infinite)
is to maximize

T
(8) W = f ety (c) dt,
0

or the sum of the utilities enjoyed between
0 and T.M

Consumption is limited by output and
output by capital stock. Let K(t) denote
the capital stock at date t and let k(t)=
K(t)/N(t) denote capital per capita. By
virtue of constant returns to scale, we can
write the production function of the
economy as

7(t) = N(t)f(R(1))
or, omitting the confusing time-arguments,
Y = Nf(E) = enf(k).
Gross investment equals output minus
consumption, or ¥Y-N¢. Net investment
equals gross investment minus physical
depreciation. Suppose that physical capi-
tal deteriorates at the rate & per unit per
annum so that the total rate of decay of

the physical stock, when it is K, is 6K.
Then net capital accumulation is

K=Y — N¢c— 8K = N(f(k) — ¢) — 8K
= N(f(k) — ¢) — 5Nk
= V(f(k) — ¢ — 84k).

Finally, eliminate K by noticing:

i d K A(K v>
it N N\K N

K
k(ﬁ - n)
= f(k) — ¢ — ok — nk

= f(k) — ¢ — (n + 8)k.

1 It is best to assume p>n or else the integral will be
infinite for T= o

®

i
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Equations (8) and (9) constitute our
simple example. Equation (9) is an ex-
ample of equation (I). To derive equation
(IT), differentiate equations (7) and (9)
with respect to the choice variable, ¢:

9
— eRlty () = e—Py!((),
dc

S ® = c— (n + k) = —1.
dc

Hence equation (II) is:
(10) ey (c) — A =0,

or the value of a unit of capital at time t is
the marginal utility of consumption at
that time, adjusted for population growth
and the social rate of time preference.

Equation (III) is obtained similarly by
differentiating equations (7) and (9) with
respect to k. There results:

—A =0+ A[f/(R) — (n+ 8)],

or

(11) f’(k)=n+8-—%.

Equation (10) can be used to eliminate the
unfamiliar N. Differentiating it with re-
spect to time:

A w'(c) de
—_———= g — P —_—
A u'(c) dt
Thus equation (11) becomes
u'(c) de
"(B) = p+ 6 — —.
(k) =p o &

This is our final equation for the optimal
path of capital accumulation. It asserts
that along such a path the rate of con-
sumption at each moment must be chosen
so that the marginal productivity of capi-
tal is the sum of three components:

(1) p, the social rate of time preference,
(2) &, the rate of physical deterioration
of capital, and

(3) the rather formidable looking third
term which, however, is simply the
percentage rate at which the psychic
cost of saving diminishes through
time. This can be seen by noting
that the psychic cost of saving at
any time is #’(c), its time rate of
change is #'/(¢c)dc¢/dt, and its per-
centage time rate of change is the
negative of the third term in the
sum.

In other words, along the optimum path
of accumulation the marginal contribution
of a unit of capital to output during any
short interval of time must be just suffi-
cient to cover the three components of the
social cost of possessing that unit of capi-
tal, namely, the social rate of time-prefer-
ence, the rate of physical deterioration of
capital, and the additional psychic cost of
saving a unit at the beginning of the
interval rather than at the end. All of
these are expressed as percents per unit of
time, which is also the dimension of the
marginal productivity of capital.

The evolution of this economy along its
optimal path of development can be vi-
sualized most readily by drawing a phase
diagram as shown in Figure 1. We have
found that the rates of change of & and ¢
can be written:

©) L k=fk)— (n+k—c
%0
- w"(c)

Thus k=0 whenever ¢ and k satisfy the
equation

[p+35—r1®]

¢ = f(k) — (n+ o)k.

In Figure 1, % is plotted horizontally and ¢
vertically. The curve labelled 2=0 shows
the combinations of ¢ and % that satisfy
this equation. It has the shape drawn
because of the conventional assumptions
that the marginal productivity of capital
is positive but diminishing (i.e., f/(k) >0,
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FigurE 1

f'(k)<0), and the very plausible assump-
tion that for very low levels of capital per
worker, f'(k) >n-+8. We also assume that
no output is possible without some capital,
i.e., f(0)=0. If consumption per capita is
less than the rate on the locus just de-
scribed, capital per capita increases (£>0).
Above the locus £<0.

Similarly, consumption per capita is un-
changing (¢=0) if

f'(k) =p+a.

The vertical line in Figure 1, labeiled ¢=0,
is drawn at this level of k. If we accept the
usual assumptions of positive but diminish-
ing marginal utility #’(c) >0, #’’(c) <0.
Then ¢>0, i.e., per capita consumption
grows, to the left of this line. The reason is
that with low levels of capital per capita
the amount of depreciation is small and
the amount of capital needed to equip the
increment in population with the current
level of capital per capita is also small.
These considerations enable us to depict
qualitatively the laws of motion of the
system. Imagine an initial low level of
capital per capita, represented by the
dashed vertical in the diagram. The entire
evolution of the system is determined by
the choice of the initial level of per capita
consumption. If a low initial level is
chosen, such as at point 4 in the figure,
both consumption and capital per capita

will increase for some time, following the
curved arrow that emanates from point 4.
But when the level of capital per capita
reaches the critical level, consumption per
capita will start to fall though capital per
capita will continue to increase. This is a
policy of initial generosity in consumption
followed by increasing abstemiousness in-
tended, presumably to attain some de-
sired ultimate level of capital per capita.

Similarly, the path emanating from
point B represents a policy of continually
increasing consumption per capita, with
capital initially being accumulated and
eventually being consumed. The other
paths drawn have similar interpretations.

The path originating at point C is of
particular interest. It leads to the inter-
section of the two critical loci, the steady
state of the system in which neither per
capita consumption nor per capita income
changes. Once at this point all the absolute
values grow exponentially at the common
rate 7.

It is now seen that if the initial capital
per capita is given, the entire course of the
economy is determined by the choice of the
initial level of per capita consumption.
This choice determines, among other
things, the amount of capital per capita at
any specified date.!? If the conditions of
the problem prescribe a particular amount
of capital at some date, the initial ¢ must
be the one with a path that leads to the
specified point. If there is no such pre-
scription for capital accumulation, the
initial ¢ will be the one that causes the
capital stock to be exhausted at the ter-
minal date under consideration. And if
there is no terminal date (i.e., T= ) the
problem becomes much trickier mathe-
matically and, indeed, the theory of
optimization with an infinite time horizon
is not yet completely established. But, in
this simple case, we can see that the only

2 The position of the economy at particular dates
cannot be read off the phase diagram.
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possible solution is the path that originates
at point C and terminates at the point
where ¢= k=0. For, the figure shows that
all other paths that satisfy the optimizing
conditions lead eventually to situations in
which either ¢ or % is negative. Since such
paths cannot be realized, the only feasible
optimizing path is the one that approaches
¢=k=0.

This result is quite characteristic of in-
finite horizon problems: the optimal
growth paths, under many conditions, ap-
proach the situation in which consumption
and the capital stock grow exponentially
at a rate determined by the rate of popula-
tion growth and the rate of technical prog-
ress (here assumed zero), just as in this
case.

For finite horizon problems, it can be
shown that the more remote the terminal
date considered, the closer the path will
come to the steady state position (¢= k=0)
before veering away to either high con-
sumption or high capital accumulation as
the case may be. This is a version of the
turnpike theorem.

V. Derivation via Finite Maximizing

Those who distrust clever, intuitive ar-
guments, as I do, may find some comfort in
seeing the same results deduced from the
more familiar method of maximizing sub-
ject to a finite number of constraints. Let
us suppose that the entire period of T
months is divided into # subperiods of m
months each. u(x,, &k, t) then denotes the
rate at which profits are being earned or
other benefits derived during the t-th sub-
period, with x, being the value of the deci-
sion variable during that subperiod, and %,
the value of the state variable at its begin-
ning. Since the subperiod is m monthslong,
the total profit earned is u(x:, ki, t) m.

The rate of change of the state variable
during the t-th subperiod is f(x:, &, t).
Then the values of the state variable at the
beginnings of successive subperiods are
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connected by the equation
(12) kt+1 =k +f(x¢, kt, t)m.

Finally, the finite version of our problem
is to choose 27 values, x:, &, so as to maxi-
mize the total profit over the entire period,

n

Z u(xh kt; t)m

t=1
subject to the # constraints (12), and to
any boundary conditions that may apply.
To be specific, suppose that initial and
terminal values for the state variable are
preassigned. These give rise to the side
conditions

ki = K
k”+1 = KT.

This problem is solved by setting up the
Lagrangean function

L =2 u(x, ki, t)m

t=1

+ Z At[kt +f(xt, kg, t)m - kt—{-l]
1

+ o[ Ko

and setting each of its partial derivatives
equal to zero. The Greek symbols in this
formula are the Lagrange multipliers, one
for each constraint. We shall interpret
them after we have completed our calcula-
tions.

The same Hamiltonian expression that
we encountered before is beginning to
emerge, so it is convenient to write

H(xc, ke, t) = u(xe, by, t) + )\cf(xt, ke, t)

and

— F1] + plkapr — K]

=m Z H(xy, ke, t) + Z Ae(ke — kepr)
+ M(Ka - kl.) + M(kn+1 - KT)

Now differentiate and equate derivatives
to zero:
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c')xt, c')xt
= [ul(.'l';, k;, t) “I" )\tf]_(.'lft, kg, t)]nl = 0
fort=1,...,mn,
which is analogous to equation (5). And
oL

4]
— =m—H(x, ke, t) + A — A1 =0
akt akt (t t) t t—1

or
At — A1
- ——— = (X, ky, L
(14) m & ki )
+ )x,fz(xt, kg, t), fort = 1, N

which is the discrete analog of equation
(6).
Finally

oL

— = — N+ u=0.
akn«l»l

Thus p=N\, and can be forgotten.

These equations are applicable to prob-
lems in which time is regarded as a dis-
crete variable. The Lagrange multipliers
have their usual interpretation. In par-
ticular, A is the amount by which the max-
imum attainable value of D u(wx.k,t)m
would be increased if an additional unit of
capital were to become available by magic
at the end of the t-th period. In other
words, \, is the marginal value of capital
on hand at date mt.

The maximizing conditions found pre-
viously should be the limit of these equa-
tions as m approaches zero and # ap-
proaches infinity, and they are. To show
this, we have to revise our notationslightly.
The subscripted variables now denote the
values that the variables have in the t-th
period. When m changes, the dates in-
cluded in the t-th period change also. So
we need symbols for the values of the vari-
ables at fixed dates. To this end, let =
denote any date and x(r), for example, the

value of x at that date. The connection be-
tween x; and x(7) is easy. Any date 7 is in
the subperiod numbered t where t is given
by
t =1+ [v/m].
In this formula, [ ] is an old-fashioned
notation meaning ‘‘integral part of.” For
example: [3.14159]=3. Then x(7) is de-
fined by
w(1) = 1yfo/ml,
and similarly for the other variables. Equa-
tions (13) and (14) can now be written in
terms of 7:
wui[x(r), k(r), 7]
+ ’\(T)fl[x(r)r k(T)) T] = 07
A7) — Nr—m)

(15)

= uy|x(7), k(7), 7]

+ A@fol2(7), k(7), 7].

Notice in equation (16) that \,_; has been
replaced by A(r-m), reflecting that the
beginnings of the intervals are m months
apart.

Equation (15) is identical with equation
(IT). As m approaches zero, the left-hand
side of equation (16) approaches—Ai(r),
taking for granted that it approaches a
limit and applying the definition of the
derivative. The whole equation, therefore,
approaches equation (III). Equation (I)
is similarly and obviously the limiting
form of equation (12).

Thus the basic equations of the max-
imum principle are seen to be the limiting
forms of the ordinary first-order necessary
conditions for a maximum applied to the
same problem, and the auxiliary variables
of the maximum principle are the limiting
values of the Lagrange multipliers.

(16)

V1. Qualifications and Extensions

This entire development has been ex-
ceedingly informal, to put it kindly. The
calculus of variations is a difficult and
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delicate subject, so that a choice always
has to be made between stating a propo-
sition correctly, with all the qualifications
that it deserves, and stating it forceably
and clearly so that the essential idea can be
grasped at a glance. The more intelligible
alternative has been chosen throughout
this paper since all the theorems have
been stated and proved rigorously else-
where in the literature.’® This choice, as it
happens, has especial drawbacks in the
present context because much of the virtue
of the maximum principle lies precisely in
the qualifications that have been sup-
pressed: it is valid under more general con-
ditions than the classical methods that
yield almost the same theorems.

As an example of the alternative mode
of exposition, our main conclusions can be
stated more formally and correctly as fol-
lows:14

THEOREM 1. Let it be desired to find a
time-path of a control variable z(t) so as
to maximize the integral

f Tu[k(t), x(t), t]dt

where

2 O, 20, ]
-d—t—f (t’x()’ ’

where k(0) is preassigned, and where it is
required that 2(T) >X. It is assumed that
the functions «(%, x, t) and f(%, x, t) are
twice continuously differentiable with re-
spect to %, differentiable with respect to x,
and continuous with respect to t. Then if
«*(t) is a solution to this problem, there
exists an auxiliary variable A(t) such that:

(a) For each t, x*(t) maximizes H[k(t),
z(t), \(t), t] where H(k, x, \, t) =u(k, x, t)
+Nf(k, x, t);

13 For example, in Arrow and Kurz {3] and Halkin [5].

" The given theorem is adapted from Arrow [2],
Propositions 1 and 2. More elaborate theorems can be
found in that source.

(b) A(t) satisfies
X oH

dt dx

evaluated at k=~k(t), x=x*(t), A=\(t);
and

(c) 2(T) =K, MT)=0, NMt)[((T)—XK]
=0.

This theorem applies to the type of
problem that we have been considering,
with the useful elaboration that a lower
limit has been imposed on the terminal
value of the state variable, k. Part (c) of
the conclusion, called the transversality
condition, arises from this added require-
ment. It asserts that the terminal value of
the auxiliary variable cannot be negative
and that it will be zero if, at the end of the
optimal path, 2(T) exceeds the required
value.

The principle difference between this
formal statement and our previous con-
clusions lies in conclusion (a) of the The-
orem. The assertion that the Hamiltonian
function, H, is maximized at each instant
of time is not the same as the assertion
that its partial derivatives vanish, made
in our equations (II) and (II'). Equating
partial derivatives to zero is neither neces-
sary nor sufficient for maximization,
though it is especially illuminating to econ-
omists, when it is appropriate, because
conditions on partial derivatives translate
readily into marginal equalities. There are
three complications that can make the
vanishing of partial derivatives an inade-
quate indication of the location of a maxi-
mum.

First, there are the so-called higher order
conditions. First partial derivatives can
vanish at a minimum or at a saddle-point
as well as at a maximum. To guard against
this possibility, second partial derivatives,
and even higher ones, have to be taken into
account.

Second, the vanishing of partial de-
rivatives, even when higher order con-
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ditions are satisfied, establishes only a local
maximum. It does not preclude that there
may be some other value of the variables,
a finite distance away, for which the func-
tion to be maximized has a still higher
value. For reassurance on this point, one
must inspect global rather than merely dif-
ferential or local properties of the functions
involved.

Finally, where the range of variation of
the functions involved is limited in some
manner, the maximum may be attained at
a point where the partial derivatives do
not vanish. This is a frequent occurence in
economic applications, made familiar by
linear programming. For example, it may
be optimal for a firm with great growth
possibilities to reduce its dividends to zero,
though negative dividends are not per-
missible. In terms of our formulas this
would be indicated by finding

0H/dxe < 0 forallx, >0,

where x, denotes dividend payments per
year at time t. H would be maximized by
choosing x,=0, its smallest permissible
value, although the partial derivative does
not vanish there.!® This maximum could
not be found by the ordinary methods of
the calculus. Other methods are available,
of course, for example those of mathe-
matical programming. It is in just these
circumstances that the maximum principle
yields more elegant and manageable the-
orems than the older calculus of variations,
which is more closely akin to the differ-
ential calculus.

For all these reasons, the fundamental
condition for an optimal growth path is the
maximization of H(k, x, \, t) at all mo-
ments of time, and the vanishing of 0H/dx
is only an imperfectly reliable device for
locating this maximum. It is, however, a
very illuminating device and contains the
conceptual essence of the matter, which
is why we have concentrated on it.

18 Technically this is called a “corner solution.”

Throughout the discussion we have tried
to be ambiguous about the exact nature of
the time paths, x(t) and k(t). We have
treated ¥ and % as if they were one-di-
mensional variables, such as the quantity
of capital or the rate of consumption. In
many economic problems, however, there
are several state variables and several
choice variables. In such problems, it is
profitable to think of x(t), k(t), their de-
rivatives, and so on, as vectors. Then A(t)
should also be regarded as a vector, with
one component for each component of
k(t). When this viewpoint is taken, all our
conclusions and the theorem still apply
with scarcely a change in notation. That
is why we were so ambiguous: it is easiest
to think about ordinary numbers, but our
conclusions and even most of our argu-
ments are applicable when the variables
are vectors.

The last remark raises some important
new possibilities. Many economic prob-
lems concern the time paths of intercon-
nected variables. For example, a problem
may deal with the growth paths of con-
sumption (c), investment (¢), government
expenditure (g), and income (y) in an
economy. These four variables can be re-
garded as four components of a decision
vector, x, connected by an income account-
ing identity c(f)+i(t)+g()=y(s). Then
the optimizing growth-path problem re-
quires finding optimal growth paths for
these four variables (and perhaps others)
that satisfy the income accounting identity.

The new feature that we have en-
countered is the introduction of constraints
or side conditions on the values of the de-
cision variables. The same line of reasoning
that we have been using applies, with the
sole modification that when the function
V(k, x., t) is maximized, the vector «. has
to be chosen so as to satisfy all the side
constraints. The algebra becomes some-
what more complicated but leads to con-
clusions like those discussed above and
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with the same economic import. In 1968,
Kenneth Arrow derived a lucid version of
the formal statement of the theorem ap-
plicable to problems in which the decision
variables are constrained. See [2, Proposi-
tion 3, p. 90]. Of course, this argument, too,
presumes that circumstances are such that
the proper partial derivatives vanish at the
maximum.
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