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Investment and rate of return
for the regulated firm

Blaine E. Davis

Management Sciences Division
American Telephone & Telegraph Company

The subject of this paper is a public utility’s optimal dynamic response
to the rate of return allowed by a regulatory commission. The problem
is formulated in terms of the firm’s capital-budgeting policy, and a
dynamic analysis is made using modern control theory. This permits
the utility’s financial policies to be related directly to (a) the way the
capital market values the utility and (b) the restriction on earnings im-
posed by rate-of-return regulation. The solution to the resulting non-
linear control problem provides a quantitative basis for analyzing the
impact that small changes in the rate of return have on market valua-
tion and the firm'’s investment policy. The results furnish one measure of
what is commonly called ““capital attraction capability,” or the firm’s
ability to attract investment capital in a competitive capital market,
and display the relation between that capability and the allowed rate
of return.

B Because regulatory policy judgements are casuistic in substance
they have generally been considered beyond quantitative representa-
tion or assessment. However, recent years have seen attempts to
apply “scientific method” to the regulatory process through the use of
mathematical models. This does not mean human judgement can or
should be eliminated. But it may be possible to supplement and
buttress judgement so as to improve the fairness and consistency of
regulatory decisions.

The purpose of this paper is to present a quantitative framework
showing what effect a rate-of-return specification can have on the
structure and composition of the regulated firm’s long-range invest-
ment decisions and the value the capital market assigns to the firm.
From this some consequences of regulatory rate specifications can
be seen.

The central task is to construct and solve a formulation for a
regulated utility in terms of its capital budgeting. This makes it
possible to link the utility’s investment decisions to (1) the way the
capital market values the utility and (2) the restriction that rate-of-
return regulation imposes on earnings. This rate-of-return specifica-
tion appears explicitly in the optimal strategies of the solution to the
capital-budgeting model. The allowed rate not only affects the
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values of the strategies, it also affects the very structure of the solu-
tion in that totally different solutions result from different ranges in
the rate of return. The impact of small changes in the rate of return
on capital budgeting policy and on the market’s valuation of the
firm has long been observed in practice. This paper furnishes a
theoretical framework from which these findings can be analyzed
quantitatively.

The results yield one quantitative measure of a “fair” rate of
return. It has long been recognized that this rate must be sufficient
to attract capital for the growth requirements of utility demand. This
appears explicitly in some of the solution cases.

B Determining the “fair return” to be allowed a privately owned,
regulated company is a complex but important task. In recent times
regulatory agencies have regulated earnings by (1) determining the
value of the utility’s outstanding investment and (2) deciding upon a
“fair” rate to apply to that value. The product of value and rate of
return is the net revenue constituting a fair return. Price schedules
are then specified to yield this net revenue. As could be expected,
this vital series of calculations has been subject to an array of
political, judicial, economic, and traditional influences whose sub-
tleties almost defy comprehension.

The question what constitutes “fair” in fair rate of return has
been the subject of controversy between utilities and government
agencies since regulation by statute appeared on the American
scene a little over a hundred years ago. Since then a long series of
court decisions, culminating with the Hope case, have set forth the
“comparable earnings” and “‘attraction of capital” standards with
which the allowed rate of return must comply. An excellent discussion
of these standards, and of others implied by them, appears in [17].

The usual way of calculating a fair rate of return is to (1) deter-
mine the rate of interest paid on long-term debt, and then (2) com-
bine this with a rate on equity capital. The two must be weighted
according to the relative proportions of the two components in the
utility’s total capitalization. The heart of the rate-of-return question
obviously lies in the determination of the rate on equity capital. The
complex problem of finding the utility’s total capitalization is not
treated here. It is assumed that the assets of the utility are properly
valued as equal to their opportunity costs in production in some other
activity in the economy.

B Attempts to analyze mathematically regulation’s impact on the
operations and investment policies of utilities can be generally
divided into two classes. First, there are formulations using the neo-
classical economic models of the firm in terms of production func-
tions and profit maximization. Second, there are formulations con-
cerned with static analysis of the utility’s financial structure; models
of this type characteristically involve no optimization operations.

Probably the best-known paper in the first class is one by H.
Averch and L. Johnson [2], who use the neo-classical model of the
firm to demonstrate that rate-of-return regulation tends to produce
capital-intensive investment decisions when the firm’s objective is



profit maximization. Westfield has presented a similar model [24],
analyzing the effects of changes in the price of capital and demon-
strating conditions under which overinvestment is optimal. Recent
investigation by Tasch [23] using this same framework showed the
crucial nature of many of the assumptions in [2] and [24].

Among financial models of regulated utilities, a paper by Sparrow
[22] presents an analysis specifying what the rate of return would
have to be to support specified growth rates of financial indicators
recognized as important by investors. Sparrow’s model requires no
optimization operations and is a generalization and synthesis of two
earlier papers [4] and [20].

An econometric approach has been presented by Gordon [7].
His financial model does involve optimization. The formulation is a
static analysis on an econometric model of share price.

A recent published attempt to construct a financial model of a
firm that integrates capital budgeting with the firm’s valuation is a
paper by Lerner and Carlton [16]. Their formulation is a static analy-
sis using an investment-opportunities schedule under common-stock
price maximization. Their results have been criticized, partly be-
cause they depend on the specific form of the investment-oppor-
tunities schedule the authors used.

There appear to be no published efforts at a dynamic financial
analysis of the firm comprehending both market valuation and
capital-expansion considerations. Such an effort, for the special case
of a regulated public utility, is the purpose of this paper.

The basic economic problem is to determine the amounts of
retained earnings and new equity capital (proceeds from securities
issues) allocated to investment under rate-of-return regulation. In-
vestment will increase future earnings. But retention of earnings re-
duces current dividends, and new equity issues tend to dilute the
current owner’s equity. Thus, the management’s control problem is
to choose the investment program that most benefits the owners.

This capital-budgeting problem is formally posed in section 4 as a
problem in optimal control. The model is a dynamic, continuous-
time model of the utility, encompassing operations and investment
in an analysis of financial activity. The formulation is entirely
financial in nature, which distinguishes it from an economic model of
the firm in that it subsumes the production function and assumes
that the utility operates along its optimal expansion path. Optimal
expansion in this analysis is concerned exclusively with capital ac-
cumulation and its development over time.

The choice of the optimal investment program is constrained by
two differential equations describing the change in stock price and
equity per share (net worth divided by the number of shares out-
standing). These constraints include behavioral assumptions per-
taining to market valuation and the utility’s operations. Retained
earnings and/or new outside capital increase the firm’s investment
capital. The maximum investment in one period is limited by an
upper bound, which can be regarded as the maximum rate at which
the utility can efficiently increase its capital and still generate its
allowed rate of return.

INVESTMENT AND RATE
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M Three fundamental differential equations are developed. These
show the changes in financial structure under conditions of internal
and external financing. The utility chooses the investment program
that is most beneficial to the owners, and this is stated in mathemati-
cal terms. The development uses the following definitions:

B(r) = total equity,

N(t) = number of shares of common stock,

E(t) = equity per share (= B(#)/N(1)),

X(¢) = total net earnings,

d(t) = dividend per share,

r(t) = rate of return to equity capital,

P(t) = market price per share of common stock.

All of these variables are functions of time, ¢.
First, consider the effects of investment on equity. Retained
earnings are an effective increase in equity and can be expressed as

X(t) — N(@)d(¢)
or, equivalently, as

N@E(Dr(1) — d(0)] .

Equity can also be increased by issuing new stock. Let § denote
the discount on market price to enhance the marketability of the
new issue. The quantity § should be interpreted as the average or
effective discount, since discounting can take many forms. Internally
it represents the cost per share of marketing the issue. Thus

0<s<l,
with
(1 — 8)P(¥) = the effective price of the new issue,
and

(1 — 8)P(t)N(¢) = dollar value of new outside equity raised.!
Thus, the change in equity can be expressed as
B(t) = NOE(H1) — d(D] + (1 — HPON() .
It follows directly from the definitions that
B(t) = N(OEQ) + N(t)E(t)

is an alternative form of this change. Combining these two expres-
sions yields )
: N(1)
E(®) = E@r@) — d@)+ [(1 — 8)P(@) — E(t)) —
N(t)
which denotes the change in equity per share. This equation describes
the change in owner’s equity when the firm both retains some earn-
ings and also raises new equity capital. The only behavioral assump-
tion is embedded in the assumption that § is a known constant.
Investment by retention and equity financing also affects the
price of a share. Unlike the equity equation above, the price equa-
tion to be developed is almost exclusively behavioral. It is an attempt
to represent mathematically the mechanism of market valuation of
publicly owned firms.

1 A dot over any variable denotes the first time derivative of that variable; i.e., N = dNdt.



Proceeding along traditional lines,? the market mechanism can be
stated as follows. The marketability of a stock is governed by (1) the
expectation of post-purchase price appreciation and (2) the present
level of dividends. This mechanism operates in any trading period to
adjust the price of a share to equal the combination of expected price
appreciation and current dividends, discounted by a rate applicable
to investments of comparable risk. The following traditional assump-
tions will facilitate a more formal representation of this mechanism.

1. Investors always prefer more wealth to less and are indifferent
between dividends and capital gains.

2. No single buyer or seller of shares is large enough to influence the
market price significantly. Also, no special costs are incurred in the
actual trading mechanism, and there are no tax differentials that
could influence preference between dividends and capital gains. (The
assumption that any new stock issued by the utility at a discounted
market price will not affect the prevailing market price is implied.)

Under these assumptions, and given sufficient time for trading,
the following must hold [20]:

P(t+ 1) — P(1) + d(t) = p()P(1)

where

P(t + 1) = the expected price at the end of the trading period
(assumed one unit in length)
and
p(t) = investor discount rate .

This is an equilibrium condition and is called the “principle of
valuation.” It states that in any trading period the market will, given
enough time, adjust the price so that dividends plus expected capital
gains equal the rate of return the investor requires on an expenditure
of P(z).

The “sufficient time for trading” condition means that if

P4 1) — P(t) + d(1) — p()P(1) > 0,
then the market will react to increase the current price, and if
P(t+ 1) — P(t) + d(t) — p(t)P(t) < O,

then the market will react to decrease the current price.

To capture the above character of these equilibrating price
adjustments, which counteract tendencies for inequality in the
principle of valuation, a continuous-time representation will be used.
The following differential equation exhibits this character:

B(t) = c[d(t) — p(t)P()], ¢ > 0,

where ¢ can be thought of as a trading activity factor denoting how
quickly the market responds to tendencies for inequality in the
principle of valuation. This is the mathematical description of price
change that will be used in the capital-budgeting model. The tradi-
tional assumption of “market certainty” has been made.

The rate p(#) is often called the investor rate of return or investor
capitalization rate for investments of comparable risk. It should not
be confused with (), the rate of return on equity capital.

2 An example that uses this traditional point of departure is [20].

INVESTMENT AND RATE
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Normally, there are three sources of capital funds for investment:

1. retained earnings,
2. new outside equity,
3. debt or senior capital.

It is assumed that the utility has the option to use all three sources.
Let A(¢) represent the net assets of the utility at time ¢.

Then
A1) = B()+ Q1)

where

Q(t) = debt at time ¢
and

B(1) = equity at time ¢.
Define
h(t) = Q—(t-) = debt-equity ratio.
B(1)

Then

A@) = B[l + h(1)]
and

A() = BOIL + h(0)] + B(h(r) .
Recall the development of the relationship for change in equity —
B(1) = NOOE(tr(t) — d(n)] + (1 — 9)PON() .
Substituting this into the relationship for change in assets —

A1) = [1 4+ h(D)B(1) + B()h(2)
yields

Ay = 1+ KOINOE@OA(?) — d(0)] .
+ (L= OPONDL + h(t)] + BOD) .

Factoring out [l 4 A(7)]B(t) = A(t) and using the identity B(¢)
= N(t)E(r) yields the relationship

P [ ) d(r) s P(1) N(t)+ h(t) }
= t “(f) — —— — —_— -
@ ] E(1) % EO)N@) 14+ )

This is how the total assets of the utility will increase when any or all
of the three sources of capital are used for investment.? The rate of
change of the utility’s asset base is represented by

A1)
—— = rate of change of net assets,
A()

and this is the quantity which will be bounded under the assumptions
to be imposed on conditions for maximum growth rates.

3 The instantaneous rate of change of assets, A.(t) /A(D), i1s composed of the three capital sources
available to the utility:

d() . .
1 () — E , the contribution from retained earnings;

P(1) N() _ -
2 (1 = §) ————, the contribution from new equity issues;
E(@) N
10)

1+ h(n)

, the contribution from debt ot senior capital.



The capital budgeting activities of a utility must be centrally con-
cerned with preserving the financial integrity of that utility while
attempting to meet the investment requirements to satisfy demand for
service. The objective of its investment program must be one that is
most beneficial to the suppliers of investment funds—old equity
owners for internal sources, and new equity owners for external
sources. The composition of any investment program should be
structured to produce the greatest increase in the worth of their
present holdings. This compensation principle is necessary to ensure
confidence in the financial integrity of the utility so as to maintain its
ability to attract and retain capital. This can be quantitatively stated

MaxP(T) exp[— o(T)T] + / d(1) exp I:— / p(u)du} dt,

where (%, T) represents the planning period of the capital budgeting
program with #, representing the present time. (The assumption of
investor (and owner) indifference between dividends and capital
gains is also implied by this objective function.) This will be con-
sidered the objective of management in planning the investment
program. The planning horizon, T, is quite arbitrary and can be
considered infinite if desired. For the case of a bounded terminal
price, infinite planning horizon, and constant market capitalization
rate, the objective would appear as

Max/ d(t) exp[— ptldt.
Joto

Without the maximization operation this function is the classical
definition of the price of a share of common stock.* Thus as the
planning horizon tends to infinity, the objective of management is to
choose investments to maximize the price of its stock, an objective
function used frequently in static analysis of firm valuation.®

Standard and traditional assumptions have been made concern-
ing the mechanism of firm valuation and the objective of the utility.
Assumptions will now be made pertaining to the operations of the
utility which yield quantitative instruments of control in capital ex-
pansion decisions. Special characteristics of a utility which limit some
of the variables previously defined will be noted.
The operating assumptions are:

1. Dividends will constitute a proportion of earnings.® That is,

d(@) = [1 — uDJEDr({®) ,
where

u.(t) = the retention rate (a management control variable)

and
0<u()<1.

The retention rate is defined as the investment accrued from earnings,
expressed as a fraction of current earnings.

2. The dollar value of new outside equity subscribed will be deter-

4 The classical reference is [25].

5 See [8], [9], and [16].

6 The importance of dividend policy in financial models is not a settled issue. This model tends INVESTMENT AND RATE
to emphasize its role. For another view, see [20]. OF RETURN / 251
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mined as a proportion of current earnings.” This assumption allows
retained earnings and new outside equity to be determined under
the same conceptual structure. The assumption yields

u(OONOEr(@t) = (1 — 6)P(t)N(t),
where

u(t) = stock financing rate (a management control variable),

and
uft) > 0.

The stock financing rate is defined as the investment accrued from
new equity issues expressed as a function of current earnings.

Limitations and restrictions on variables are:

3. The utility has a binding and meaningful rate-of-return constraint
in force. Let

r = maximum allowable rate of return to equity capital.

For this constraint to be meaningful its value must exceed the interest
rate on debt, and it is always advantageous for the utility to force its
actual rate of return to the constraint. That is

r(¢) = rfor all ¢
and

r > i where i = interest on long-term debt.

4. There is presently in the literature no conclusive preference for
describing the mechanism underlying changes in the debt-equity
ratios of firms. However, once a debt-equity ratio is arrived at there
is a tendency to maintain this ratio in future capital-expansion
decisions. A constant debt-equity ratio will be assumed in this
analysis. Empirical justification for this assumption can be found in
[18] and [19].

5. The rate of growth of assets is constrained from above. Due to the
special nature of the services and markets of a utility, this bound is
assumed known and constant. That is,

%(0)

<k

A(r)

6. The conditions of specified maximum growth rate, constant rate
of return on equity, constant debt-equity ratio, and a utility type firm
collectively infer that p(¢) should be very stable. If it is assumed that
the market rate of interest on long-term debt is constant over the
period of interest, then under most generally accepted hypotheses
on what influences changes in p(¢),® it can be assumed that p(#) will
be constant. That is
p(t) = p.

7. Assume that the investor discount rate exceeds the growth rate.
That is
o> k.

7 This assumption artificially simplifies the difficulty underlying the choice of size of an equity
issue. Alternative views of a similar nature appear in [8] and [20].
8 See [16] for a recent example.



If this relationship does not hold, the “growth paradox™ can be en-
countered, which is not characteristic of firms in the utility sector.

Assumptions 1 and 2 deal with the internal operations of the
utility. They are behavioral assumptions which lead to quantitative
specification of managerial instruments of control for capital-budget-
ing decisions. Assumptions 3 through 7 collectively establish the
conditions of stable economic stationarity in that the economic condi-
tions encountered in the future will be much the same as they are at
present. Thus the framework of the analysis to follow, while dynamic
in context, assumes a stationary economic environment.

The capital budgeting problem to be solved can be descriptively
stated: “Find the investment rate and composition which will
maximize the present value of the owner’s holdings when the com-
pany is a regulated public utility.” Under the assumptions above,
this can be mathematically stated as a problem in optimal control,?
which is

MaxP(T) exp[— oT]| + / [1 — u)|rE(t) exp|— pt]dt,

subject to

P(t) = c[rE((1 — udf) — pP(D)],

: E(1)
E(D) = rE(1) {ur(o + ule) ( o )} ,
(1 — 8)P(1)

k
”r([) + us(t) S T
’
0<ult)y, ulr),
and the initial conditions

P(t()) = Po and E(l()) = E() .

The terminal condition is given by the fixed planning horizon T.

¥ The control problem results directly from substituting assumptions (1) through (7) into the
model developed. This can be demonstrated best by considering the differential equation

Ay K0} P(t) N(r) ()
S o (1 —h) e .
40 - w5 T T s ve T e

Assumption 1) requires d(r) = [1 — u(t)]E()r(¢), thus

A0 _ PONG i
a0 " r(ut) 4+ (1 —3) o) NO) + vt

Assumption 2) requires us(DN@)E@D)r(t) = (I — P(N(), or »(J—:S)_—PWM = r(t)us(e).
E(N(@)

Making this substitution yields

) Dur(t) + r(Du(t) + 40
- = i U - 4 N T
) ey 1+ h(r)

Assumption 3) requires r(r) = r for all 1.
Assumption 4) requires /(¢) = 0 for all ¢, thus

Ay +
——= = ru1 rus(t) .
A1) ’
Assumption 5) requires this quantity to be bounded by £, i.e..
o
A@)

It follows directly from this that the controls us(#) and u-(¢) are constrained by the relation

INVESTMENT AND RATE
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B Applications of control theoretic techniques to models of manage-
ment control systems have not been plentiful. One reason may be the
difficulty associated with the synthesis after the candidate solutions
have been found. We deal with this difficulty here by an application
of the construction technique of [11], cast in the control theoretic
structure of the Maximum Principle [21]. This reverse time con-
struction technique is particularly effective in solution synthesis in
that the complete solution is “built up” quantitatively by construc-
tion from solution cases. The solution cases are identified by treating
the analysis by the Maximum Principle as a mathematical pro-
gramming problem at each instant of time. This integration of the
analysis and the synthesis provides the systematic method for
solution.

In constructing the solution, the terminal manifold is para-
meterized in terms of the state variables. By starting here and moving
backwards in time, the entire state space is filled with optimal
trajectories solving the problem for arbitrary initial states. This
reverse time synthesis is guided by examining the solution cases
encountered in the application of the Maximum Principle. For this
model the solution cases are determined by a linear program solved
by inspection. The approach here is similar to that of [6]. See also
[11]. The Maximum Principle is also modified by an approach [1]
to allow ease in handling discounted objective functionals. To
demonstrate this, and to briefly review the general approach, the
necessary conditions for optimal control are reviewed below.

Without the exponential discount term in the objective function,
the capital budgeting problem would be of the form

Max V(X.t;) = GLX(T).T] + / LIX(0),U(1),1)dt

X(0) = f1X(0),U(0),1]
Un e

X(to) = Xo

T fixed .

The optimal control function, U*(¢), can be found by applying the
Maximum Principle [10], [21], formally stated as follows .Let U*(¢)
be the optimal control function which maximizes V(X,#). Then for
U*(¥) to be optimal it must necessarily satisfy

. oH
X4y = —,
AN
. oH
M) =— —,
0.4

9
N(T) = —[G[X(T),T1],
X

T

H=—,
at

X(to)= Xo,

and
H[X*(®), US(t), N*(9), 1] = H[X*(2), U(D), N"(2), 1]



for all
un e Q

(vector notation is used), where H is known as the Hamiltonian
function defined as

H = G[X(1), U@, 11+ MO - f [X(@), UQ), 1]

and \(¢) is commonly referred to as the adjoint vector. In using the
Maximum Principle, one attempts to derive a relationship between
the optimal control and the state and adjoint variables. In general
this relationship may be expected to yield

U*(t) = glX*(0, M) -

If this relationship can be uniquely determined, then this represents
the nonsingular case. If, however, the direct application of the
Maximum Principle does not lead to a unique determination of
U*(¢), then a singular situation results. The most prevalent case is
when the Hamiltonian is trivially satisfied for any U(z) over some
finite time interval. This is traditionally known as the problem of
singular controls. This condition has been investigated in a number
of articles, of which [12] is representative. Probably the most extensive
treatment of singularities is contained in [11].

When a singular control situation is encountered, additional
analysis is required to generate the singular trajectory. It is necessary

that
o d*roH
THEI
U dr2Lo U

This relation is known as the Generalized Legendre-Clebsch
Condition: [12] and [14].

The capital budgeting problem as stated, however, has an ex-
ponential discount term in the objective functional. The introduction
of this exponential into the objective functional can be troublesome in
terms of analysis by the Maximum Principle. However, a technique
discussed in [1] mitigates this situation and will be treated below.

Recall the definition of V(X, t,). Let V*(X, t,) be the maximum
value of V(X, ty). Then from the Hamiltonian-Jacobi partial dif-

ferential equation [3] for the optimal V, the following holds,
av*
D¢

= \*,

if a unique V*(X, t,) solution of sufficient smoothness exists. Now
consider the case where the objective function is discounted. That is,
consider

V(X, t5) = GLX(T), T) exp[— oT] 4+ / LLX(), UG, 1] expl—prldL.

This formulation requires that the returns L and G be discounted to
time 0. It is more natural to discount them to #, since this is the
beginning of the range of interest. To do this, define the current

INVESTMENT AND RATE
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value function
V(X, to)
W(X, ty) = — —.
exp[— pto)

Assuming a unique optimal solution of sufficient smoothness exists,
then it appears more natural to define the adjoint variables in terms
of the current-value function:

ow aVl: 1 :|
)\ = — = - E—— .
0X  9XL exp[— pi]

Now application of the Maximum Principle to the discounted
objective functional yields

H = exp[— pf]H(X, U, \, 1)

where H is the Hamiltonian for the undiscounted case. Application of
the necessary conditions requires a change only in the adjoint equa-
tion. The condition now must be stated as

d q .
— [exp(— pON))] = — — H,
dt 0X

from which the following results:

, oH
N (1) = — — + p)*.
oX

Now equation A is maximized by choice of U(f), the control
vector, and that is equivalent to maximizing H, the undiscounted
Hamiltonian. The introduction of a discount term in the objective
functional can be handled by a change in the equation defining the
adjoint variable and then proceeding as required in the undiscounted
case.

H In order to center attention on the economic evaluation of the
solution of the capital-budgeting problem, this section bypasses the
analytical complexities of solution synthesis in nonlinear optimal
control problems. An outline of the synthesis technique which leads
to the solution is presented in the appendix, and the synthesis is
available in full detail in [5].

The Maximum Principle provides a means of finding the optimal
control function under the implicit assumption that optimal control
exists. This question of existence arises since the Maximum Principle
requires the existence of the adjoint vector. If optimal control exists,
then the existence of the adjoint vector is assured. This adjoint vector
has a central role in the actual determination of the optimal control
function. In general, existence of optimal control functions for non-
linear systems is difficult to assure. However, the existence of the
optimal control function for this problem is established.?

10 See [15], page 262, for proof of this statement.



Application of the Maximum Principle with the modification to
remove the discount term requires that the optimal « must satisfy*

MaxH = Er + c\p[Er — pP] + Er[Ag — chp — 1]u,

E
+ Er\g |:1 - } U,

(1 — &P
where
. E )\EE)‘
\e = (c+ Dorp — () - . )
P/ (1 — &P
g =—r(chp + 1)+ phg — r(Ag — cA\p — D, —
E NeErus
\g |:1 - } u,+ ——, (@)
(1 — )P (1 — d)P
P = clEr(1 — u,) — pP], (3)
) E
E = Er [u, + u, <1 —_——— >} s 4)
(1 — )P

and
k
ur+usgﬁa uTZO’ usZO,
B
with boundary conditions
P(to)) = Py, E(t))= E,, M\pe(T)=1, M\g(T)=0.

To facilitate the analysis, H may be written as

H(\, P, E, u) = h(\, P, E) + S.(\, P, E)u, + S«{(\, P, E)u,,

where
h(\, P, E) = rE 4+ c\p(rE — pP),
Sr()\, P, E) = "ED\E — C\p — 1] N
and
E
Ss(\, P, E) = rE\g [1 - — il .
(1 — 5P

The maximization of H with respect to u can be characterized by the
switching functions, S, and S, which are the components of the
gradient of H with respect to u, and u, respectively.
The feasible controls lie in the triangle bounded by
k
u, =0, u,=0 and u,+ u;=—.

,
Thus the maximization of H with respect to u (at a particular time)
is a linear programming problem which may be solved by inspection.
Depending on the values of S, and S, the unique solutions are on

11 Throughout the analysis the time argument is omitted unless obvious ambiguity results.
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the vertices (the bang-bang solutions) and the non-unique solutions
are on the faces or in the interior (the singular solutions). The solu-
tion cases are listed below.!?

CONDITION

a) S.>0, S.>8, w*=—, u*=20

b) S;>0, S;> S, u*=0, u*=-

) S,<0, S,<0 u*=0, u*=0

k
d) $,=0, 5<0 0<u*<—, w*=0
,
k
e) S, <0, S;=0 u*r=0, 0<u*x<-
,
k
f) S,=8>0 w*>0, u*>0, w4 w*=-
,
k
g $=0, §=0 w*20, u*>0, u*+ u* <~
P

The singular solutions (conditions d through g) require further
analysis for a unique determination of the control variables (see
appendix).

By using the conditions on the switching function, solution
synthesis can be performed by the reverse-time construction tech-
nique. The solution will be presented by demonstrating the effects
on the state variables under conditions of optimal control. Display-
ing the state variables in terms of price-equity ratios permits a more
comprehensive understanding of movement in the state space. The
solution will be displayed in a plot of P/E versus time.!3

In performing the solution synthesis it was found that the solu-
tion depended critically on the relationship between r and p. Five
solution cases will be displayed in terms of the ratio »/p. These are

r

1. -<1
p
¥ 1
2 I<-<—, 6>0
o 1 —6
¥ 1
3. -—=
p 1—25

12 Cases a, b, and c are the nonsingular solutions, while cases d through g are singular.

13 Complete representation of the state space requires P/E, time, and either P or E itself. How-
ever, the salient features of the solution can be shown in the P/E versus time plot, which avoids the
complexities of three-dimensional plots. These are, of course, price-earnings ratios adjusted by a
constant.



k
¢+ fe(l =8+ 1]-
1 F 0

<
1—35 p (1 — 5)

k
¢t el —0)+ 1]

r p
- >
p c(l — )

Each of these cases displays a significant change in the structure of
the solution. The vector field representation of the price-equity ratio
will be concentrated around the value 1/1 — §. This is where the
major changes in movement occur. For ratios significantly outside
this range it will be obvious from the vector field how it could be
smoothly extended to attain an excluded starting position.

Each solution case will be displayed as a planar vector field with
time as the abscissa and price-equity ratio as the ordinate. The
terminal manifold, 7, bounds the field with starting positions left
arbitrary. Capsule descriptions accompany each solution case. A
more general discussion of the solution cases appears at the end of
this section. Economic interpretation of the solution cases appears
in section 7.

The following are the solution cases.

r
CASET) £ <

I_.n

-
|
=3

®

m|o

i
s

T

=

(A) u=0, u=x (8) u=0, u=0 (D) s <0, =0

Solution case 1 has simple structure with a switching manifold
at P/E = 1/1 — s. All optimal trajectories tend towards the line
P/E = r/p. The trajectories in Region B are asymptotic to »/p; they
do not intersect it. Thus the price-equity ratio tends towards r/p
for all z. For sufficiently large 7, this position will be approached
yielding P = E = 0. There will be no growth, dividends will be equal
to earnings and constant, and the equilibrium P/E ratio will be less
than or equal to one.
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CASE 2) 1<%< 1

1-5 @ \
3 > 1
S 1-8
@\Q) g 5 F
\\ | clr—k]
- Y
/ /

The structure of solution case 2 is more complex due to the
switching manifolds at S, = 0, S; < 0 and S, = S; > 0. It should
be noted that S, = 0, S; < 0 will be well removed from 7. For
starting positions in region C retention of earnings is optimal. The
optimal trajectories are again asymptotic trajectories in regions C
and B. Noting that S, = 0, S; < 0is well removed from T, this case
is essentially the same as case 1 with essentially no growth for the
bulk of the capital-budgeting program duration. Observe that in this
case the manifold S, = S, > 0 appears and is a switching manifold.

CASE 3)

o|=
N

I
o

- cl{r—kl
cp+k




Solution case 3 is essentially the same as case 2 except that the
manifold S, < 0, S, = 0 is singular and movement on it is optimal.
The trajectories surrounding it are asymptotic to it; they do not
intersect it. Again the optimal trajectories are asymptotic in region
C, as was true in the other cases.

ct [c(1=6)+ 1] %-

CASE 4) —— <L <
TEE T

| r

\\\L\ 14
k
> > i
cp + k
1 P
1 0E

Solution case 4 shows a marked departure from the structures of
cases 1, 2, and 3. In this solution, the manifold S, = S, > 0 reveals
a choice in optimal strategy for a range of starting positions on it.
Either choice yields the same value in terms of the objective. Move-
ment along the surface is nonoptimal. Surfaces of this type were
first demonstrated by Isaacs [11] in the context of differential games.
He has named them dispersal surfaces. The optimal vector field of
trajectories in this case is more complicated and clearly demonstrates
the nonuniqueness of the solution for this locus of possible starting
positions. Although the price-equity ratio decreases along some of the
optimal trajectories, leaving the manifold S, = S; > 0, one should
not automatically conclude that the price is decreasing throughout
the trajectory length in region C. It can be either increasing or de-
creasing, depending on the starting position and the parameter
values. If it is increasing, it will do so at a slower rate than the equity
increase. As before, the optimal trajectories are asymptotic.

Case 5 is a direct extension of case 4 for larger values of ». The
essential difference is that now the terminal price-equity ratio will
normally be greater than 1/1 — § for most programs except for
very low price-equity starting positions. This case demonstrates the
range of » needed to guarantee this condition. Although not a part
of this formulation, it is well recognized that price-equity ratios less
than one are avoided in practice if possible.
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c+lc(1-5)+1] K
)

CASE 5) %2 T
c —

@As\\& .
N @\%“—

= k
@Ur“ol us = — @Sr<0' S; =0
ur=O, US=O @Sr=o, SS<O
_k
ur = ug = 0 @sr=ss>o

The solution structures can generally be divided into two similar
classes, cases 1, 2, 3, and cases 4 and 5. For rates of return in the
range of r/p = 1 (cases 1, 2, 3), the solution structure is quite simple
from a control theoretic point of view. The economic significance of
rates of return in this range is discussed in the next section. When the
rate of return is somewhat higher than »/p = 1 (cases 4 and 5), the
solution structure becomes complex, especially in the region con-
taining the manifold S, = S, > 0. An economic interpretation of
this manifold is given in the next section.

B Economic interpretation in control applications has been par-
ticularly rich in macro growth models.!* This is generally accom-
plished by viewing the adjoint variables as time varying Lagrange
multipliers. The results of this analysis can be interpreted in an
analogous manner by identifying the adjoint variables in a similar
vein.

From the investors’ point of view the “product” of the utility
is the value accrued from share ownership. Let V(P, E) be the
“product,” where

V(P, E) = P(T) exp|— pT] + / [1— udOVE(t)r exp| — prlds

Now
a V . . .
-— = marginal “product” with respect to price,
opP

and
av

—— = marginal “product” with respect to equity .

From the Hamiltonian-Jacobi partial differential equation for the

14 See [1] and [6] as recent examples.



optimal V (see Section 5),

aV*
—— = \p
oP

and
ar*
—_— = )\E-
oFE

Thus the marginal products at the optimal V are equal to the adjoint
variables. The state variables P and E should here be considered as
inputs to a structure which produces the “product,” V(P,E). It has
been assumed that these inputs are perfectly competitive (the in-
vestor is indifferent between capital gains and dividends, with the
latter accruing directly from equity). Using the economic argument
that in the case of competitive inputs the proper assigned price of an
input must be equal to its marginal product, the adjoint variables can
be thought of as shadow prices. This gives an economic meaning to
maximizing the Hamiltonian at every instant of time as a necessary
condition for an optimal solution over time. By their actions via
their investment policies, “management” can ‘“‘give” to the share-
holder at each instant of time, dividends, a change in current share
price which will effect the terminal price, and a change in equity from
which future earnings can accrue. The value of this at time ¢ is simply
the sum of the three weighted by their respective shadow prices or
values, i.e.,

d(t) + Np(H)P(t) + Ne()E(T).

This is the implicit current value of share ownership, assuming the
shadow prices are given. This is also the Hamiltonian of the control
problem (see section 6). Thus by maximizing the implicit value of
share ownership at every instant of time, the actual value of share
ownership over time is optimal. By rearranging the above into the
form used in section 6, it is now seen that the switching functions,
Si(P, E, \p, \g), provide the utility management with the necessary
comparison to make this maximization since their instruments of
control are implicit in all the terms. The most interesting case is

S, =8>0.

Here any comparison is inconclusive on how to maximize the im-
plicit instantaneous value of ownership. To resolve this case the
“managers” should look at the first time derivative of S, and S,. If
they are not equal, then the condition is a transient one and in the
control theoretic sense the manifold is a switching surface. This condi-
tion is encountered in solution cases 1, 2, and 3. If, however, the
first time derivatives of S, and S, are equal, this test does not reveal
the optimal strategy. It is here that the dispersal surface demon-
strated in solution cases 4 and 5 can arise. From an economic point
of view, either strategy leaving the manifold S, = S, > 0 is optimal
as the comparison yields the same value. The resolution of the ques-
tion of maintaining the condition is provided by the Generalized
Legendre-Clebsch Condition.

Thus the dispersal surface is the bearer of nonuniqueness in the
optimal solution to the capital-budgeting problem. This condition
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has its analog in the static analyses of capital budgeting in the follow-
ing sense. In most static formulations which include internal as well
as external equity financing, the assumption is implicit that either
form of financing is equally advantageous in that no special prefer-
ence for one is obvious. This condition corresponds to, in the context
of this analysis, the firm being on the manifold S, = S; > 0. Thus
statically all controls are optimal and this situation yields the prev-
alent indeterminant solution found in static analyses. Dynamically,
the situation has been reduced to nonuniqueness since there are two
equally valid optimal policies to follow.

There will be no unique trajectory of capital expansion reflecting
equilibrium as the planning horizon approaches infinity. However,
there can be two trajectories which closely approximate this condi-
tion of constant price-equity ratio and constant dividend payout
ratio. This condition yields a price appreciation equal to dividend
growth, with both being constant proportions of asset growth. This
condition reflects equilibrium in the capital market. Here again the
nonuniqueness of the capital-budgeting firm valuation solution is
reflected.

The necessary conditions for optimal control can be interpreted
as providing an economic equilibrium condition in the following
sense. It has been shown that maximizing the Hamiltonian can be
interpreted as maximizing the implicit value of current share owner-
ship. If the shareowner is not at an economic equilibrium point by
this maximization, then he would have wanted more or less equity
and/or price change than the maximization provided. To assure
that this implicit value of share ownership cannot be increased by a
shift in equity or price, it is necessary that the derivative of the
maximal Hamiltonian with respect to each state variable be zero.
Doing this operation, the adjoint variables are again interpreted in
accordance with

av*
A= —
oP
and
ov*
At = —.
oE

Under the conditions of this problem, i.e., the optimal controls
are constant and assuming that the second partial of ¥ exists, the
necessary conditions for the Hamiltonian to be maximal in terms of
changes in the state variables are

diov* oH
{512
dtL 9E oE

drov* oH
L)
dtL oP

Note, however, that these equations are the Euler-Lagrange equa-
tions of the necessary conditions for optimal control [see section 5].
Thus the necessary conditions of optimal control require the implicit
value of share ownership to be maximal and the shareholder to be at
an economic equilibrium point at every instant of time.



B The main purpose of this paper has been to provide a framework
to show the effect of a rate-of-return specification on the structure
and composition of long-range investment decisions and the valua-
tion of a utility. The results clearly demonstrate how dramatically
this specification can affect these decisions. For relatively small
changes in rate of return, totally different investment programs be-
come possible and optimal. This impact of small changes in rate of
return on capital budgeting decisions and utility valuation has long
been observed empirically, and this paper provides one theoretical
framework from which to analyze possible consequences quantita-
tively. Two observations on the solution cases warrant special
attention.

Consider cases 1 through 3, where the rate of return to equity is
either less than or very close to the investor discount rate. The
analysis shows that, in the main, the optimal policy will be to pay
out all earnings in dividends and never re-invest internally. External
investment is only desirable as long as a transient favorable price-
equity ratio exists. This result is consistent with economic theory,
since it is well known in financial analysis that if the internal rate of
return for an investment is less than the external or market rate of
return for investments of comparable risk, then an alternative in-
vestment is more desirable. An alternative name for p, the investor
discount rate, is the market rate of return for investments of compar-
able risk. These solution cases represent the situation of a “non-
growth” return on capital. If sustained growth of the utility is to be
encouraged, then the rate of return must be set above this ‘“‘bare
bones” level. One interpretation of this is that a “fair” rate of return
must satisfy at least the inequality

p
r>—,
1 —346

where the ‘““bare bones” level would be defined as

p
F=—-—
1 —36

Solution cases 4 and 5 seem to characteristically represent the
central range of rates of return. It has long been recognized that a
fair rate of return to equity capital must reflect in some manner the
growth requirements of a utility from a viewpoint of capital attrac-
tion capability [17]. Note that this factor, &, is explicitly included in
cases 4 and 5 and actually determines in part the defining range of
rate of return. The nonuniqueness of the capital-budgeting solution
appears in these cases. Also, any rate-of-return specification which
acknowledges continuous growth considerations will be found here.

It is quite reasonable to interpret k as reflecting the rate of in-
vestment-need as supported by some aggregate demand for service.
One way of ensuring a consistent growth at rate k over the planning
horizon is to set

p 1
SN P |
1—34 c(1 —9)

This is the upper bound for solution case 4 and effectively prevents

8. An analysis of
rate of return
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the utility from entering region B of case 4, the “non-growth” area,
for characteristic initial starting positions. It also forces a price-
equity ratio close to 1 /1 — 4, a relationship which has some empirical
support.

Notice that this rate of return is a sum of the “bare bones” level
plus a factor which reflects the growth requirements. Thus if no
growth is warranted, i.e., k = 0, the “bare bones” static case results.
Also, this rate of return reflects the need for rate-of-return adjust-
ments as economic conditions change, as reflected by p for changes
in “riskiness” and k for changes in growth requirements. This rate
of return seems to satisfy the “fair” rate-of-return requirements [17]:

1. comparable earnings standard for investments of comparable

risk, (p),
2. attraction of capital standard to reflect growth requirements, (k).

These two standards have arisen principally from a recognition that
utilities must compete for capital and must do so more or less con-
stantly. The model and analysis in this paper furnish a way of reflect-
ing these standards explicitly in a rate-of-return relationship.

B The model demonstrated here allows rate of return to be specified
by prudent measurement of variables of recognized significance.
What, if anything, can be said about the relative merits of this model
and others mentioned earlier? The answer lies in comparing the
merits of the underlying assumptions. Each model is a simplified
representation of a very complex process. The model developed here
has several appealing characteristics in terms of parameter measur-
ability and dynamic behavior. But it also contains several strong be-
havioral assumptions, especially those concerning the capital mar-
ket. This tradeoff is characteristic of models of rate of return under
conditions of growth, since the ingredients required for determining
rates can only be quantified either by imposing behavioral assump-
tions or by using uncertain parameters (in terms of measurability).

The results of this model and analysis suggest that there will be
interesting differences between dynamic financial analyses of the
firm and the familiar dynamic analyses in economics, e.g. macro
growth models. The model and analysis here have indicated some of
these differences.

Growth analyses characteristically use a closed macroeconomic
system; the model here is a micro financial model.

The model here did not yield the familiar singular equilibrium
solution (analogous to a ‘“golden path’). This could have been
remedied easily by changing the objective functional; however, the
objective functional was chosen as the traditional representation of
value of share ownership. A departure from this traditional repre-
sentation in order to arrive at an equilibrium solution might be
construed as suggesting that traditional theory precludes one.

The present model also produced a dispersal surface (in some of
the solution cases), which has not been the case in any growth model.
This dispersal surface has a meaningful economic interpretation,
while a meaningful counterpart in a macro model is difficult to
imagine.



These differences seem interesting and suggest a rich area for
research, not only for applications in regulatory theory but in the
general area of financial growth and cost of capital as well.

Appendix

B Solution synthesis is a difficult part of solving optimal control
problems, particularly nonlinear ones. The approach discussed in
section 5 is a systematic method for attacking this step. An ab-
breviated sketch of this approach, drawn from [5], is given below.

Recall the statement of necessary conditions on page 257. To
these are adjoined terminal conditions on the state variables in terms
of a parameterization of the terminal manifold in the state space. Let

PT)y=35,>0
ET)=sg>0.
Define
r=T—1.

Thus 7 represents the time needed to reach 7. Since T is assumed to
be a known constant, let

Y
y= ;
It follows that
y=—y,

and the state and adjoint equations (equations 1, 2, 3, and 4 on
page 257) in the reverse time change in sign. Initial conditions (in
this reverse time sense) for these equations are provided by the
tranversality condition and the parameterization of the terminal
manifold, i.e.,

Ap(0) = 1 P0) = sp> 0
Ae(0) = 0 E©0) = sz > 0.

To start the construction, the Hamiltonian must be maximized at
T(r = 0). To do this, S, and .S, must be known (recall the S; are the
switching functions defined on page 257).

Atr=20

S, =FEr\g—chp— 1] =—sgr(c+ 1) <0

E
Er\y [1 = 77‘._} —o0.
(1 — &P

Thus initially S, < 0, S; = 0, and this singular condition must be
examined.

Ss

Il

k
S, <0, S, =0 implies u,*=0,0< u*< .
-

E
s = 0 implies Er\g [1 - — :l =0
(1 -=9r
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Since S, < 0, then Er 0 and this requires

For this equation to be satisfied for a non-zero time interval implies
that all time derivatives must vanish. There are three subcases:

— E -—

. =0, |[I———— %0
L (- 8P
— E —

2. Ag#0, |[1l———— |=0
L a—s)p
— E -—

3. =0, |[1———— |=0
L (1 — )P

Suppose Az = 0, then by equation (2) it is required that

1
Ap = — —a nonzero constant .
c

However, if \z = 0 there is no solution of equation (1) which satisfies
the above relationship. Thus the condition Az = 0 cannot be satisfied
for a non-zero time interval. For S, to be zero, it is necessary that

E
— - =0
(1— 8P

for a non-zero time interval. Differentiation yields
Er = pP.
Further differentiation yields the same results. Thus it is required
that
r 1 Sp
P 1—96 SE

for this condition to be sustained. Consider the case where

r 1

o 1—5,

hence S, < 0, S; = 0, holds only on the terminal manifold. It is
necessary to examine the derivative of S, at 7 = 0 to determine the
sign of S, at + = 0*. The result [5] will be that

Sp 1
SO0H <0 if —<—,

SE 1-6

Sp 1
S0t >0 if —>—-—.

SE 1—5

Consider the case where sp/sg < 1/1 — 6. Then S, (0+) <O,
S«(0+) < 0 and u,* = u,* = 0 are the extremal controls. The state



equations become
P = c[pP — Er]
E=o0,

and the adjoint variables are defined by

Ap=— (c+ Dprp,
5\1:; =rchp+ r — phg.

Their solution yields

P Sp r ¥
A LS IO
E SE p p

and
Ap = exp[— (¢ + 1)pr]
roor
Ag = — — —exp[— (¢ + Dpr1].
PP
Since #/p > 1/1 — 8, P/E decreases with 7. Using these solutions,
S, and S, can be evaluated. It follows directly that S, will remain
negative as long as S, <0 and P/E < 1/1 — 4. Evaluating S,
yields

S,=Er{f—1— lf—}—c} exp[— (¢ + Dp7]} .
P p

This will be zero when

" 1 = {f-l— c} exp[— (¢ + 1p7]
P P

or when
1 oc+r
In ——

_p(c—+—l) F—0p

Now at #, S, = 0, S, < 0, and since this is a singular situation it
must be checked in the manner followed on the terminal manifold.
By proceeding with this construction, the full solution can be gained.
To do this here would be lengthy and outside the scope of this paper.
Considerable additional analysis is required, particularly on the
manifold S, = S; > 0, and is available in full detail in [5].

~>
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