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Econometrica, Vol. 50, No. 3 (May, 1982)
SELECTION AND THE EVOLUTION OF INDUSTRY

By Boyan Jovanovic!

Recent evidence shows that within an industry, smaller firms grow faster and are more
likely to fail than large firms. This paper provides a theory of selection with incomplete
information that is consistent with these and other findings. Firms learn about their
efficiency as they operate in the industry. The efficient grow and survive; the inefficient
decline and fail. A perfect foresight equilibrium is proved by means of showing that it is a
unique maximum to discounted net surplus. The maximization problem is not standard,
and some mathematical results might be of independent interest.

1. THEORY AND EVIDENCE ON THE GROWTH AND SURVIVAL OF FIRMS

Do sMALL FIRMS grow faster than large firms? Are they less likely to survive?
Early studies found no relation between the size of firms and their growth rates
[8, 14, 16]. The growth of firms seemed to be proportional to their size. In later
work, adjustment costs with constant returns to scale were shown to imply that
firms should grow in proportion to their size [10, 11].

Recent evidence from larger samples tells a different story. Mansfield [13]
finds that smaller firms have higher and more variable growth rates. Du Rietz [6],
in a sample of Swedish firms, again finds that smaller firms grow faster, and that
they are less likely to survive [6,8,13]. These findings conflict with the adjust-
ment costs theory in which all firms grow at the same rate, and in which failure
does not happen. \

To explain these deviations from the proportional growth law, I propose a
theory of “noisy” selection. Efficient firms grow and survive; inefficient firms
decline and fail. Firms differ in size not because of the fixity of capital, but
because some discover that they are more efficient than others. The model gives
rise to entry, growth, and exit behavior that agrees, broadly, with the evidence.

The model also agrees with some more tentative findings. First, firm size and
concentration seem to be positively related to rates of return.? Second, the
correlation over time of rates of return is higher for larger firms and in the
concentrated industries [15,17]. Third, the variability of rates of return at a point
in time is higher in the concentrated industries [17]. Finally, higher concentration
is associated with higher profits for the larger firms, but not for the smaller firms
[4].

Enduring differences in size and in growth are no doubt caused in part by the
fixity of capital. This paper shows, I think, that selection matters too.

""The original draft is dated December, 1979. I would like to thank Carl Futia, Roy Radner, and
Ed Green for helpful discussion.

2Weiss [18] summarizes a number of studies that report this finding. Two exceptions are Stigler
[17] who found no relation and Samuels and Smyth [15] who found a negative relation.

649



650 BOYAN JOVANOVIC

2. A BRIEF DESCRIPTION OF THE MODEL

The model deals with a small industry to which factors are supplied at a
constant price. The product is homogeneous and the time-path of the demand for
the product is deterministic and known.

Costs are random, and different among firms. For each firm, the mean of its
costs may be thought of as the firm’s “true cost.” The distribution of true costs
among the potential firms is known to all, but no firm knows what its true cost is.
All firms have the same prior beliefs, and each firm regards itself as a random
draw from the population distribution of true costs. This “prior” distribution is
then updated as evidence comes in.

If the firm has low true costs, it is likely that the evidence will be favorable,
and the firm will survive. If its costs are high and the evidence adverse, the firm
may not wait too long before withdrawing from the industry.

The number of firms in the industry is always infinite—each firm is of measure
zero so that it is too small to affect price. With uncertainty at the individual level
but with no aggregate uncertainty, the path of output prices is deterministic and
is assumed to be self-fulfilling in equilibrium.

Firms and potential entrants know the entire equilibrium price sequence, and
based on it, they make entry, production, and exit decisions. A one-time entry
cost is borne at the time of entry. Thereafter, only production costs are incurred.
In equilibrium, the net present value of entry cannot be positive, for if it were,
more firms would enter.

In the next section, the model is presented, and the firm’s optimization
problem is defined. Some of the properties of the model then become clear.
Figure 1 portrays them concisely: efficient firms grow and survive; the inefficient
decline and fail. Toward the end of the section, results are described which are
obtained in the later, mathematical sections of the paper. The implications are
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compared to the empirical evidence. The perfect foresight equilibrium is defined
in Section 4. Section 5 is devoted to proving that equilibrium exists, is unique,
and is, in a sense, socially optimal. The proof involves showing that equilibrium
coincides with the unique maximum of the discounted sum of consumer plus
producer surplus. Two theorems that describe the equilibrium appear in Section
6, and some of the longer proofs are contained in the Appendix.

A curious feature of the paper is that proofs of “obvious” results are compli-
cated. The reader may be eager—on the first reading at least—to take such
results on trust. So, the remainder of the paper is arranged into two distinct parts.
The next section contains a discussion of all the results. If the reader is not
interested in the mathematics, he can stop there, for the discussion is self-
contained. Sections 4 and beyond are devoted to the formal development, which
is interesting in its own right. Proving that equilibrium is a maximum is not new,
of course. But the problem of maximizing discounted surplus here does not fit a
regular mold. Similar problems will no doubt arise again and results proved here
could then be useful. A description of the nature of the problem being solved and
of how it differs from other work on stochastic optimization is contained at the
beginning of Section 5.

3. THE MODEL

In an industry with a homogeneous output, firms differ in efficiency. Some are
more efficient than others at a/l levels of output. Let g be the output of a firm,
and c(q) a cost function which satisfies

c(0)=0, c'(0)=0, c'(9)>0, ¢"(9)>0 and qli,r& c’(q) = .

Total costs are c(g,)x, where x, is a random variable independent across firms.
For the firm of type 8, let x, = &(n,) where £(-) is a positive, strictly increasing,
and continuous function with lim, , &) =a; >0 and lim, ,, &(n) = a,
< 00, and where

n,=0+¢, €,~N(0,0%) iid.

Firms with large values of # will generate larger x,’s, and be less efficient at all
levels of output. The ¢ are firm-specific shocks, independent over time and
across firms.

Among potential firms, 8 is normally distributed with mean # and variance o7 .
An entrant does not know his own #, but he knows that he is a random draw
from N(#,02). He also knows the variance of ¢, as well as the exact form of £(-)
so that observing his own costs at ¢ allows him to infer 7,.

The firm is too small to affect price. It chooses g, so as to maximize expected
profits:

mq?x [qu( - C(qt)xt*]
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where x* is the expectation of x, conditional upon information received prior to
t. The output decision is made before x, is observed, and is denoted by g(p,/x*).
As one would expect, it is decreasing in x:

’ 2 1
G L= o ad 4 =ll” —2} %

* * * *
axt X/ ¢ 8x,*2 Xy (C”)2 axt

Tae Exit DecisioN: Let W > 0 be the expected present value of the firms’s
fixed factor (its “managerial ability” or “advantageous location™) if it is em-
ployed in a different activity. The value of W is the same for all firms in the
industry regardless of how successful they are in that industry. In other words, if the
firm learns that it is efficient in this industry, this does not increase its estimated
efficiency anywhere else. This assumption may seem restrictive, but it could be
relaxed to allow for correlation in firms’ efficiencies in different industries,
without changing the nature of the results. What really matters is that if
favorable information about a firm’s costs in an industry raises its expected
earnings in that industry by one dollar, its expected earnings elsewhere increase
by less than a dollar. Here it is assumed that new information about # leaves
expected alternative earnings unchanged.

A cost of entry, k, is borne by the firm when it enters—the cost of establishing
a particular location for example. And # might be the degree of suitability of the
location. The firm learns about # with the passage of time.

The firm has an infinite horizon and a constant discount rate, . At time ¢, if
the firm is in the industry, it will have a pair of sufficient statistics (7, n) which
characterize its beliefs about its parameter #. Here n is the number of periods
that the firm has been in the market (the age of the firm) and 7, = 3"u;/n.
These two statistics are sufficient for the posterior distribution on 6, as this
distribution is normal [20, p. 15].

In spite of the infinite horizon and the constant discount rate, the present value
of earnings will depend on ¢ too, because the price path, { p,}¢°, treated as given
by the firm, is in general not constant over time. Therefore, once { p,}¢° is given, ¢
determines where one is along the price sequence.

Since x* = [¢(n)P%dn | 7,,n), (where P(- | 7,,n) is the normal posterior distri-
bution of n, with variance which depends only on #n), and since &(n) is strictly
increasing, x* is strictly increasing in 7, for each n. Therefore the pair (x*,n) is
also a sufficient statistic.

Let #(p,,x) = p,q(p,/ x) — c[q(p,/ x)]x be the expected value of profits max-
imized with respect to ¢ when x} = x. For a bounded price sequence
p={pJ)s, let V(x,n,t; p) be the value, at ¢, of staying in the industry for one
period and then behaving optimally, when the information is (x, n) and when the
price sequence is p. Then V satisfies®

(32  V(x,nt; p)=m(p,x)+ ,Bfmax[ W,V(z,n+ 1,t + 1; p)| P(dz| x,n).

31n equation (3.2), P(z | x, n) is the probability that x*, , < z given that x* = x, and given that the
firm has been in the industry for » periods.
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At entry, when the firm has only its prior information, x = x, = prior mean of x,,
and V(x,,0,¢; p) — k is the net value of entry at ¢. The following simple result is
proved in the Appendix.

THEOREM 1: (i) A unique, bounded and continuous solution for V in equation
(3.2) exists and (ii) V is strictly decreasing in x.

Thus firms with higher expected costs have a lower value of staying in the
industry. Let y(n,¢; p) be the level of x;* at which the firm is indifferent between
staying in the industry and leaving it. Then y(-) is the solution for x to the
equation®

(B3)  V(x,ntp)=W.

As V is strictly decreasing in x, y(-) is uniquely defined. Consequently, the level
of output below which the firm will not produce (but will exit instead) is
qlp./y(n,t; p)). It is drawn in Figure 1. Here 7 is the time at which the firm
enters the industry, so n = ¢t — 7. For any price sequence, the boundary defines
an “exit” region in which V' < W (shaded area) and a “continuation” region, in
which V' > W.

The firm’s output sequence, g(p,/x*), is a random process which starts from
q(p./xo). The x* sequence is a Martingale: E xf , = x* for any k>0 [7, p.
212]. If output remains above the shaded area, the firm stays in the industry.
Therefore the firms that survive are larger than the firms that fail—at the point
of failure, the firm is smaller than all surviving members of its cohort.

The x* sequences are independent across firms. They tend to diverge, as do the
output sequences. Each firm is of measure zero, so the number of firms is always
infinite, and the concentration ratio always zero. But a popular measure of
concentration is the Gini coefficient. The greater the dispersion of x;* across
firms, the greater the dispersion of firm size. At ¢ =0, all firms are of the same
size, and the Gini coefficient is zero. As the x}* diverge, so do the outputs, and
the Gini coefficient increases over time. But the increase need not be monotonic.
And this is exactly the type of increase the Gini coefficient has exhibited at the
economy-wide level in the U.K. [8].

Average profits also rise as the industry matures—at least they do if the
equilibrium price sequence is constant (the latter possibility is the subject of
Theorem 3 and is discussed below as well). The reason is simple. Since the
unprofitable firms leave while profitable firms stay, the profits of the survivors as
a group will increase so long as the price of the product does not fall. If it does
not, profits increase with the age of the industry, as does concentration. In this
sense then, the model predicts a positive relation between profits and concentra-
tion. But if the equilibrium price sequence falls over time, it may offset the
upward “selection effect” on profits, and nothing can then be said about the time
path of profits.

If V < W for all x € [a}, a,], we set vy = a,, while if V' > W for all x € [ay, a,], we set y = a,.
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Why does concentration increase the profits of the large firms but not of the
small firms? A high Gini coefficient results from high inequality in firm size in
the industry. And the latter is caused by more inequality in efficiency. This
means that some firms—large firms—earn higher rents. But the marginal firms—
small firms—do not earn rents; there is no reason to expect a positive relation
between concentration and the profits of these firms.

As for the positive relation between concentration and the variability of profits,
take the case where ¢ = 0—all firms are equally efficient, and all are equal in
size. The variability of profits is zero, as is the Gini coefficient. Since both profits
and output decrease with x, there is a one-to-one relation between the relative
dispersion in profits and in size.

Another implication is that unusually high profits today lead to unusually high
growth between today and tomorrow. The reason is that the firm’s revision of x;}*
depends on realized profits. Since 7, = p,q, — c¢(q,)x,,

7, — Em = —c(q)(x, — x[).

So if profits at ¢ are large compared to average profits for that size of firm, it
means that x, is unusually low. And this leads to a downward revision of
expected marginal costs: x}, , < x*. But then next period’s output—and growth
—will be higher than usual. So, high profits are transformed into high growth. Of
course, the standard “explanation” has relied on imperfect capital markets:
constraints on borrowing lead to higher growth for firms that can finance it
internally.

Fluctuations in output occur in any industry. What fraction is due to changes
in the output of existing firms as opposed to changes—through entry or exit—in
the number of firms? If demand changes are erratic and unforeseen, one might
expect the existing firms to meet a large proportion of such changes. But in this
paper, all the demand changes are foreseen. Holding constant the behavior of
demand, a lot hinges on whether g(-) is concave in x or not (see (3.1) for the
concavity condition). Why should this matter? Suppose for the moment that
price is constant, say at p. Since x;* is a Martingale, concavity and Jensen’s
inequality imply that E,q(p/x} ) < q(p/xF). So when the output price does
not increase, the existing firms would produce Jess in each successive period. This
is only re-inforced by the reduction of output due to exit of some of the existing
firms. So, if g(+) is concave in x, increases in demand should be met by new
entrants. Theorem 3 proves that when demand is non-decreasing and g(-)
concave in x, the unique equilibrium is one in which price is constant over time
and in which entry and exit occur in every period.

No technological progress takes place in this model. Yet it seems possible (but
I cannot prove it) that even if demand is constantly shifting to the right,
equilibrium price will constantly decline. Since the efficient survive while the
inefficient fail, the average efficiency of the survivors improves from period to
period. Convexity of g(+) in x is a necessary condition for such an equilibrium to
occur. On the other hand, prices cannot monotonically increase, as the net value
to entry would become positive.
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What can be proved is that equilibrium always coincides with the unique
maximum to the discounted consumer surplus (Theorem 2). This is not surprising
—firms take prices as given and there are no externalities. Still, as background to
the current work on oligopolistic entry-deterrence, it is useful to know that at
least when numbers are large, entry—and exit—occurs neither too early nor too
late.

Some specialized results can also be proved. The variability of growth rates
will be largest among the young (and therefore smaller) firms. But for mature
firms that have survived for a long time, x}* converges to a constant. Therefore, if
growth rates are to be equal among mature firms (and there is some empirical
basis for this: samples of large firms were used in [14 and 16]), one must have,
for each x,

dq
R
D, (p)

where k(p,) is some function which does not depend on firm size and is therefore
independent of x.
Solving this differential equation under the constraint that ¢ is a function only

of the ratio p,/ x,
P
¥

G4 g(p/x)= 61[

where 8, and 8 are positive constants. This can only happen if ¢(g) assumes the
Cobb-Douglas form

c(q) = B,q* with By=1/8+1
and with
—s-1/8[ 6
=19, [ 1+6 ]

Since the restriction in (3.4) applies to a// firms, the growth rate of any given firm
is

« 18
3.5) [ﬁﬂﬂ al J—l.

*
Pt X+ 1

In the sections that follow, we shall not restrict the cost function to be
Cobb-Douglas. But it is instructive to pursue further the implications of the
existence of approximately equal expected growth rates of firms of a given
vintage. Let z, = x}*/x}*_,. If (3.5) holds, a weak form of the proportional growth
law requires that E,z° be the same for all x*. A strong form requires that the
entire distribution of z, (conditional on information at ¢) be the same for all
firms. The strong form of the law has been empirically rejected, and we now
show that it cannot hold within the framework of this model: since the Martin-
gale x* has decreasing incremental variance as the precision on # grows, two
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firms with the same x} but different precisions could not have the same
distribution for z,. However, z, can have the same distribution for firms in the
same age cohort. Since one may write x¥ , = x*(1 + u,) where u, has mean zero
due to the Martingale property, z, = 1 /(1 + u,) will be identically distributed for
each firm in the cohort so long as the distribution of u, does not depend on x*.
Then £(n) may be chosen so that this property holds. Let x, — &, be log-normally
distributed so that §(n) = a, + €. Let 6, and », denote the posterior mean and
variance on @ when n observations {n;}?_, are available. Then,

xt=a; +exp{f,_, +1(r_, + 02)}.
As a; >0,
1 Xt

1
ZI__)T_*__u’= *[ =exp{(01—-r_0l+l—-r)+E(Vt—‘r_pt+l—'r)}

X+

and since the distribution of 4,_, — @, ,_, (conditional on information available
at ) is normal with mean zero and variance that does not depend on 7,, only on
t — 7, the variable 1/(1 + u,) does not depend on x}*.

Since the variance of u, declines as the firm becomes more mature, younger
firms have more variability in their growth rates. They will also grow faster than
the older firms. This follows from the convexity of x*/x} , and the application
of Jensen’s inequality: E,(x}*/x} ) > x*/E,x* ,= 1. So even the weak form of
the law cannot hold except within a single age cohort.

The implication that smaller firms should have higher and more variable
growth rates is in accord with evidence. But there is a selection bias in the data.
Smaller firms are more likely to fail and the model implies (see Figure 1) that the
firms which fail are exactly those which otherwise would have grown more
slowly. If, as is done in practice, all failures are omitted from the sample, one
overestimates the growth rate of small firms relative to that of large firms. The
model implies that even if one were to eliminate this bias by an appropriate
choice of statistical technique, the results should show a higher growth-rate for
smaller firms.

4. EQUILIBRIUM

Before defining equilibrium, the industry supply and demand functions are
defined. Let

4.1 Y(x|t,T; p)= Prob[x;" <y(s—ms;p)s=t+1,...,0—-1,
and x* < min[x,y(t —,5p)] given x* = x,
and given that entry occurred at 7 (1 < t)]

¥ is the probability that the firm which enters at 7, and follows its optimal
stopping policy, is still in the industry at ¢, at which time its x* < x. (Note that
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since s runs from 7 + 1, immediate exist is not feasible—it is not feasible for the
firm to exit without having spent at least one period in the industry.) Then,

4.2) (¢, 7; p) Efq(p,/x)‘l'(dxh,'r; P)

is the expected output at ¢ of a firm of vintage 7. If y, is the measure of entrants
at time 7, the output of these firms at ¢ is y,¢(¢,7; p). This output is deterministic,
as each firm is of measure zero. Let Q, be the aggregate industry output at z.
Then, the industry supply function is

@43 Q= goy»(m; P)=0i(py)

where y = { y,}¢° is a sequence of entry. So Q,(p, y) is the industry output at ¢
which results if the firms are faced with an arbitrary pair of price and entry
sequences (p, y), and if they make optimal output and exit decisions in response
to the price sequence p.

A deterministic demand function D[ Q,,] is given for each ¢. For each ¢, D(-) is
strictly decreasing in Q,.

A perfect foresight equilibrium has the property that if firms and prospective
entrants behave on the assumption that a particular price sequence will occur,
then their behavior does in fact give rise to this price sequence. In other words,
the equilibrium price sequence is self-fulfilling.

DEerFINITION OF EQUILIBRIUM: Equilibrium is of a pair of functions ¢(-) and
¥(-) that characterize optimal output and exit behavior of firms, and a pair of
nonnegative sequences (p, y) such that forallt=0,1, ...,

D.1)  p=D{Q(py)t}

V(xO,O,t;p)-—k= w if y, >0,
(D.2) .
V(x%0,0,¢; p)— kW if y, =0,

where Q,(p, y) is defined in (4.3).

Condition D.1 expresses the self-fulfilling property of the equilibrium price
sequence. Condition D.2 states that at each 7, the net present value to entry
cannot be positive, for if it were, more firms would enter, so that this could not
be an equilibrium. The value to entry may be negative in some of the periods, in
which case no firm would enter.

5. EXISTENCE, UNIQUENESS, AND OPTIMALITY OF EQUILIBRIUM

We prove the existence and uniqueness of the equilibrium by showing that it is
a unique maximum to a particular functional—the discounted consumer plus
producer surplus. The equilibrium is an optimum in this sense.
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Before plunging into the algebra, let us review the elements of the argument. A
benevolent planner chooses an industry output sequence { Q,} = Q so as to
maximize the discounted sum of surplus. He has exactly the same amount of
information as is collectively available to firms. He assigns the entry and exit in
each time period, as well as the output of each firm. The benevolent planner is
concerned only with one industry and shadow prices in other industries are held
constant both through time and with respect to the industry output level.

One possible approach could have been to use dynamic programming. But the
state space is too large here: a firm is characterized by its expected cost and its
age (this is the basis for (3.1)) while the industry is described by a measure over
(x*,n)—the measure of firms, at ¢, with those characteristics. Because of the
dimensionality of the state space, we take the route of direct optimization subject
to constraints. There are problems with this approach too, because the horizon is
infinite. The constraint space is {,, and linear functionals in the dual of ¢, do
not assume a simple form (see (5.8)). The key result is in Lemma 5 (which is
probably of independent interest) where it is shown that—essentially because of
discounting—the class of linear functionals in the dual of ¢, can be reduced to a
“manageable” subclass.

The cheapest way (for the planner) of producing an aggregate output sequence
Q, is defined as K( Q). The hard part of the proof is showing that K( Q) is
well-defined (Lemma 2), convex, and differentiable (Lemma 7).

Having established the relevant properties of K( Q), we proceed to compare
the necessary conditions for S(Q) to be at a maximum, with the necessary
conditions for the actions of firms to be optimal in the perfect foresight
equilibrium. This comparison turns out to be easier if an alternative representa-
tion for the value of entry is used. This representation is derived (at the outset) in
equation (5.2). We now proceed with the analysis.

In view of equation (4.1), another representation for the value of entry at
7, V(x9,0,7; p) is

G V(x0,0,75 p) = > B’_Tfazw(p,,x)‘l'(dﬂ 1,75 p)

t=17
o]
+ > BTWA{¥(ay|t = 1,7; p) — ¥(ay|t,7; p)}
t=1
because the expression in curly brackets is just the probability of exit exactly at 7.

(Here we define ¥(a,|7— 1,7; p) = 1.) Writing ¢, = ¥(a, | t,7; p) (since a,,T,
and p are fixed), the second part of equation (5.1) may be written as

th :8’_7(#/1 - ‘l’t—l)= W ¢7—1 + BZ ﬂt_T"l’r - Z BI_T t

-(1- ,B)Wz B Y+ W
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(because ¢, _; = 1). Therefore,

(52 V(xo0mp) =W+ 3 B [“[n(px) = (1= BYW]¥(dx| 1,73 p).

(The intuition here is that (1 — )W is the per-unit time expected foregone
income for the firm while it is in the industry.)

Now let y = {,}{2, be a particular sequence bounded above by a, and below
by a,. Any such sequence y represents a feasible exit policy. Let T’ be the set of
all such sequences. That is,

F={y:v,€la,a],t=1...}.
Then, analogously to equation (4.1), for any y €T, let
\f'y(x [t,7) = Prob[x;" <Yy s=71+1,...,t,and x* <min(x,y,_,)
given x, = x, and entry occurred at 7].

In words, \f’Y(-) is the distribution of x at ¢ (for vintage — 7 firms) if they follow
the feasible policy characterized by 7y.

LEMMA 1: The density xljy(x [1,7)= a\f'y(x | t,7)/3x exists for all y, and t > ,
and any x € (a,,a,). Furthermore, . is differentiable in each element, v,, of the
sequence v, for all j > 1.

Proor: Contained in the Appendix.

Now let y(p,7) = {y(t — 7,1; p)}'Z> [the latter is defined in (3.3)]. Then
y(p,7) €ET. Therefore ¥(x|t,7; p) [defined in (4.1)] has density ¢(x|¢,7; p).
Then y(x|¢t,7; p) is the solution to the problem

(5.3) ?é%({ W + Z Bt—ffaaz[w(p”x) -(1- B)W]\;jy(x“,f)dx}

because the optimal “cutoff” sequence y(p,7) is contained in I'. Of course,
Y(x|t,7; p) = Yy (x| 1,7). Writing v;(p,7) for the jth member of the optimal
sequence, since v;(p, ) € [a,, a,], the necessary conditions for optimality may be

written forj=1,...,
o0

S B [0~ (- YW G (el )

t=1

X[y, —v(p.7)] <0

(5.4) {

for all v, € [y, ay].
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Let 0 ={0Q,})& be a bounded output sequence. Let £, denote the set of
bounded infinite sequences. We now define the social benefit functional S: ¢
—> R as

(5.5  S(Q)= éﬁ’fogp(z,t)dz- K(Q)

where K:¢,— R is the present value of the minimized cost of producing the
output sequence Q.

The problem of attaining K( Q) will be referred to as the “planner’s cost
minimization problem.” We shall assume that the planner possesses all of the
information available to each firm. He chooses an entry sequence® y = {y,}&
€A,,whered, ={y:0< y, < y, where 372, 7, < o}, and for firms of vintage
7 he chooses an exit policy y(1) = {Yj(T)} 1€ T. Finally he assigns a nonnega-
tive output level §(x,¢) to a firm which at ¢ has x* = x. Let 4, = {§(x,1): each
t and x €[a,a,), 0< §(x,7) < b(x), with b(x) Lebesgue integrable}.
Tychonoff’s theorem on product spaces, 4,, I, and 4, are compact sets in their

product topology. Let T*=T'XT X ---, and let y= {y(1)}>.(, so that
y €T, Similarly, let 4 =A4AXAX ---, and let §={4(-,1)};>o, so that

G € A. Finally let s =(y,7,§) € 4, X T* X 45° = Q. Again, @ is a product of
compact spaces and is therefore compact in its product topology. Then one may
write

K(Q)= 12£2 f(®) subject to G(s, Q)<0

fort=0,1, ..., where
16 = 3,8 0 [la00]x+ (1= YWYyt 1)

+ ky,}

5The restriction that 3y, be bounded is stated for analytical convenience. The optimal entry
sequence is bounded because at the optimum one must have G, =0 for all z. For if G, <0, the
planner could reduce §(x,?) for some firms, thereby reducmg f without violating any of the
constraints. Rewriting G, as — 3> _ y,¢(t, 7) + O, <0, one then has that 3 _, y,¢(t 7) is bounded
because Q, is bounded. Then, if 3y, did not converge, one would have output per entrant

; L (8, Ty,
m

t
2% ek

=0

for every T < oo, which cannot be optimal. It is of relevance, however, that one may have entry at
each point in time (y, > 0 each #) while 3 ®y, < c0. In fact, this may well happen in equilibrium
(Theorem 3).
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and where

Gi(s: Q)= = 2 o[ by (x| 1) dx+ Q,

so that f: @— R' and G,:Q X ¢, > R'. The meaning of the constraint G,(s, Q,)
< 0 is that the planner is required to produce no less than the target output Q, at
t. This constraint holds at each ¢.

Let G(s, Q) = {G,(s, Q,)}%¢- Since G, is bounded (uniformly in #), G: 2 X
—{,- The constraint may then be written as G(s, Q) <0.

LEMMA 2: There exists a constrained minimum for f on Q.
Proor: Contained in the Appendix.

Simplifying the notation slightly, we write G(s) <O for the constraint, drop-
ping Q from the notation. We now define the Gateaux differentials &f(s,s,)
= df[so + a(s; — sp)l/da and 8G(sy,s,) = dG[s¢ + a(s, — so)]/ da for s4,5,, € Q.
They are differentials at the point 5y, with increment (s, — so). We have 8f: Q
—> R and 6G: Q. Since Q is convex, the point 5, + a(sy — so)(= (1 — a)sy +
as)) € Q for all @ €0, 1].

DEFINITION: A point s, € Q is said to be a regular point of the inequality
G(s) <0 if G(so) <0 and there exists a point s; € € such that G(sg) + 8G(sg,5,)
<0 [12, p. 248]. The inequality is strict at each coordinate, i.e., G,(s;) + 8G,
- (89,5,) <0 for each ¢.

LEMMA 3: Let f(so) = min f(s) subject to G(s) < 0. Then, if Q, > 0 (each 1), s,
is a regular point.

ProorF: Contained in the Appendix. Of course, the condition that the maxi-
mum occurs at a regular point is the analogue of the Kuhn-Tucker constraint
qualification in the finite dimensional case.

Let P be the positive cone of . Then P contains an interior point (any
bounded, strictly positive sequence which is bounded away from zero is an
interior point of P). Let ¢% be the dual space of ¢, that is, the space of bounded
linear functionals on f,. Let A €¢¥ be a particular functional. Its value at the
point z € £, will be denoted by A(z). We then have the following lemma.

LeMMA 4: If s, minimizes f on Q subject to G(s)<O0, then there exists a
functional \* € % such that if Q >0,

(56)  8f(sg;5) + A*[8G(5;5)] >0  foralls €Q
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and such that \* > 0 and
(BT A[G(sp)] =

ProoF: [12, pp. 249-250]: (His proof relies on s, being regular (and this we
have established in Lemma 3) and on the interior point property of P.)

We now proceed to characterize A*. Since A* € £%, it is representable in the
following way: for any sequence n € £ :

(58)  A*(q) = E A n,+fnd>2*

where A* is a bounded and purely finitely additive measure on the set of all
possible subsets of the positive integers [9, p. 870; 19, p. 52] and where

SIA¥| < oo. The purely finitely additive property implies [7 dA\* =0 for all
n € f, such that only finitely many elements of the sequence 1 are nonzero. We
now prove that A¥ > 0 (each ) and that [q dA* =0, for all N E L,

At the optimal solution, sy, G,(s,) = 0. For if G,(s,) <0, one could reduce f by
reducing q"(x, t) (for t only) on a set of positive measure without violating the
constraint at ¢, and leaving all the other contraints unaffected. If s, differs from
s, only in as much as §'(x,?) # §%x,t) for some x and for fixed t, only the
constraint at ¢ is affected. More precisely 8G;(sy;s,) is zero except for i = ¢.
Hence, for such variations, A*[6G(sy;5,)] = AF0G,(sq; ;) (in view of equation
(5.8)). Equation (5.6) then implies

t
5.9) 20 yff{ ,B’C’[q‘o(x, z)]x — A} } [ql(x, 1) - §%x, t)]\pyo(,)(xl t,7)dx>0
for all §' which are integrable. (We shall refer to “sets on which

t
2 )’fo‘PyO(f)(xl 1,7)
=0

is of positive Lebesgue measure” as sets of positive measure. Clearly, variations
in § on sets of measure zero in this sense are immaterial since they affect neither f
nor G.) Since Q, >0, §%x,#) >0 on a set of positive measure, so that ¢[4§°(-)]
>0 on these sets. But then A* >0, or else there would exist an admissible
variation which would violate equation (5.9). Also, if §%x,#) =0 on some set of
positive measure, it is readily seen that since ¢’(0) = 0, equation (5.9) would again
be violated by an admissible variation. Therefore §° >0, which implies that
except on sets of measure zero, for each ¢,

(5.10)  Ar=Bc[§(x,)]x > 0.

We are now able to prove the following lemma.
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LEMMA 5: [ndA* =0 foralln €1,,.

Proor: Contained in the Appendix.

Lemma 5 establishes that the second expression on the right-hand side of
equation (5.8) is equal to zero. Now let s, = s, except that y! = y? for some ¢.
Then equation (5.6) reads (in view of Lemma 5)

{ 2 }(y, ) >0

jtja.y

for all y!. Therefore, if y? > 0, 3f/dy, + 272 Af9G;/dy, = 0 while if y? =0, then
af/dy, + 352 AF9G;/dy, > 0. This implies that

(5.11) 2 f{ B e(@%)x + W(1 = B)] =AYy (x o ) dx+ Bk > 0
j=t =
0 _
as b2 ;O.

Finally we consider the variation for which s, = s,, except that v,(7) # y2(7)
for some i > 1 and some 7 > 0. Applying Lemma 5, equation (5.6) reads

P 0 BG
(5.12) {T{r) D 2\,*87(7)}[7,(7)—7,(0]

j=1+i

(note that a change in vy;() does not affect G, for ¢ < 7 + i). Then equation (5.12)
implies that for all v/(7) € [a;, a,),

(5.13) { » [{BLe@)x+ W(1—/3)]—>\.*q°}

j=T+i ! aY,( )
Xyr[vi(r) = ¥ (r)] > 0.

If y? =0, this inequality is automatically satisfied—there are no firms of vin-
tage 7.

LEMMA 6: The Lagrangean L(s,A*)= f(s)+ A*[G(s)] is minimized over s at
(80, A¥) satisfying equations (5.10), (5.11), and (5.13). The point f(s,) is a global
constrained minimum.

Proofr: Contained in the Appendix. Lemma 6 ensures that the minimum
attained at s, is indeed the global minimum.

LemMA 7: K( Q) is convex in Q, and is differentiable in the elements of Q, with

9K/0Q, =

Proor: Contained in the Appendix.
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The social marginal cost is A¥, in present value terms. From equation (5.10)
this is also the discounted expected marginal cost of each firm.

We recall that the derived properties of K( Q) hold only for sequences Q
which are bounded away from zero by some positive e. However, for each such e,
A is bounded uniformly in Q €¢f_. Let X be the upper bound on A. The
following assumption on demand ensures that marginal benefits exceed marginal
costs at some sufficiently small level of output at each ¢: we assume that for some
€ > 0 sufficiently small,

(5.14) D(e)>X  alle

Secondly, in order to ensure that the socially optimal output sequence is
bounded, we assume that for each ¢

5.15 *D(z,t)dz< 4
615 [“D(z1)
for some A sufficiently large and independent of ¢.

PROPOSITION 1: There is exactly one bounded sequence { Q} which maximizes
S( Q) in equation (5.5), and it satisfies

(5.1  BD[Qr.t]=Ar, 1=0,1,....

Proor: Equation (5.15) implies that QF is bounded. Equation (5.14) ensures
that Q is bounded away from zero. Each decision Q, then belongs to a compact
set, and S( Q) is strictly concave in Q, because D( Q,,t) is downward sloping.
Therefore the maximum exists and is unique. Since S( Q) is also differentiable,
one has 3S/9Q, =0 at the optimum, which implies that equation (5.16) holds,
and the proof is complete.

Let §*(x,t) and \[jy.(,)(x | £,7) denote the optimal § and ;[: for minimizing f
when Q = Q0*. We may now state:

THEOREM 2 (Existence, Uniqueness, Optimality): There is exactly one equilib-
rium price sequence p and entry sequence y satisfying D.1. and D.2. in Section 4.
The price sequence is given by p, = B ~'N}. The social benefit functional S( Q) is at
a maximum with QF = Q,(p, ), where §*(x,1) = q(p,/ x) and where 1{2{*(,) (x|t,7)
= ‘I’y(ﬁ,f) (x]2,7).

Proor: From equation (5.10) it is seen that §*(x,?) = g(5,/x). Substituting
this for §* into equation (5.13), this condition becomes idegtical to equation (5.4)
when the latter is evaluated at y(x|#,7; p). Therefore .., = Y(x|t,7; p) as
asserted. Substituting for §* and y,.,, in equation (5.11), this condition is
identical to Condition D.2. Finally, from Lemma 8, D[ Q,(p, ), t] = p;* so that
Condition D.1. is satisfied. Therefore, the maximum is necessarily an equilib-
rium. This establishes existence. For uniqueness and optimality, note that since
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any candidate equilibrium price and entry sequence, (j, §) satisfies P =
B~'(OK/3Q)I @,(p, ), Condition (D.1) requires that 5, = D[ Q,(5, §),t]. This
requires that S( Q) be maximized by Q,(p, 7). By lemma 7 this maximum is
unique. Therefore Q(7, 7) = Q*, and p, = B ~'A}, so that the equilibrium (7, )
is necessarily a maximum. This completes the proof of the theorem.

6. TWO CHARACTERIZATION THEOREMS

This section gives some characterization of the behavior of entry and prices in
equilibrium. Much depends on whether g(p,/x) is convex in x. This is made
precise in the following theorem.

THEOREM 3: Assume that D[ Q,, x] is nondecreasing in t (demand grows mono-
tonically). If q(p/ x) is a strictly concave function of x [see equation (3.1)), then the
equilibrium price sequence is constant, with p* = p for each t, and entry occurs at
each t (y} > 0) while 35’y < 0, and V(x,,0,t; p) — k = W for each t.

Proor: Since (D.2) must hold, profits to entry must be zero at each ¢. Suppose
the optimal exit policies of firms are such that no firm exits under any circum-
stance. Since x* is a martingale, strict concavity of ¢(-) in x implies (by Jensen’s
inequality) E,q(p/x}. ) < q(p/x}). This implies that ¢(z,7; p*) > ¢(z + 1,7;
p*) for each ¢ > 7. This inequality is only reinforced by firms making an exit
under some contingencies. In other words, if the price is constant at j, the output
of the survivors (of any given vintage) would decline with time even if none were
to exit. It follows that it will decline even more if some do exit. Define 4,(5) by
P = DI[A,(p),t]. In other words, A4,(p) is the amount of output which must be
forthcoming at ¢ if price is to be kept constant at 5. Then since demand is
nondecreasing in ¢, the sequence {A4,(p)} is also nondecreasing in ¢. Since for
each ¢, ¢ declines in ¢, the output of the survivors is declining. Therefore y* > 0
for each ¢ because if y* = 0 for some ¢, price at ¢ would be strictly greater than in
the previous period. Finally, since 4,(p) is bounded, one has >&y* < oo if
inf, ¢(¢,7; p*) > 0. For this is sufficient to show that for each 7, lim,_, ¥ (a,| ¢,
T; p¥) > 0, that is, the probability of permanent survival is positive for firms of
each vintage. To prove that this is so, consider the policy: “stay in for one more
period, then exit no matter what.” The expected reward from this policy is
7(p,x) + BW. Therefore the firm will not exit if this reward is greater than W,
or, equivalently, if #(p,x) > (1 — B)W. Let £ be such that #(p,%)=(1 - )W,
so that the firm stays in if x* < £. Of course, £ > a,, otherwise the net value of
entry at all ¢+ would be negative. For each firm of age n (see Section 3),
x} = E(x|7,,n). Let 7, be such that £ = E(x|7,,n). Since £ > a,,1, is bounded
from below. Therefore exit does not occur so long as 7, < ,. But the probability
that a normal posterior mean does not ever reach a boundary that is bounded is
strictly positive (Chernoff [3]). Therefore lim,_,  ¥(a,|¢,7; p*) > 0 for all 7, and
26y < oo. This completes the proof of the theorem.
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The concavity of g(-) in x is (under conditions of increasing demand)
sufficient to imply a constant-price equilibrium. But it is not necessary. The
concavity of ¢ in x was, in the proof of Theorem 3, used only to prove that
o(t + 1,75 p*) < ¢(t,7; p*). If g is convex in x, this means that the collective
output of the surviving firms is larger at ¢ + 1 than it was at ¢. But the subtraction
from the total output due to firms’ exit might still be larger than this increase,
resulting, on net, in a decrease in ¢.

It seems possible that after withdrawals have occurred, the surviving firms will
increase their output by more than the increase in the quantity demanded (at
an unchanged price), thereby making it necessary for price to fall over time. In
view of Theorem 3, convexity of ¢ in x is a necessary condition for such an
equilibrium to occur.

THEOREM 4: K(Q) is homogeneous to degree one: for any a >0, aK(Q)
= K(aQ). An equiproportional shift to the right of demand (for all t) brings about
an increase in Q, in the same proportion for all t. Equilibrium prices remain
unchanged.

Proor: If (»° 4°%v°) minimizes f when the constraint is Q,, then (ay° 4% v°)
minimizes it when the constraint is aQ,: Since f is linear homogeneous in y, this
proves aK( Q) = K(aQ) for all Q. Now introduce the demand-shift-parameter p,
such that D[Q,,t,u]l = D[ uQ,,t]. Equilibrium requires that B‘D[puQ,(w),?]
=0K[Q(w)]/9Q,, where { Q,(p)} is the equilibrium quantity sequence indexed
by u. We need to show that Q(p) = Q(1)/p. By homogeneity of K, adK( Q)

/00, = adK(aQ)/3Q, for all « > 0 and Q, so that IK(Q)/9Q, = K (aQ)/3Q,.
Letting Q = Q(1) and a = 1/p, the result follows.

Bell Laboratories, Murray Hill, New Jersey

Manuscript received January 1981; revision received May, 1981.

APPENDIX

PrROOF OF THEOREM 1: Part (i): The proof of this part consists of an application of Theorem 5 of
[2]. Let T denote the operator which defines V as the fixed point of the equation (3.2) V' = TV. First
it needs to be shown that T transforms continuous, bounded functions into other continuous,
bounded functions. Boundedness follows if 7(p,, x;*) is bounded—the latter is true because (a) p, is
bounded, (b) x} > a; >0, and (c) lim,_, ,,c'(q) = o, so that the necessary condition p, — ¢’(g,)x/ is
always satisfied at a bounded output level. To prove that T preserves continuity, note firstly that «(-)
is continuous in x*, as is P. Therefore T preserves boundedness and continuity.

Secondly, T is a monotone (increasing) operator. That is, for two functions f, and f,, if f; > f,
everywhere, then Tf, > Tf, everywhere.

Finally, for any function f and any constant ¢ > 0, T(f+ ¢) < Tf + fc.

Therefore T is a contraction operator with modulus 8 < 1, and the Banach fixed-point theorem
may be applied to yield assertion (i) of the theorem.

Part (ii): The proof is in two steps. We first prove that V' is nonincreasing in x and then use this to
prove that it is strictly decreasing.
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Let T denote the operator in equation (3.2) so that V is the unique solution to the equation
V= TV. Since T is a contraction operator, we have V' = lim,_, , T"g for any bounded, continuous
function g [where T"g = T(T"~'g)]. Any monotonicity properties of each member of the sequence
T"g are preserved (weakly) by the limit function V. We shall now show that if g is decreasing in x, so
is Tg. If g(z) is decreasing in z, then so is the function max[W, g(z)]. Then, since P(z | x,n) is
increasing in x, [ max[W, g(z)]P (dz | x, n) is decreasing in x. By induction, these properties carry
over to the limit function ¥ which is therefore nonincreasing in x. But then [max[W,V(z,n+ 1,
t+ 1; p)IP(dz | x, n) is nonincreasing in x. But = is strictly decreasing in x and therefore so is V.

PrOOF OF LEMMA 1: One has

V(x| t,7) =f

a

wf [min(x,y,_,) |zt — 1 = 11¥, (dz |1 = 1,7)
1

where H(z'|z,n) is the (one-step) transition probability that x}* <z’ given the pair of sufficient
statistics x*_, =z and n=1t— 1 — 7. But H is a_ continuous transform of the normal CDF, and is
differentiable ir} 2’ for 2z’ € (a;, ay). Therefore if ¥ is continuous at ¢, then it is also dif{crentiable at
t + 1. Thus if ¥ is differentiable when ¢ = 7 + 1, it is differentiable for all > 7. But ¥(x |7+ 1,7)
= H[min(x,y, | x0,0] if xo < vo, while if x> v, ¥(x |7+ 1,7)=0, so that ¥ is differentiable
when ¢ = 7 + 1. Furthermore since H is continuously differentiable, so is ¥, except at the point x =
Yi_,,» (where the Aderivative is in general discontinuous as it becomes zero for x > y,_,) so
that the density ¢ exists and is piecewise continuous. Turning to differentiability of ¥ in Y
note that y, (x | ¢, 7) does not depend on v, if j > ¢ — 7. For any j < t — 7, H[-] does not depend on
v,» and therefore if ¢ is differentiable at v, it is differentiable at ¢ + 1. Since this is true for any
¢, it is sufficient to show that y is differentiable at r = 7 + j, where

\ffy(x|7'+j,7) =f°‘2H[min(x,yj)|z,j+ T— ]]\1:,/(2|'r+j— 1,7)dz
@

and where \{:Y(z | 7+ j — 1,7) does not depend on y;. Then the cross-derivative az\f//ax 0y, exists, and
this completes the proof of the lemma.

PROOF OF LEMMA 2: Let Q( Q) = {s: G(s, Q) <0} C Q. We need to show that f is continuous on
Q( Q) and that Q( Q) is compact [1, p. 69]. In the product topology, sequences gs,}3° (s, € ) converge
to 5o weakly [5, p. 32). That is, s, - s, if and only if y! > y? each ¢, §'(x, £) > §°(x, 1) for each ¢ except
on a set of Lebesgue measure zero, and 'yj'('r)—> yjo('r) each j. Suppose then that | f(s,) — f(sg)| > >0
as s; = sg, so that f is not continuous at so. Write f(s) as 3.72¢B'f;(s). Since f,(s) is bounded on £,
one may choose T(8) < oo such that 372 75, 8| f,(s1) — fi(so)| < (8/2) Vs, €Q. Then

T(8)-1

)=l < 3 BIAG) = filsol +

<ITG) =11 _ max  1fits) = fi(so)l + 5 -

But for any ¢ < o0, Y,y (x | #,7) depends only upon y;(7) for j = 1, -+ - ¢— 7 and is continuous in y;,
so that for each 7 > 7, and each x, Y1) = ¥y0.;) a8 5;—> 5o S0 that | f,(s,) — f,(so)] >0 as s, > s0. But
then | f(s;) — f(so)] = (8/2) < 8, a contradiction. Therefore f is continuous on .

Compactness of Q( Q) is assured if Q( Q) is closed, because a closed subset of a compact space is
compact [1, p. 68]. Q( Q) is closed if its complement is open. Consider then a point s, € § such that
G,(sg, Q,) > 0 for each ¢. One must show that there exists an open neighborhood of sy, N(so), such
that G(s, Q) > 0 for all s € N(sg). Let G,(s, Q) = —3§:izi(§,¥) + Q,. Then let G(sq, Q) > 0. For
any s € £, since y, and z, are bounded,

G,(S, Q/) - Gr(so’ Qr) =- %yi(zi - ZIO) - %:(yl _y‘O)z‘O
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Since 30y; < o, and y; >0, one has >%y,—0 as T—> 0. Then one may choose T = T(8)
sufficiently large such that 3’7, yilz; — 20 + S'rs)l . — »012? < (8/2) for all £ > T(8). Then for any
12 T(9),

T(8)—1
|Gl(s7 Q!) - GI(SO’ QI)IS _20 (,yilzl - zlol + Iyl—,y?'zlo) +g
i=

<IT(s) - . — 29
_[ ( ) ](Clogiénﬁ()fs)—llz' zll

0 )
*ery_ max 1= yfl)+ 3
where the second inequality follows as both y, and z, are bounded. But for any ¢ < oo, |z, — z)| >0
and |y, — y?|—>0 as s—s,. Since this is true for any & >0, one has, for any ¢, that G,(s, Q)
G, (s, Q,) as s— sg. This is true for each #; therefore G(s, Q) converges to G(sg, Q), so that G is a
continuous mapping. Therefore the set {s: G(s, Q) > 0} is open. But s, is a member of this set (since
by assumption G(sg, Q) > 0). Therefore Q( Q) is closed and the proof of Lemma 2 is complete.

PROOF OF LEMMA 3: The s; = (y', Yo, éo) and 5o = (yo, Y, c}o) That is s, differs from sy only in the
entry sequence y. Then,

t A
8G (503 s) = = 3 (7 =) [4°Ce, Ddyacay(x | £,7) .

Since G,(sp) <0, one need only show that 8G, < 0 (each ¢) for some 5, € Q. Since Q, > 0, one has
6 »2[¢%.0dx > 0 for each . But then one may set y! — y° = ay? (a > 0) in which case 8G,(so; 51)
< 0 for each ¢. Since 3 »? is finite, so is (I + a)3® »? so that s, €2 and Lemma 3 has been
proved.

PROOF OF LEMMA 5: Suppose 3 € {,, such that |fg d}:*| = ¢; > 0. Then for any €, no matter how
small, |[€;n dA*| = e;¢; > 0. Let T > 0 be given, and let

1

if t > T,

0 ift>T,
0 if0<t<T,

0 if0<r<T.

By linearity, [e;ndA* = &,/(n'.+ 1) d\* = &/ dA*, where the second equality is due to the purely
finitely additive property of A*. Next we show that 3s;,s, € Q such that 8G(s; s;) = €;n’ and
8G(s; 5) = — €, 7. For the first equality one may choose s, the same as s, except that §' = §°(1 +
&m,7/Q,) for each x, t. This is a feasible variation, since 3e > 0 such that Q, > €Vt so that one may
set ¢, sufficiently small such that €,7 /€ < | (where 7 is such that , < 7 Vn € ¢,). Similarly, to obtain
the second equality one sets §' = §°(1 — €,m,7/ Q,). For each 0, ||n7|| -0 unless lim,_, ,,n, = 0. But if
lim,_, 7, = 0, then the lemma is true [9, p. 872]. Suppose then that lln 7|l > €5 > 0. (The limit must
exist because ||n 7] is nonincreasing in 7 and positive.) Clearly, limz_, ,,8f(so; 5o + €,n.7) =0, and
limy_, . 3372 oA 8G, (50 50 + &n') =0, while for T no matter how large, |[e;n7 dA*| = 3¢, =
|f — e,n T dA*| > 0. By linearity, therefore, there is a feasible variation for which &f + A*(6G) <0, a
contradiction to equation (5.6). This completes the proof of the lemma.

PrOOF OF LEMMA 6: If the Lagrangean is minimized at sy, then the global minimum property
follows from [12, p. 220, Theorem 1], and from the fact that G(sy) = 0. It then remains to be shown
that L(s,A*) > L(sq,A*) for s €Q. Since c(-) is convex, one has c(§)> c(§% + ¢'(§°( — ¢%
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=c(@)+x71BAKG - 4. Therefore, for s € Q,
f(s) + A*[G(s)]

23 [ (8@ 823 G-9+ (- pwl-xei)
X ZO‘PY(T)))T dx + B'ky, + >‘1*Ql]

=2 [Ble@x~B=N5+ (1 - pyw] 2 by e det Bk, +21Q,
t= T=

= )’7{12 B'f[c(c}o)x—ﬂﬁ’}\;*é°+(l —,B)W]lljy(f) dx} + B7ky, + A*Q,.

7=0

However, ¢(§%x — B TIAXG® = w(B ~'A}, x). Therefore, in view of equation (5.3), the expression in
curly brackets is minimized by Y{ B'AF}§, 1) (see the first line following equation (5.3)). But the
necessary conditions for this to occur, in equation (5.4) are identical to those of equation (5.13) (when
one sets p, = B 7'A* in equation (5.4)). Therefore, the expression in curly brackets is minimized for
each 7, by Y., . Therefore,

SO +ANIGWI> Syt Sarg,,
0 0
where
o= BB L0 = BN+ (1 YW N it
Therefore,
f(s) + A*[G(S)] > 2 ))Pr1+ E (.yr _)’P)’r+ Z}‘I*QI

= f(so) + A*[G(s0)] + 2= yDr,.

But equality implies that r,(y, — y%) >0 V1, implying that f(s) + A*[G(s)] > f(so) + A*[G(sp)], for
s € Q. The lemma has been proved.

PROOF OF LEMMA 7: Let s, be optimal when Q= Qy, and let s; be optimal when Q= Q,.
Sf(s0) + A [G(so, Q1 < f(s)) + A*[G(sy, Q)] (using Lemma 6). Therefore fGs) = f(sg) >
A*[G(so, Qo) — G(s;, Qp)l- But G(s, Qo) = 0. Also, G(s;, Q) = 0. Therefore G(s,, Qo)=-0,+
Qo- Therefore K(Q))— K(Qq) = f(x,) = f(x 2A*[ Q) — Qgl. Next let Q,, 0, be given and let
0,=pQ, + (1 = p)Q,. Then

k(@)= K(Q)2M01- 0], and  K(Q)-k(g,)>M[0,- 0,
Multiplying these expressions by p and by 1 — p respectively, and adding them together, one obtains
PK(Q) + (1= p)K(Q5) = K(Q,) M [0( Q1= @) + (1= )( 2, - ©,)]

=20, +(1-p)0, - 0] =0

so that K is convex in Q. Turning to differentiability, let Q, = Q, except that 0! =(1 + €)Q, where
€>0. Let 5, be optimal when Q = Q,. Then f(s,) < f(5,), where 5| = 5o except that §'(x,1) = (1 + ¢)



670 BOYAN JOVANOVIC

x}o(x, t). Then 5, meets all the constraints, and

(A1) f(s1) = f(s0) < f(51) = f(s0)
=p' é:oyff{c’[éo(x, t)]xer}o(x,t)}\{:,,o“)(xl t,7)dx+ o(e)

= Qro Fe+ o(e)

where the last equality follows from equation (5.10) and the definition of Gé(so, Q). But K(Q)) —
K( Qo) = A Q) — Qo] = A¥eQ?. Together with equation (A.1) this implies Q°A*e + o(€) > K( Q) —
K(Q) =A*e¢Q®. Dividing by € and taking the limit as e—0 establishes that the right-derivative
9K /dQ, exists and is equal to A}¥. A parallel argument taking e < 0 establishes the same property for
the left-derivative. The proof is complete.

REFERENCES

[1] BErGE, C.: Topological Spaces. New York: MacMillan, 1963.
[2] BLACKWELL, D.: “Discounted Dynamic Programming,” Annals of Mathematical Statistics,
36(1965), 226~235.
[3] CHERNOFF, H.: “Stochastic Control,” Sankhya, Ser. A, 43(1968), 111-142.
[4] Demserz, H.: “Industry Structure, Market Rivalry and Public Policy,” Journal of Law and
Economics, 16(1973), 1-9.
[5] DuNFORD, N., AND J. T. SCHWARTZ: Linear Operators, Part 1. New York: Interscience Publish-
ers, 1958.
[6] Du REeitz, G.: “New Firm Entry in Swedish Manufacturing Industries during the Post-War
Period,” Doctoral Dissertation, Stockholm, 1975.
[7] FeLLER, W.: Introduction to Probability, 11 (2nd ed.). New York: John Wiley and Sons, 1971.
[8] HART, P. E., AND S. J. Prais: “The Analysis of Business Concentration: A Statistical Approach,”
Journal of the Royal Statistical Society, 119, pt. 2 (1956), 150-191.
[9] HiLpeBRANDT, T. H.: “On Bounded Functional Operations,” Transactions of the American
Mathematical Society, 64(1948), 868—875.
: “On the Size Distribution of Business Firms,” Bell Journal of Economics, 9(1978),
508-523.
[11] Lucas, R. E., anD E. C. PrescotT: “Investment Under Uncertainty,” Econometrica, 39(1971),
659-681.
[12] LUENBERGER, D. G.: Optimization by Vector Space Methods. New York: John Wiley and Sons,
1969.
[13] MansFiELD, E.: “Entry, Gibrat's Law, Innovation, and the Growth of Firms,” American
Economic Review, 52(1962), 1023-1051.
[14] PasHIGIAN, P., AND S. HYMER: “Firm Size and Rate of Growth,” Journal of Political Economy,
52(1962), 556-569.
[15] SAMUELS, J. M., anDp D. J. SMYTH: “Profits, Variability of Profits and Firm Size,” Economica,
35(1968), 127-139.
[16] SmmoN, H. E., anD C. P. Bonint: “The Size Distribution of Business Firms,” American Economic
Review, 48(1958), 607-617.
[17] STIGLER, G. J.: Capital and Rates of Return in Manufacturing Industries. Princeton: Princeton
University Press (for NBER), 1963.
[18] WErss, L.: “Quantitative Studies of Industrial Organization,” in Frontiers of Quantitative Eco-
nomics, ed. by M. D. Intrilligator. Amsterdam: North-Holland, 1971.
[19] Yosipa, K., AND E. HeEwItT: “Finitely Additive Measures,” Transactions of the American
Mathematical Society, 72(1952), 46—66.
[20] ZELLNER, A.: An Introduction to Bayesian Inference in Econometrics. New York: John Wiley and
Sons, 1971.

(10]

>



