
 

Chapter 3 

Difference Equations 

 

 

Difference equations are the discrete-time analog to differential equations. For a differen-

tial equation of the form 

 ( )( ) ( ), ( )y t f x t y t=� , 

the discrete-time analog is 

 ( )1 1 1,t t t ty y f x y− − −− =  

or 

 ( )1 1,t t ty f x y− −= � . 

Difference equations are valuable alternatives to differential equations for a number of 

reasons: 

• They lend themselves readily to econometric analysis because difference equa-

tions can be written to match data frequencies. Empirically-implementing con-

tinuous time models with data only observed at discrete intervals requires some 

fairly advanced econometrics (e.g. Bergstrom [1990]; in practice, however, re-

searchers just ignore the complications created in the mapping from continuous 

time modeling to discrete time empirical work). 

• They have been the main mode of analysis for the once-trendy fields of chaos 

and complexity. 

• They lend themselves more readily to the incorporation of rational expecta-

tions. 



DIFFERENCE EQUATIONS  73

• They are more easily extended then differential equations to deal with sto-

chastic models. One notable exception is the Poisson-family of models of rare 

events, which is best analyzed in continuous time. 

• They are central to the analysis of many models of dynamic programming (an 

approach to dynamic optimization that we study later in the course). 

In these notes, as in other sections, we provide only a basic introduction to difference 

equations. A significant fraction of the material is devoted to models of rational expecta-

tions under uncertainty. Although such models have been in the core of macroeconomic 

dynamics for thirty years, they are in my opinion still underutilized in microeconomic 

dynamics.  

1. Deterministic Difference Equations 

We consider here first-order linear difference equations with constant coefficients: 

 1 0 1t t tc y c y g−+ = , 

where 1 0c ≠  and 2 0c ≠  (otherwise it is not a difference equation). 

The Homogeneous Equation 

Define b=c0/c1 and write the homogeneous equation in which g(t)=0 for all t: 

 1 0t ty by −+ = . 

Let y0 be the initial condition. Then it is easy to verify that the solution is 

 0( )tty y b= − . 

The analog to the solution of a differential equation of the same type should be immedi-

ately apparent. To verify that this is the solution, substitute the solution into the differ-

ence equation:  
1

1 0 0 0 00 ( ) ( ) 0 ( ) ( ) 0 0 0t t t t
t ty by y b by b y b y b−

−+ = ⇒ − + − = ⇒ − − − = ⇒ = . 

Of course, if y0 is not known we have only the form of the solution. 
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Note that  

 • For 1b < , lim 0t ty→∞ =  and 1t ty y+ < . 

 • For b<0 the path is monotonic while for b>0 the path oscillates. 

The Inhomogeneous Equation 

Consider now the case 1 0 1t t tc y c y g−+ = . For most common functions, this can be solved 

by the method of undetermined coefficients. The method involves guessing a functional 

form with unknown coefficients, and then verifying the guess and obtaining the value of 

the unknown coefficients . We give some examples here. 

• gt is a constant, 1 0 1t tc y c y a−+ = . Try yt=µ for some unknown µ. If this guess 

is correct then 1 0c c aµ µ+ =  or ( )0 1/a c cµ = + . Moreover, we can verify that 

the guess is correct because we see that the equation implies that µ does turn 

out to be a constant.1 This solution does not work if c0+c1=0. In this case, 

guess yt=µt. Then, it is easy to verify that the guess is correct and µ=a/c0 or, 

equivalently, −µ=a/c1. 

• gt is exponential, 1 0 1
t

t tc y c y kβ−+ = . Try yt=µβt for some unknown µ. If this 

guess is correct then 1
1 0

t t tc c kµβ µβ β−+ = , which is true if and only if 

1 0 0c c kµβ µ β+ − =  [i.e., if ( )0 1/k c cµ β β= + ]. This solution fails if βc0+c1=0. 

In this case, guess yt=µtβt.  

                                            
1 Imagine we have an equation of the form 1 0 1t tc y c y at−+ = , and now we try ty µ=  for some 

unknown µ. If this guess is correct then 1 0c c atµ µ+ = . But this implies that 0 1/( )at c cµ = + . As 

µ depends on t, then it clearly is not a constant; thus our initial guess must have been wrong and 

we should try another. Now return to the original equation 1 0 1t tc y c y a−+ = , and assume we guess 

ty tµ=  for some unknown µ. If this guess is correct then 1 0 ( 1)c t c t aµ µ+ − = . But this implies 

that 0 1/( ( 1) )a c t c tµ = − + . Yet again, µ depends on t (unless 0 1 0c c+ = ) and our initial guess 

must have been wrong. These simple examples show that each time the wrong functional form is 

guessed you will end up with an inconsistency that sends you back for another guess. 
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NOTE: If the function you try does not work for some values of the coefficients, try the 

same function multiplied by t. This is a quite general prescription regardless of the form of 

gt. 

• gt is a polynomial of degree m. Guess 0 1
m

t my a a t a t= + + ⋅ ⋅ ⋅ + , with un-

known coefficients ai.  

• gt is a trigonometric function of the sine-cosine type (if you have a model of 

this sort, you are probably not doing economic modeling!). If 

cos sintg a t b tω ω= + , guess a solution of the form cos sinty t tα ω β ω= + , 

with unknown coefficients α and β.  

We will take more time here to think about solution methods for the case where gt is an 

arbitrary, unspecified function. Obviously, one cannot in this case apply the method of 

undetermined coefficients. To tackle the case of gt unspecified, we will rely on operational 

methods. 

DEFINITION: (lag and forward operators). Let L and F denote respectively, a lag operator 

and a forward operator. L and F have the following properties. 

    1
1t t tLy F y y−

−≡ ≡ ,  n n
t t nL y F y−

−≡ ≡ , 

    1
1t t tL y Fy y−
+≡ ≡ ,   n n

t t t nL y F y y−
+≡ ≡ . 

It should be apparent from the definition that the operators L and F are just a different 

way to write the time index on variables.  What makes this different notation valuable is 

that L and F can be manipulated just like any other algebraic quantity. For example, the 

equation 2 1t t ty by ax− −+ =  can be written as 2
t t ty bL y aLx+ = . We can then divide 

throughout by L2 and use the fact that 2 2L F− = to get 2
t t tF y by aFx+ = , or 

2 1t t ty by ax+ ++ = . Obviously, this is a simple updating of the equation. However, in 

many instances, updating is not so straightforward and the operators turn out to be use-

ful. 

 Before providing some examples of nontrivial uses of the operators, let us note two 

extremely valuable series expansions: 
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 1

0
(1 ) i i

i
L Lα α

∞
−

=
− =∑ ,      for 1α < , (1.1) 

 1

1
(1 ) i i

i
L Lα α

∞
− − −

=
− = −∑    for 1α > . (1.2) 

Please note the difference in the lower limits of the summation in the two series expan-

sion. The reason we need two expansions is that if |α|>1 the infinite series in (1.1) di-

verges (i.e. each successive term in α becomes larger and larger). In contrast, the infinite 

series in (1.2) diverges if |α|<1.  

 Heuristic proofs of these expansions are easy. For (1.1),  

 1(1 ) (1 ) 1L Lα α−− − = ,      by definition 

                       ( ) ( )2 2 2 21 L L L Lα α α α= + − + − + ⋅ ⋅  

                       ( ) ( )2 2 2 21 L L L Lα α α α= + + + ⋅ ⋅ − + + ⋅ ⋅  

                       ( )( )2 21 1L L Lα α α= − + + + ⋅ ⋅  

                       
0

(1 ) i i

i
L Lα α

∞

=
= − ∑ . 

For (1.2), 

 ( ) 11 1 1(1 ) ( ) 1 ( )L L Lα α α
−− − −− = − −   

                        ( )1 1

0
( ) ( )

i

i
L Lα α

∞
− −

=
= − ∑ , from (1.1) 

              1 1

0

i i

i
L Lα α

∞
− − − −

=
= − ∑  

              ( 1) ( 1)

0 1

i i i i

i i
L Lα α

∞ ∞
− + − + − −

= =
= − = −∑ ∑ . 

 

EXAMPLE 1.1. In the equation 1 0 1t t tc y c y g−+ = , let the function gt be represented by 

some known sequence of real numbers xt. Then, with 0 1/b c c= , we can write 1t ty by −+  
1

1( ) t tc x X−= = . In lag notation, (1 ) t tbL y X+ = . We then have 
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 ( ) 11(1 ) 1 ( )t t ty bL X b L X−−= + = − −  

                       
0
( )i i

t
i

b L X
∞

=
= −∑  

                       
0
( )i t i

i
b X

∞

−
=

= −∑  

                        0

1 10

1
i

t i
i

c
x

c c

∞

−
=

  = −   
∑ . 

If |b|>1, the series is divergent, so the use of the series expansion (1.1) will not work. In 

this case, we make use of (1.2), yielding the solution 

 1

1 01

1
i

t t i
i

c
y x

c c

∞

+
=

  = − −   
∑ . 

The solution for |b|<1 gave a geometrically weighted sum of the current and past values 

of xt. That is, we got the backward solution. The solution for |b|>1 gave a geometrically 

weighted sum of future values of xt. That is, we got the forward solution.    • 

The General Solution 

At this point, some of you may (quite correctly) be a little puzzled. We began with a ho-

mogeneous equation 1 0 1 0t tc y c y −+ =  and derived a solution that depended on an initial 

condition. We then looked at the inhomogeneous equation 1 0 1t t tc y c y g−+ =  and our solu-

tions made no mention of initial conditions. What is going on? The answer is that we 

must distinguish between general and particular solutions of a difference equation. For the 

homogeneous equation we had a general solution 

 0

1

t

t
c

y A
c

  = −   
, 

for some unknown A. A particular solution in this case is one in which we select A from a 

set of appropriate boundary conditions. It turns out that for the inhomogeneous equa-

tions we have been solving only for a particular solution. However, as we will see shortly, 
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the particular solution we had solved for is special because it corresponds to the equilib-

rium solution of a model.  

 To find the general solution of the inhomogeneous equation we make use of the fol-

lowing result: 

 

THEOREM: Consider the equation 1 0 1t t tc y c y g−+ = . Let ty  denote any particular solution 

to the inhomogeneous equations, and let ty�  denote the general solution to the ho-

mogeneous equation 1 0 1 0t tc y c y −+ = . Then, the general solution to the homoge-

neous equation is t t ty y y= +� , where ty�  contains an unknown constant. A par-

ticular solution can be obtained by solving for the unknown constant term by ex-

ploiting boundary conditions. 

 

EXAMPLE 1.2. For the equation 1 0 1t t tc y c y x−+ = , 0 1c c< , we have already seen 

 0

1

t

t
c

y A
c

  = −   
�    and   0

1 10

1
i

t t i
i

c
y x

c c

∞

−
=

  = −   
∑ . 

Thus, the general solution is 

 0 0

1 1 10

1
t i

t t i
i

c c
y A x

c c c

∞

−
=

      = − + −        
∑ . 

Now, assume there is a set of initial conditions 0 0tx t= ∀ < , x0=1, y0=1. Then, we can 

obtain the particular solution by solving for A: 

 0
0

1 1 11

1 11
i

t i
i

c
y A x

c c c

∞

−
=

  = = + + −   
∑ , 

which gives ( )1 11 /A c c= − , and  

 1 0 0

1 1 1 10

1 1
t i

t t i
i

c c c
y x

c c c c

∞

−
=

    −       = − + −              
∑ .     • 

 Example 1.2 is useful to now clarify what we meant by the statement that a particu-

lar solution can correspond to the equilibrium solution of a model. Imagine that the proc-

all zero 
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ess being analyzed has been in process for a very long time, indexed by t0, but that we are 

beginning to observe it only at some time t+t0. Then, the general solution is  

 
0

0 0

0 0

1 1 10

1
t t i

t t t t i
i

c c
y A x

c c c

+ ∞

+ + −
=

      = − + −        
∑ . 

But if the process has been underway for a very long time, t0→∞, and we have 

 
0 0

0 0

0

1 10

1lim lim
i

t t t t i
t t i

c
y x

c c

∞

+ + −→∞ →∞ =

  = −   
∑ . 

The general solution of the homogenous equation vanishes. Now re-index time to s where 

s=t0−t. Then, we have 

 0

1 10

1
i

s s i
i

c
y x

c c

∞

−
=

  = −   
∑ , 

where s=0 corresponds to the first period we observe the process. That is, the particular 

solution obtained by setting 0ty =�  represents the particular solution for a process that 

has already been underway for a long period of time before we begin to observe it, so the 

initial conditions that applied when the process began no longer matter. This is what is 

meant by an equilibrium process.  

 Just to cement this idea, consider an inhomogeneous difference equation intended to 

represent, say, the number, nt, of firms active in an industry. If we are studying an indus-

try from its birth, when the first firm entered, we obtain the general solution and then 

select from this a particular solution using the initial condition n0=1. In contrast, if we 

are studying an industry that is already well-established at the time we begin to study it, 

we want the equilibrium solution, i.e. the particular solution to the inhomogeneous equa-

tion obtained by setting the general solution to the homogeneous equation to zero. 

 

EXAMPLE 1.3 (Partial adjustment in firm output). Profit-maximizing output for a firm is 

given by ˆ ( )t ty f p= , where industry price, pt, is some arbitrary function of time. The firm 

faces a loss when it does not set ˆt ty y= , equal to ( )2ˆ( /2) ta y y− , so it would like to set 
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ˆt ty y= , in every period. However, there is a quadratic cost to adjusting output equal to 

( )21( /2) t tb y y −− . Find the output chosen by a myopic cost-minimizer. 

 The myopic cost-minimizer considers only the current period's costs, and does not 

think about how today's output choice may influence future costs. That is, the firm's ob-

jective is 

 ( ) ( )2 2
1ˆmin

2 2t
t t t t

y

a b
L y y y y −= − + − . 

The first-order condition yields 

 1ˆt t t
a by y y

a b a b −
     = +       + +

. 

This is the difference equation to solve. Before doing so, let us rewrite it as 

 ( )1 1ˆt t t t
ay y y y

a b− −− = −
+

. (1.3) 

This is the famous partial adjustment equation. The change in a firm's output is a frac-

tion /( ) (0,1)a a b+ ∈  of the gap between the actual and desired output levels. The 

greater the cost of not hitting the target relative to the cost of adjustment, the greater 

the speed of adjustment. Now, rewrite the equation again: 

 1 ˆ( ) t t ta b y by ay−+ − = , 

and it is easy to see that this is the equation we just solved in the Example 1.2, with 

1 ( )c a b= + , 0c b= − , and ˆt tx ay= . If we are modeling a firm since birth, with entry size 

y0, then we take the general solution and use y0 to pin down the unknown constant: 

 0
0

ˆ
t it

t t i
i

b a b
y y y

a b a b a b −
=

     = +       + + +∑ , 

where the upper limit to the summation is set to t because we don't care about optimal 

output levels before the firm was born.  

 If, instead, we are modeling the output path of a firm that has been around a long 

period of time, it might be reasonable to assume that it has been around for an infinite 

period of time and thus 
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0

ˆ
i

t t i
i

a b
y y

a b a b

∞

−
=

 =   + +∑ .     • 

A Digression: Myopia Versus Farsightedness 

While sometimes it is justifiable to assume myopia on the part of firms, the most common 

reason the assumption is imposed in practice is simplicity. It is the job of the modeler to 

decide whether myopia can be justified, or whether its analytical convenience outweighs 

the insights that might be obtained by dropping the assumption.  

 To illustrate the additional insight and complexity that result from assuming far-

sightedness we write the objective function as 

 ( ) ( ){ }2 2
1

0
ˆmin

2 2t

i
t i t i t i t i

y i

a b
L y y y yβ

∞

+ + + + −
=

= − + −∑ , 

where β<1 is the discount factor. The firm chooses current output to minimize the dis-

counted sum of the current and all future losses. The first-order condition is 

 ( ) ( ) ( )1 1ˆ 0t t t t t ta y y b y y b y yβ− +− + − − − = , 

which can be written in classic partial adjustment form as 

 ( ) ( )1 1 1ˆt t t t t t
a by y y y y y

a b a b
β− − +

     − = − + −       + +
. (1.4) 

Compare (1.4) with the myopic case (1.3). The farsighted firm has an additional term 

affecting the change in current output. As in the myopic case, the change in a firm's out-

put is a linear function of the fraction /( )a a b+  of the gap between the actual and de-

sired output levels. However, current output is further revised by a fraction 

/( ) (0,1)b a bβ + ∈  of the difference between this and next period's output. The new term 

arises because the farsighted firm understands that this period's output choice will affect 

next period's adjustment costs. The higher the adjustment costs relative to the loss from 

the output gap, the more weight is applied to this additional term. The lower the dis-

count factor, the less the firm cares about the future consequences of its current actions.  

Note that (1.4) includes terms involving t−1, t, and t+1, so the partial adjustment model 
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for the farsighted firm generates a second-order difference equation. We will see how to 

solve this type of equation later. 

Mapping Bounded Sequences to Bounded Sequences 

Consider the equation 

 1 , 1t t ty y bx aλ λ−= + + > . 

Because 1λ > , we want to use the forward solution, which is 

 
11

t i
t t i

i

a
y c b xλ λ

λ

∞
−

+
=

= + −
− ∑ , 

where c is a constant yet to be determined. How do we determine this constant if we have 

no explicit boundary condition? One way is to make the following assumption: 

The only admissible solutions for any bounded sequence { } 0t tx ∞
=  consist of 

bounded sequences { } 0t ty ∞
= . 

That is, if the exogenous variable is bounded, then we assume the endogenous variable is 

also. In this example, the only way to generate a bounded sequence for y is to set c=0. Of 

course, it is the economic model that must justify the assumption. For example, if x is 

price and y is industry output, it may well be reasonable to restrict attention to finite 

output levels whenever price is finite.2 

2. Rational Expectations and Uncertainty 

In this section we extend our analysis of linear difference equations to admit (i) uncer-

tainty and (ii) the assumption that expectations are formed rationally, in the traditional 

sense that our modeling of expectations sets agent's expectations equal to the conditional 

mathematical expectation implied by the model.  

                                            
2 Unfortunately, the assumption may outlaw some solutions without yielding a unique solution. 

Indeed, we may be left with an infinite number of admissible solutions. This depends on the model. 
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Expectations Rules 

The following properties of random variables may be useful. Let  

 ,z a bx w c dy= + = + , 

where x, y, w, and z are random variables, and a, b, c, and d are constants. 

• EXPECTED VALUE:  

 ( ) ( ) ( )E x y E x E y+ = +   ( ) ( )E z a bE x= + . 

• VARIANCES:  

 ( ) ( ) [ ]2 22var( ) ( ) ( )x E x E x E x E x = − = −   ; 

 ( )( )cov( , ) ( ) ( )x y E x E x y E y = − −  ( ) ( ) ( )E xy E x E y= − ; 

 2var( ) var( )z b x=   var( ) var( ) var( ) 2 cov( , )x y x y x y+ = + +  

 cov( , ) cov( , )z w bd x y=     var( ) var( ) var( ) 2 cov( , )x y x y x y− = + −  

• CONDITIONAL EXPECTATIONS: 

 Let It denote information available at time t, and let tIω ∈  be a subset of that in-

formation. Then the expectation of x conditional on the information set It is denoted by 

[ ]| tE x I , or more informally by ( )tE x . The law of iterated expectations is 

 [ ] [ ]| | |t t tE E x I E xω ω  =  . 

Heuristically, the law of iterated expectations means that if I am asked how I would re-

vise my expectations if I were given more information, my answer would be that they are 

equally likely to go up or down and on average my expectation is that the revision would 

be zero. In particular, the law of iterated expectations means 

 [ ]1| | |t t tE E x I I E x I+
   =    , 

and we will use this frequently in solving linear rational expectations models. Note that 

adaptive expectations, studied earlier in this course, do not satisfy the law of iterated 

expectations. 
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• AUTOREGRESSIVE PROCESSES: 

 Certain autoregressive stochastic processes appear commonly in linear rational ex-

pectations models. We will see examples of AR(1) [first-order autoregressive] processes 

taking the form 

 1t t tx xα ε−= + , 

where εt is a white noise random variable, uncorrelated across time periods with zero 

mean and constant variance 2
εσ .  We can derive the following relationships, 

      ( ) 2
1cov , i

t t xx x α σ− =      2 2 2(1/(1 ))x εσ α σ= −      | j
t j t tE x x xα+

  =   , 

noting that the variance of x is finite only for |α|<1. When α=1, the AR(1) process is 

known as a random walk. In the case of a random walk, we have | 0t j t tE x x x j+
  = ∀ >   . 

Solving Linear Rational Expectations Models 

There are several techniques for solving linear rational expectations models. We will use 

three techniques to solve the following simple model: 

 1 |t t t ty aE y I cx+ = +  , (2.1) 

 where xt is an exogenous, stochastic process. In modeling how expectations are formed, 

we make the following assumptions: 

• Agents know the model, and the values of a and c. 

• All agents have the same information set, so we can talk about "the" mathe-

matical expectation based on "the" information set. 

• When  forming expectations at time t, the agent has observed xt. That is, 

t tx I∈ . 

In this section, we restrict attention to the following conditions: 

 • (0,1)a ∈  

 • yt is bounded. 

These conditions provide us with a unique solution to (2.1). We will drop them later to 

see what happens. 

Method 1: Repeated Substitution. Rewrite the problem for t+1: 
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 1 2 1 1|t t t ty aE y I cx+ + + + = +  , 

and take expectations conditional on It: 

 1 2 1| | |t t t t t tE y I aE y I cE x I+ + +     = +      , 

where, in the first term on the right hand side, we have applied the law of iterated expec-

tations. Now substitute this expression for 1 |t tE y I+    into (2.1): 

 2
2 1| |t t t t t ty a E y I acE x I cx+ +   = + +    . 

Repeat this substitution up to time t+T: 

 1
1

0
| |

T
i T

t t i t t T t
i

y c a E x I a E y I+
+ + +

=

   = +   ∑ . 

Now, if yt is bounded, then as |a|<1 we have 

 1
1lim | 0T

t T t
T

a E y I+
+ +→∞

  =  , (2.2) 

and so, 

 
0

|i
t t i t

i
y c a E x I

∞

+
=

 =  ∑ . (2.3) 

Note that yt can only be bounded if |t i tE x I+    does not grow too fast. Specifically, we 

requires that 

 1 | 1
|

t i t

t i t

E x I
aE x I

+ +

+

   <  
, 

or equivalently that the growth rate of |t i tE x I+    is less than (1/a)−1. Equation (2.3) is 

the unique solution to the problem under assumption (2.3). If we are willing to make 

some assumptions about the expected time path for xt, we can solve more explicitly for yt, 

as the following examples show. 

 

EXAMPLE 2.1. Assume x=x0 for t≤T, and x=x1 for t>T, and this path is known to the 

agent we are modeling. Then, we have 

 
0

|i
t t i t

i
y c a E x I

∞

+
=

 =  ∑  
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     0 1
0 1

T
i i

i i T
c a x c a x

∞

= = +
= +∑ ∑  

      
1 1

0 1
1

1 1

T Ta a
cx cx

a a

+ +   −    = +     − −   
     • 

 

EXAMPLE 2.2. Assume 1 1t t tx x ε+ += + , where ε is independently and identically distrib-

uted with mean zero.  Then, |t i t tE x I x+  =   for all i, so 

 
0 1

i t
t t

i

cx
y c a x

a

∞

=
= =

−∑ .     • 

Method 2: Undetermined Coefficients. As in the deterministic case, we guess a functional 

form for the solution and then verify it. Let us guess a form for the solution that we al-

ready know is correct. Guess 

 
0

|t i t i t
i

y E x Iλ
∞

+
=

 =  ∑ , (2.3) 

where λi, i=1, 2, 3, . . . , are coefficients to be determined. If this guess is correct, then 

imposing rational expectations gives us 

 1 1
0

| |t t i t i t
i

E y I E x Iλ
∞

+ + +
=

   =   ∑ . (2.4) 

We now substitute our guesses, (2.3) and (2.4) into the original equation (2.1), to obtain 

 1
0 0

| |i t i t i t i t t
i i

E x I a E x I cxλ λ
∞ ∞

+ + +
= =

   = +   ∑ ∑ . 

This equation should hold for any realizations of the sequence { } 1t i i
x ∞
+ =

, and the only 

way this can happen is if for every i, the coefficient on xt+i on the left hand side of the 

equation is identical to the coefficient on xt+i on the right hand side. Matching up the co-

efficients, we get 

 0 cλ = , and 1
i

i ia a cλ λ+ = = ,  

and this again yields (2.3). 
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EXERCISE 2.1 (A supply and demand model). Solve the following problem using 

the method of undetermined coefficients.  

0 1t t ty p eα α= − + , 

[ ]0 1 1|t t ty E p Iβ β −= + , 

1t t te eρ ε−= + ,    [ ]0tE ε = . 

(Solve for price first, assuming a solution of the form 0 1 2 1t t tp eπ π ε π −= + + ). 

 

Method 3: Sargent's Factorization Method. We have seen the use of lag and forward op-

erators already. Their use in solving stochastic rational expectations models was pio-

neered by Sargent (1979). With the introduction of expectations operators, it is impor-

tant to note that the lag and forward operators work on the time-subscript of the variable 

and not on the time subscript of the information set. That is, 

 1 1 1| |t i t t i tLE p I E p I+ − + − −   ≡    , 

 [ ]1 | |t t t t tLE p I E p I p+  ≡ ≡  . 

Consider our simple problem, (2.1). Sargent's factorization method first involves taking 

expectations on both sides of the equations conditional on the oldest information set that 

appears anywhere in the equation. In this simple problem, there is only one information 

set, It, so we take expectations over the entire equation based on It: 

 [ ] [ ]1| | |t t t t t tE y I aE y I cE x I+ = +  . (2.5)3 

The second step in Sargent's method is to write (2.5) in terms of the operators: 

 [ ] [ ] [ ]| | |t t t t t tE y I aFE y I cE x I= + , 

which implies 

                                            
3 Note that in this particular example, we have t ty I∈  and t tx I∈ , so [ ]|t t tE y I y= , 

[ ]|t t tE x I x= , and [ ]1 |t t t ty aE y I cx+= + . That is, the first step in Sargent's method does noth-

ing in this example because there was no lagged information set, such as I
t−1
. We will see examples 

later when this step does something substantial to the equation. 
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 ( ) [ ] [ ]1 | |t t t taF E y I cE x I− = , 

or 

 [ ] ( ) [ ]1| 1 |t t t tE y I c aF E x I−= −  

             [ ]
0

|i i
t t

i
c a F E x I

∞

=
= ∑ , 

which is the same solution as before. 

 This problem was simple, and all the methods were easy to apply. In general, is 

there any preference? For the simplest problems, repeated substitution is the most 

straightforward. However, it quickly becomes unwieldy as the problem increases in com-

plexity. Undetermined coefficients eventually also become awkward because the initial 

guess may not include the correct solution. Sargent's method is the most powerful, par-

ticularly for problems with multiple solutions. However, it is often found to be the most 

conceptually challenging.  

Multiple Solutions 

 Difference equations with order greater than one usually have multiple solutions. In 

the case where there are just a few solutions, then selecting among them can usually be 

accomplished by choosing the solution that is stable (i.e. the one in which there is an ad-

justment process that does not lead to exploding values for the endogenous variables(s). 

We will see how this is done by means of two examples. 

 

EXAMPLE 2.3. Consider the following supply and demand model 

 ( )0 1 1 |t t t t t ty p E p I p eα α + = − + − +  , (2.6) 

 [ ] [ ]( )0 1 1 1 1| |t t t t t ty E p I E p I pβ β− − −= + −  (2.7) 

where et is white noise, and the four constant coefficients are all positive. Equation (2.6) 

is the demand curve, which contains a speculative component: demand is high in period t 

if agents expect a large price increase by period t+1. The supply curve, (2.7), contains a 

lag in production and a speculative component. The production lag is reflected in the fact 
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that supply decision are made on the basis of It−1. The speculative component states that 

supply is high in period t if in period t−1 agents had expected the price to be much 

higher than it was in period t−1. This component comes, of course, from the previous pe-

riod's speculative demand.  

 Combining (2.6) and (2.7) gives us a single equation in prices: 

 [ ] [ ]( ) ( )0 1 1 1 1 0 1 1| | |t t t t t t t t t tE p I E p I p p E p I p eβ β α α− − − + + − = − + − +  . (2.8) 

We will solve this by the method of undetermined coefficients. It turns out that the solu-

tion has the form 

 1 2 1t t tp e pπ π −= + , (2.9) 

although some comments about guessing the functional form are in order. First, note that 

(2.8) has no intercept, so none is included in the guessed functional form. Second, our 

most general guess should take the form  

 [ ]1 2
1

|t i t i t i t i
i i

p E e I pπ π
+∞ ∞

− −
=−∞ =

= +∑ ∑ . 

     1 1 2
0 1

i t i t i
i i

e pπ π
∞ ∞

− −
= =

= +∑ ∑ . 

The tactic here is to include all past values of the endogenous variable, and all values of 

the exogenous variables that appear in (2.8). Because et is white noise, | 0t i tE e I+  =   for 

all i>0. It also turns out in this case that 1 0iπ =  for all i>0, and 2 0iπ =  for all i>1, so 

we will save time and assume (2.9). 

 Imposing rational expectations on the guessed functional form gives 

 [ ]1 2 1|t t tE p I pπ− −= , (2.10) 

 2
1 2 1 2 2 1|t t t t tE p I p e pπ π π π+ −  = = +  , (2.11) 

and substituting (2.9)−(2.11) into (2.8) yields 

 

 ( )2
0 2 1 2 0 2 1 2 1 2 1 1tpβ π β π α π α π α π β −− − − − − +  

                                                 ( )0 1 1 1 2 1 1 1 0teα π α π π α π+ − + − + = . (2.12) 
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This equation must hold for any values of et and pt−1. Thus, the terms inside parentheses 

must be zero. The first term then gives a quadratic solution for the unknown coefficient 

π2:  

 ( )0 0 1 1
2 0 0 1 1 1 1

1 1

1
4

2 2
α β α βπ α β α β α β

α α
+ + += ± + + + − . (2.13) 

We have two possible solutions for π2. Which one is economically interesting? Generally, 

we will find that only one corresponds to a stable solution. Take a look again at the pos-

ited solution, (2.9). A shocks to p will dampen down over time only if 2 1π < . Thus, we 

look for a solution with 2 1π < , and it turns out that only one solution can satisfy this 

stability requirement. To see this, we apply a neat little trick for quadratic solutions. Let 

2π
−  and 2π

+  denote the two solutions to (2.13) and, without loss of generality, assume 

2 2π π− +≤ . Then, we can easily verify that 

 1
2 2

1
0

βπ π
α

− + = >  (2.14) 

and 

  0 0 1 1
2 2

1
0

2
α β α βπ π

α
− + + + ++ = > . (2.15) 

Equation (2.14) shows that both solutions have the same sign. This fact, when used with 

(2.15) shows that both roots are positive, so we have 

 2 20 π π− +< ≤ . 

So far, we still don't know whether we have zero, one, or two stable solutions. To get any 

further, we need to do some economic thinking. For this problem, note that α1 should be 

equal to β1. This is because α1 is the coefficient of speculative demand and measures how 

prices affect the quantity that is bought today in order to sell tomorrow; β1 is the coeffi-

cient on the inventory carryover of speculators' supply and measures how prices affected 

the quantity that was bought yesterday in order to sell today. These two quantities 

should logically be equally sensitive to price changes. Imposing equality of coefficients, 

(2.15) tells us that 
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 2
2

1π
π

−
+=  

which tells us that 20 1π−< ≤  and 21 π+≤ . If ( )0 0 1 1 1 14α β α β α β+ + + − , then there is 

a single solution with 2 2 1π π− += = . More generally, there will be a single stable solution,  

 ( )0 0 1 1
2 0 0 1 1 1 1

1 1

1
4

2 2
α β α βπ α β α β α β

α α
− + + += − + + + − . (2.16). 

Returning to (2.12), we can see that 

 
( )1

0 1 2

1
1

π
α α π

=
+ −

, 

 so that 

 
( ) 2 1

0 1 2

1
1t t tp e pπ

α α π −= +
+ −

, 

where π2 is as defined in (2.16). Now we have the solution for pt, obtaining the solution 

for yt is straightforward and this is left as an exercise.   

 Although the demand disturbances are pure white noise, the presence of speculation 

introduces positive serial correlation in prices. The causal mechanism is intuitive. If et−1 is 

high, then pt−1 will also be high. Speculators will cut back their purchases, and this will 

reduce speculative supply in period t. Hence, pt will also be higher than normal.      • 

 

EXAMPLE 2.4. We will solve the equation, 

 [ ]0 1 1 1 2 1 3| |t t t t t t t tp a E p I a p a E p I a y e+ − − = + + + +  , 

where all coefficient are positive, by Sargent's factorization method. The first step is to 

take expectations of the entire equation based on the oldest information set, It−1: 

 [ ] [ ] [ ]1 0 1 1 1 1 2 1 1| | | |t t t t t t t t tE p I a E p I a p a E p I E x I− + − − − − = + + +  , (2.17) 

where, to ease notation, we have written 3t t tx a y e= + . In writing (2.17), we again ap-

plied the law of iterated expectations and assumed that 1 1t tp I− −∈ . For convenience, re-

arrange this equation slightly: 

 ( ) [ ] [ ]2 1 0 1 1 1 1 11 | | |t t t t t t ta E p I a E p I a p E x I− + − − − − = + +  , 
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which, in terms of lag and forward operators can be written as 

 ( ) [ ] [ ] [ ]2 1 0 1 1 11 | | |t t t t t t ta E p I a FE p I a Lp E x I− − −− = + + . 

We can collect terms involving pt:, noting that [ ]1|t t tLp LE p I −= , to obtain 

 ( ) [ ] [ ]0 2 1 1 1(1 ) | |t t t ta F a a L E p I E x I− −− + − − = , 

or, upon dividing through by −a0,  

 [ ] [ ]2 2 1
1 1

0 0 0

1 1| |t t t t
a aF F LE p I E x I

a a a− −

  −    + + = −       
. (2.18) 

or, 

 ( )( ) [ ] [ ]1 2 1 1
0

1| |t t t tF F LE p I E x I
a

λ λ − −− − = − , (2.19) 

where  

 2
1 2

0

1 a
a

λ λ −+ =  and 1
1 2

0

a
a

λ λ = . (2.20) 

To see this last step, expand ( )( )1 2F Fλ λ− −  and compare terms in (2.18) and (2.20). 

This factoring in (2.19) explains, at last, the meaning of the term "Sargent's factorization 

method". From (2.20), we can solve for 

 
2

2 2 1
1 2 2

0 00

1 1 (1 ) 4{ , }
2

a a a
a aa

λ λ − −= ± − . 

The values of λ1 and λ2 depend on the values of the parameters of the model. We will 

assume that 1 20 1λ λ< < < , which turns to be the assumption necessary for a saddle-

path stable solution in the sense described in the chapter on differential equations. (We 

are about to use the series expansions (1.1) and (1.2); normally, we would check our as-

sumptions about the admissible range of values to ensure that the series expansions con-

verge. In practice, it is often only at this stage that the modeler first discovers that some 

restrictions on the parameter values must be imposed). 

 From (2.19), we can write 

 ( )( ) [ ] [ ]1 2 1 1
0

11 | |t t t tL F E p I E x I
a

λ λ − −− − = −  
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and  

 ( ) [ ] ( ) [ ]1
1 1 2 1

0

11 | |t t t tL E p I F E x I
a

λ λ −
− −− = − −  

                            ( ) [ ]
11

2 1
0 2

1 1 |t tF E x I
a

λ
λ

−−
−= −  

and since 20 1/ 1λ< < , we can expand the right hand side into the convergent series, 

 ( ) 11
2 2

0
1 i i

i
F Fλ λ

∞−− −

=
− =∑ , 

so that 

 [ ] [ ] [ ]1 1 1 2 1
0 2 0

1| | |i i
t t t t t t

i
E p I LE p I F E x I

a
λ λ

λ

∞
−

− − −
=

  = +    
∑  

                 1 1 2 1
0 2 0

1 |i
t t i t

i
p E x I

a
λ λ

λ

∞
−

− + −
=

   = +      
∑ . (2.21) 

The last step is to derive the solution for pt itself. Updating (2.21) by one time period, we 

obtain 

 1 1 2 1
0 2 0

1| |i
t t t t i t

i
E p I p E x I

a
λ λ

λ

∞
−

+ + +
=

    = +       
∑ , (2.22) 

and substituting (2.21) and (2.22) into the original problem yields 

 0 1 2 1 1 1
2 0

1 |i
t t t i t t

i
p a p E x I a pλ λ

λ

∞
−

+ + −
=

   = + +     
∑  

                                           2
2 1 1 2 1

0 2 0
|i

t t i t t
i

aa p E x I x
a

λ λ
λ

∞
−

− + −
=

   + + +     
∑ . 

Rearranging, using (2.20) to simplify, gives 

( )
12

1 1 2 2 1
0 1 0 0 10 0

1 | |
1 1

i i
t t t i t t i t

i i

ap p E x I E x I
a a a

λ λ λ
λ λ

∞ ∞
− − −

− + + −
= =

        = + +       − −   
∑ ∑ . 

The first summation term has absorbed the xt term. 
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 Note that if we are willing to place restrictions on the exogenous stochastic proc-

esses, we may be able to write a more compact solution. For example, assume that et is 

white noise and yt is a random walk. Then |t i t tE x I y+  =   for all i>0, and we get 

 
( )

1 2 2
1 1 1

0 1 0 0 11 1t t t t
b a bp p y y
a a a

λ
λ λ− −

     = + +    − −   
, 

where λ1, 
1

1 20ib λ∞ −
==∑ , and ( 1)

2 20
i

ib λ∞ − +
==∑  are constants defined by (2.20).    • 

Yet More on Multiple Solutions 

Rational expectations models can admit many, many, solutions. This is not unique to the 

difference equations modeled here. Consider the following two-player game repeated over 

T periods. 

 
  PLAYER 1 

  Action A Action B 

Action A 1,1 0,0 
PLAYER 1 

Action B 0,0 2,2 

 

There are two equilibrium strategies, {A,A} and {B,B}. For a T−period game, the solu-

tion is found by backward induction. In period T, the equilibrium is either {A,A} or 

{B,B}, and the same is true in periods T−1, T−2, and so on. This game thus has 2T equi-

librium paths. Game theory has developed numerous concepts to try and select among 

multiple equilibria – so-called equilibrium refinements. In rational expectations models 

with multiple equilibria, the same problem of selection exists. 

 To think about the possibilities for equilibrium refinement in stochastic difference 

equations, consider the following equation for the price of a product: 

 ( ) [ ]1 1 1| |t t t t t tE p I p E p I uα β+ − −= + + + , 

where u is white noise with constant variance 2
uσ  which links the current price to two 

expected prices. This equation comes from a well-known rational expectations model due 

to Taylor (1979). The solution to this model is given by 
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 1
0

1 (1 )it t t i
i

p u uα π β
β β

∞

− −
=

  = − − + −    ∑ , (2.23) 

where π is not only unknown, it is also undetermined. That is, any value of π is a solu-

tion. This means that for any value of π, there is a distinct behavior of prices. Moreover, 

the expectations that agents form will always be consistent with this distinct behavior. 

 Note that (2.23) implies  

 
2

2 2 2

0

1var( ) (1 ) i
t u

i
p π β σ

β

∞

=

    = + −     
∑ . 

 One way of selecting among the solutions is to focus on admissible properties of the 

variance of price. For example, one could require that the variance be finite. This is some-

times, but not always, a reasonable requirement, and it is not always sufficient. If β>0, or 

if β<−2, then var(pt) finite requires π=0, and we get a unique solution. But if –2<β<0, 

then |1+β|<1 and var(pt) is finite for any finite π. In this case, an infinite number of fi-

nite-variance rational expectations solutions exist. Taylor (1979) resolved the equilibrium 

selection problem by strengthening the requirement that var(pt) be finite to the condition 

that it be minimized. This requires that π=0. But what is the justification for this? 

Moreover, imagine a model with both output and price. Which variance should be mini-

mized?  

 McCallum (1983) suggested a criterion based on minimizing the set of state variables 

that must be employed to make a rational expectations forecast. This is arbitrary, but it 

has intuitive appeal because it recognizes that collecting information is costly and agents 

may seek to economize on its use. A one-period forecast in this model is, from (2.23), 

 1 1
0

1| | (1 )it t t t t i
i

E p I E u I uα π β
β β

∞

+ + −
=

    = − − + −       ∑  

                 
0
(1 )i t i

i
uα π β

β

∞

−
=

= − + −∑ . 

To make this forecast in the general case, the agent must keep track of all the past 

shocks. The minimum state space model is found where π=0, in which case the forecast is 

−α/β. Two objections to McCallum's minimum state space representation are that (i) 
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sometimes the procedure only yields complex-valued solutions, even though real-valued 

solutions exist, and (ii) sometimes the selected solution does not make economic sense. 

 

EXERCISE 2.2 (Market equilibrium with price-setting firms).  Let demand be 

given by 

1 |t t t t ty p aE p I u+ = − + +  ,    

1t t tu uρ ε−= + ,  0<a<1, 0<ρ<0. 

and let aggregate supply be given by 

[ ]1|t t tp cE y I −= . 

The demand equation says that demand will be high if (i) it is subject to a posi-

tive shock, and (ii) prices are expected to rise next period. The supply equation 

says that firms will raise prices if they expect output to be high. The coefficient c 

can be interpreted as a measure of price flexibility. Let [ ]1|t t ty E y I −=  be the 

one-period conditional expectation of output, and let t t ty y y= −�  be the unan-

ticipated component of output. Show that an increase in flexibility reduces the 

variance of ty  but increases the variance of ty� . 

 

EXERCISE 2.3 (Market equilibrium with partial adjustment).  Consider the fol-

lowing supply and demand system: 

0 1t t tD pα α ε= − + , 

( )*
1 1t t t tS S S Sγ− −= + − , 

[ ]*
0 1 1|t t tS E p Iβ β −= + , 

where St is quantity supplied and St* is the quantity that firms would like to sup-

ply. (a) Derive the basic difference equation for price. (b) Assume that expecta-

tions are adaptive, with the form 

     [ ] [ ] [ ]( )1 1 2 1 1 2| | |t t t t t t tE p I E p I p E p Iφ− − − − − −= + − . 

Solve for price as a function of lagged supply, lagged prices, and the disturbance 

term. (c) Assume now that expectations are rational. Solve again for price as a 
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function of lagged supply, lagged prices, and the disturbance term. (d) Compare 

your answers in (b) and (c). 

 

EXERCISE 2.4 Consider the following model 

 t tD pβ= −    (demand) 

 [ ]1|t t t tS E p Iγ ε−= +   (supply) 

 ( )1 |t t t tI E p I pα + = −   (inventory demand) 

 ( )1t t t tS D I I −= + −   (market clearing) 

Suppose there is perfect foresight. This implies that |t j t t jE p I p+ +
  =    for all j. 

In other words, agents in the model can predicts the time path of the exogenous 

shocks, εt with perfect accuracy. (a) Write the basic difference equation for price. 

(b) Use the method of factorization to solve for pt as a function of all past 

and future values of εt. Hint: Depending on how you decide to present the solu-

tion, you may be able to make use of the following relationship, which holds for 

1λ ≠ , 

      
1

1 1 1
1 1

1(1 )(1 ) 1LL L L
λ λ
λλ λ λ λ λ

−

− − −

    = −     −− − − − 
. 

 

EXERCISE 2.5 (Partial adjustment, again). Recall the partial adjustment equa-

tions under rational expectations from section 1: 

    ( ) ( )1 1 1ˆt t t t t t
a by y y y y y

a b a b
β− − +

     − = − + −       + +
.   (1.4) 

Solve it. 
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3. Nonlinear Difference Equations 

Nonlinear equations do not lend themselves to the direct analytical techniques we have 

looked at for linear equations. In this section, we will begin analyzing equations of the 

form 

 ( )1t tx f x −= , (3.1) 

where xt may be scalar or a vector, so that in the latter case it represents a system of 

nonlinear equations. Equation (3.1) may give rise to explosive growth (positive or nega-

tive), so that limt tx→∞ =∞ , or it may arrive at a finite-valued steady state, in which 

1 *t tx x x−= = . If such a steady state exists, then 

 ( )* *x f x=  (3.2) 

is a fixed point of (3.1). When f(x) leads to explosive growth, there are no solutions to 

(3.2). There may also be multiple solutions. 

 In analyzing nonlinear difference equations, we will usually be concerned with the 

following questions: 

• Are there fixed points of the equation? If so, how many? 

• Which of the fixed points are stable? That is, if we begin at 0 *x x≠ , is the 

system attracted to x*? 

Naturally, there is an enormous amount of material one could cover. So how are we going 

to make our selection? Note that the solution of (3.1) in terms of an initial condition is, 

in contrast to the case for differential equations, a conceptually trivial matter. Iterate on 

(3.1) repeatedly to get 

 ( ) ( )( ) ( )( )
1 2 0

t
t t tx f x f f x f x− −= = = ⋅ ⋅ ⋅ = , 

where ( )( )tf i  denotes the tth iteration of the function. Often, this is unduly messy, in 

which case one would want to approach the problem numerically. In rare cases, though, it 

might be quite easy. For example, if 1( )t tf x x β
−= , then ( )0

t

tx x β= . Thus we will restrict  
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our attention in this section to analyses of the existence and stability of fixed points in 

the limit as t→∞. 

 Second, we will make only passing reference to equations that in the limit yield cy-

clical solutions. This is a matter of time constraint only. A large part of the interest in 

difference equations is their ability to generate increasingly complex periodic solutions in 

which x exhibits fluctuations forever. In fact, these cyclical solutions may end up being so 

complex that they appear to generate entirely unpredictable behavior; some equations in 

fact actually are so complex that their long run behavior is said to be chaotic. But while 

chaos theory can be fun to study, we are going to put it to one side.  

 Third, we leave for your own future study the analysis of systems of difference equa-

tions. The analysis involves a discrete time analog to the two-dimensional phase diagrams 

studied for difference equations. While there are important differences between the con-

tinuous and discrete time methods, time limitations preclude us from analyzing the latter 

here. Useful references for these omitted materials are provided at the end of the chapter. 

 Finally, we note that turning our attention to the study of fixed points will also 

prove to be particularly useful in preparation for the module on dynamic programming. 

So this section can be viewed both as an overview of some important aspects of difference 

equations, and as a technical preparation for the study of discrete time optimization 

problems. 

Steady state properties of scalar equations 

Given the one-dimensional function ( )1t tx f x −= , we can we plot xt as a function of 1tx −  

on a phase diagram. This we have done in Figure 3.1. Using the phase diagrams is 

straightforward. Given an initial value x0, we can read the value of x1 directly from the 

plotted curve f. To update one period, we move horizontally to the 450 line, so that xt on 

the vertical axis now becomes 1tx −  on the horizontal axis. To get the value of x for the 

next period, we read off the value from the curve again. The arrows indicate this evolu-

tion of xt.  

 In panel (a), there is one fixed point, x*, and it is stable: any initial value eventually 

leads us to x*. In panel (b), the growth rate of x is explosive: there is no fixed point. In 
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panel (c) there are two fixed points, but only the zero fixed point is stable. Finally, in 

panel (d) there are again two fixed points, but only the larger one is stable. 

 In Figure 3.1, the function f has been drawn as monotonically increasing in all four 

panels. While this is a common feature of economic models, it is by no means a universal 

feature. Figure 3.2 provides some different examples. In panel (a) f(x) is monotonically 

decreasing, and there is a single stable fixed point. However, note that the fixed point is 

approached cyclically. In panel (b), again with f(x) monotonically decreasing, the unique 

fixed point is unstable and xt exhibits an explosive cycle. 

 

FIGURE 3.1. Phase diagrams for a nonlinear scalar equation. 
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Finally, in panel (c) the unique fixed point is never attained. Instead, xt attains a limit 

cycle. Now, this cycle may involve the same value for x reappearing every two periods (a 

two-cycle), every n periods (an n-cycle), or even never (chaos). What determines the be-

havior of x is the shape of the function f. In fact, a single function may alter its behavior 

radically as a parameter in that function changes by a small amount, and the study of 

these radical changes is the essence of chaos theory.4 

 Let us return to the case of monotonically increasing functions depicted in Figure 

3.1. Inspection of the phase diagrams reveal the following: 

• If f(x) intersects the 450 line with a slope less than 1, then the fixed point is 

stable. 

• If f(x) intersects the 450 line with a slope greater than 1, then the fixed point is 

unstable. 

• If (0) 0f ≥ , and /( ) 1f x <  for all x, then there is a unique fixed point. 

• If (0) 0f ≥  and f(x) is a bounded continuous function, then there must be at 

least one fixed point.  

These intuitive statements from Figure 3.1 do indeed correspond roughly to some formal 

theorems, which we will explore next. 

                                            
4 As the parameter of a function changes, stable fixed points may suddenly become unstable, being 

replaced with a stable two-cycle. Stable two-cycles may in turn suddenly become unstable, being 

replaced with a stable four-cycle, and so on. Eventually, all fixed points and cycles of all frequency 

may become unstable, which is the domain of chaos. Consider the logistic equation, 
2

1 1t t tx bx bx− −= − . For 0<b<1, there is a stable fixed point at x=0 and an unstable fixed point at 

x=b/(b-1). For 1<b<3, the larger fixed point is stable. For b>3, both fixed points are unstable and 

a stable two-cycle emerges until b>3.45 at which point a stable 4-cycle emerges. This process con-

tinues until b>3.57, beyond which all cycles of all frequencies are unstable; the value of x becomes 

chaotic as x wanders all over the place without any apparent repetition. See Sandefur (1990, chap-

ter 4). 



DIFFERENCE EQUATIONS  102

Stability of Fixed Points 

FIGURE 3.2. More phase diagrams for the nonlinear scalar equation. 

 

THEOREM 3.1. Suppose x* is a fixed point of the scalar dynamical model ( )1t tx f x −= . 

Then x* is attracting if /( *) 1f x < , and it is repelling if /( *) 1f x > . 

 

 Note that Theorem 3.1 applies to all functions, monotonically increasing or decreas-

ing, or non-monotonic. The theorem applies only to local stability. The range of values 

{ }* , *x a x b− + , a,b>0, such that an initial value that falls in the range eventually con-

verges on to x* is referred to as the basin of attraction of the fixed point x*. 
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 If there is no fixed point, then we may be interested in knowing whether tx → +∞  

or tx → −∞ . The following general result provides an answer in some cases. 

 

THEOREM 3.2. Suppose there are no fixed points of the scalar dynamical model 

( )1t tx f x −= . Define 1( ) ( ) ( )t t tg x f x f x −= − . If max ( ) 0tg x < , then limt tx→∞ =−∞. 

If min ( ) 0tg x > , then limt tx→∞ = +∞ . 

 

EXERCISE 3.1 (Hunting Deer). Suppose that, in the absence of hunting, a deer 

population evolves according to the logistic equation 2
1 11.8 0.8t t tx x x− −= = , 

where x is measured in thousands. 

a) Analyze the steady state properties of this system. 

b) Assume that permits are issued to hunt 72 deer per time period year. What 

happens to the steady state population? How does your answer depend on the 

initial population? 

c) Assume now that permits are issued to hunt 240 deer per time period year. 

What happens to the steady state population? How does your answer depend 

on the initial population? 

Answer these questions using Theorems 3.1 and 3.2 as well as graphically. 

 

Theorem 3.1 provides local stability results when ( )/ * 1f x ≠ . What if ( )/ * 1f x = ? In 

this case, Theorem 3.1 is unhelpful. In fact, as Figure 3.3 shows, any form of stability is 

possible. Although we could just look at these phase diagrams, it would be nice to have 

an analytical result. Fortunately, these is one, although the conditions vary depending 

upon whether ( )/ * 1f x =  or ( )/ * 1f x = − . 

 

THEOREM 3.3. Suppose at a fixed point that ( )/ * 1f x = . Then (a) if //( *) 0f x < , then x* 

is semistable from above [panel (a) of Figure 3.3]. (b) if //( *) 0f x > , then x* is 

semistable from below [panel (d) of Figure 3.3]. (c) if //( *) 0f x = , then x* is stable 
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when ///( *) 0f x <  [panel (b) of Figure 3.3] and unstable when ///( *) 0f x >  [panel 

(c) of Figure 3.3]. 

 

FIGURE 3.3. When ( )/ * 1f x = , all stability types are possible. 

 

If ///( *) 0f x = , results exist based on the fourth derivative. Theorem 3.3 is intuitive from 

Figure 3.3. The next theorem, however, is not so intuitive, but we state it without proof. 

 

THEOREM 3.4. Suppose at a fixed point that ( )/ * 1f x = − . Define the function 
2/// //( *) 2 ( *) 3 ( *)g x f x f x = − −    . Then, x* is stable when ( *) 0g x < and unstable 

when ( *) 0g x > . 
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See Sandefur (1990:165-171) for a proof. 

 

 We have yet to address the questions about existence and uniqueness of fixed points. 

When we have a particular functional form for f(x) we can obviously address these ques-

tions directly. But, of course, in many economic applications, f(x) will remain unspecified. 

In such cases, we have an interest in assumptions that must be made about f in order to 

ensure (i) the existence of at least one fixed point, or (ii) the existence of exactly one 

fixed point. 

Existence of Fixed Points: Fixed Point Theorems for Bounded Functions 

Let us begin with sufficient conditions for the existence of one or more fixed points. We 

make use of the following theorem: 

 

THEOREM 3.5 (Intermediate value theorem). Suppose f(x) is a continuous function defined 

for any x on the compact closed interval [ ],a b , and let c be any number satisfying 

( ) ( )f a c f b≤ ≤ . Then there exists at least one number x such that f(x)=c. 

 

NOTE: A closed interval is one which includes its limit points. If the endpoints of the in-

terval are finite numbers a and b, then the interval is denoted [a, b]. If one of the end-

points is ∞, then the interval still contains all of its limit points, so [a,∞) and (−∞,b] are 

also closed intervals. However, the infinite interval (−∞,∞) is not a closed interval. A 

compact closed interval requires that a and b both be finite. 

 

We can now state the following fixed point theorem:    

 

THEOREM 3.6 (Fixed point theorem). Suppose f(x) is a continuous function satisfying 

( ) [ , ]f x a b∈  for all [ , ]x a b∈  (i.e. f(x) is a mapping from the compact closed interval 

[ ],a b  back into the same interval). Then there exists at least one fixed point 

* [ , ]x a b∈ . 
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PROOF.  Note that ( )f a a≥  and ( )f b b≤  by assumption. That is, ( ) 0f a a− ≥  and 

( ) 0f b b− ≤ . Define ( ) ( )g x f x x= − , so that ( ) 0g b ≤  and ( ) 0g a ≥ . If f(x) is continuous, 

then so is g(x). The intermediate value theorem then states that there exists at least one 

number x* such that g(x*)=0. This of course implies that there exists at least one number 

x* such that f(x*)=x*.    • 

 

 This fixed point theorem works also for n-dimensional functions, in which case it is 

called Brouwer's fixed point theorem. Yet another, the Kakutani fixed point theorem, 

also exists after the continuity assumption has been relaxed. In fact, there are numerous 

variations of the fixed point theorem, each with somewhat different assumptions. Many of 

these are given, and proved, in Border (1985). We will generally make use of the simple 

theorem, assuming continuity. 

 What does the fixed point theorem imply, and how does one make use of it? Con-

sider the following examples: 

• In one dimension. Simon (1954) addresses a concern that election predictions are 

necessarily self-falsifying because predictions, when they are made, influence the out-

come. Now, the fraction of the vote won by a candidate is bounded between [0,1]. 

Thus, a prediction must come from [0,1] and, no matter how the prediction affects 

the outcome, the outcome must also come from [0,1]. Let y be the election outcome 

and x the prediction, and assume that the prediction influences the outcome accord-

ing to the function y=f(x). The function f(x) maps a closed interval back into the 

same closed interval. If it is continuous, then, there must be at least one prediction 

that would turn out to be true. 

•  In two dimensions. Place a map of Pittsburgh (or wherever you happen to be) on 

the floor. The fixed point theorem states that at last one point on the map lies ex-

actly above its corresponding point in the city. The reason is that one can define a 

two-dimensional function f linking every location in the city, (x,y) to another loca-

tion in the city, f(x,y) (i.e. the floor under the map) that touches the corresponding 
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location on the map. This function is continuous and bounded (by the size of the 

city). Thus there is at least one fixed point where (x,y)=f(x,y). 

•  In three dimensions. Take your cup of coffee and swirl it around. Let (x,y,z) de-

note the coordinates of a molecule of coffee before you start swirling, and let f(x,y,z) 

denote its location after. Because the movement of liquid so agitated can be de-

scribed by a system of differential equations, the function f must be continuous. It is 

also bounded by the coordinates of the edge of the cup. Thus, unless you spill some 

coffee on the floor (in which case f is no longer mapping a closed interval back into 

the same interval), there must be at least one molecule in exactly the same position 

after swirling as before. 

 OK, these are just amusing examples, but they give a straightforward flavor of the 

meaning of the fixed point theorem. How one uses the theorem in practice is also straight-

forward in principle. Given a function y=f(x), we verify whether it satisfies the assump-

tions of Theorem 3.6 (or one of the more general theorems to be found in Border [1985]). 

If so, then we know there is at least one fixed point.  

 Note that each assumption is critically important. Consider, for example, the dis-

crete-time Solow model in which capital evolves according to the nonlinear difference 

equation 

 1 1( ) (1 )t t tk sf k kδ− −= − − , (3.3) 

Unless we make some assumptions about the production function, this difference equation 

need not have a fixed point. In particular, if f is a convex increasing function the right 

hand side of (3.3) does not map a closed compact interval into a closed compact interval. 

Thus the fixed point theorem cannot be applied, even though one may exist. For example, 

if the production function has the form 2( )f k k= , then a fixed point exists at k=0. In 

contrast, if 2( ) 1f k k= + , then no fixed point exists. One way to ensure the existence of a 

fixed point is to place an upper bound on how much a nation can produce regardless of 

its capital stock. That is ( )f k f<  for all k. Then, kt can never exceed an upper bound, 
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say k , and (3.3) defines a mapping from the closed compact interval 0,k     back into 

0,k    . Now, the fixed point theorem applies and there exists at least one fixed point.5  

 As Figure 3.4 shows, the assumption of continuity is also an important one (and 

theorems such as Kakutani's can relax it only in very precise ways). If the function f(x) is 

not continuous, then there need not be a fixed point. Thus, the challenge in Simon's elec-

tion example, is justifying on behavioral grounds that the function f is indeed continuous. 

The challenge in the coffee swirling example is also showing that the physics of movement 

of liquids imply that f is continuous. 

 

 

FIGURE 3.4. Left Panel: a bounded continuous function must cross the 45 degree line at least once. 

Right Panel: a bounded discontinuous function need not have a fixed point. 

 

 Of course, the theorem cannot tell you where these fixed points are. But finding 

fixed points can be quite difficult. And if you are going to look for a needle in a haystack, 

it is good to know that there are some needles there before you start. 

 

                                            
5 Recall that the Inada conditions studied in the chapter on differential equations, which placed 

boundary values on the derivatives of the production function, were designed to ensure the exis-

tence of a fixed point. 
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EXAMPLE 3.2. Is there a real solution to the equation 

 3 1
1 x

x
e−

=
−

? (3.4) 

Clearly, x must be nonnegative for a real solution to exist, so we restrict x to be nonnega-

tive. Rearrange the equation to give 

 ( )231 xx e−= − . (3.5) 

The right hand side is bounded between 0 and 1, and it is clearly continuous (you can 

differentiate it!). Hence there is at least one fixed point in the unit interval. Note also 

that we can write this as a difference equation 

 ( )1 231 tx
tx e −−= − , (3.6) 

which makes clear that solving (3.5) is equivalent to finding the fixed point(s) of a differ-

ence equation. Doing so may give us a way to numerically solve the equation. Simply be-

gin with an initial value in the unit interval and iterate the difference equations to con-

vergence. If it converges, a fixed point has been found.  

 We report in the table below the iterations for three different starting values. In the 

first column, a starting value of 0.19 found a fixed point x*=0. In the third column, a 

starting value of 0.99 yielded a fixed point of x*=0.8499. Convergence had not quite been 

attained by iteration 15 in the second column, which had a starting value of 0.20, but it 

eventually found the fixed point x*=0.8499. The reason for the behavior of these itera-

tions will become quite clear upon plotting the phase diagram for (3.6). There are two 

stable fixed points, at x*=0 and x*=0.8499, and one unstable fixed point at x*=0.193.  

 The numerical method is not very efficient, and it cannot find unstable fixed points. 

But the basic principle of numerical solution of implicit equations is nonetheless quite 

clear. However, this particular example also reveals a hidden danger. Equation (3.5) has a 

fixed point x*=0. Yet x=0 is not a solution to (3.4). To see this, note that by l'Hôpital's 

rule,  

 

1/2

3 30 0

1
2lim lim 1

1 3x xx x

xx
e e

−

− −→ →
= = +∞ ≠

−
. 
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Iterated Values for f(x) 
 INITIAL VALUE 

ITERATION 0.1900 0.2000 0.9900 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

0.1888 

0.1870 

0.1843 

0.1804 

0.1746 

0.1663 

0.1543 

0.1373 

0.1139 

0.0838 

0.0494 

0.0190 

0.0031 

0.0001 

0.0000 

0.2036 

0.2089 

0.2168 

0.2268 

0.2464 

0.2730 

0.3126 

0.3703 

0.4499 

0.5486 

0.6515 

0.7638 

0.7927 

0.8231 

0.8379 

0.9000 

0.8701 

0.8584 

0.8535 

0.8514 

0.8506 

0.8502 

0.8500 

0.8499 

0.8499 

0.8499 

0.8499 

0.8499 

0.8499 

0.8499 

 

In contrast, x=0 is a solution to 

 ( )231 xx e−= − , 

which shows that you have to be careful about manipulating equations that may take on 

the value 0/0. Curious.    • 

 

Before closing this subsection, note that the fixed point theorem for bounded functions is 

a sufficient condition, not a necessary one. Unbounded functions may have fixed points, 

but the fixed point theorem cannot help you there – you have evaluate the function your-

self. For example, the difference equation 11 0.5t tx x −= +  has a fixed point at x*=2, but 

it is not bounded. The function 
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1

1

1, 2

0.5, 2
t

t
t

x
x

x
−

−

 ≤=  >
, (3.7) 

has a fixed point at x*=1, but it is not continuous. However, the function (3.7) defined 

only on the closed compact interval [0,2]x ∈  is a continuous mapping from [0,2] back 

into [0,2], and the fixed point theorem does apply. 

Uniqueness of Fixed Points 

 If you are looking for a fixed point of an equation – whether it is because you are 

trying to find the long-run behavior of a dynamic system or because you are trying to 

find the solution of an equation defined only implicitly – you would also like to know if 

there is only one needle in the haystack. Once you find one, you can stop looking if you 

know there are no more. Fortunately there is a theorem – the contraction mapping theo-

rem – that provides the conditions under which the fixed point is unique. 

THEOREM 3.7 (Contraction mapping theorem). Define a function f(x) which maps a value 

[ , ]x a b∈  into the same bounded closed interval [ , ]a b . If f(x) is a contraction map-

ping, then there exists exactly one fixed point * ( *)x f x= . 

 

 If we can show that f(x) is a contraction mapping, then we have proved not only that 

there is a fixed point, but also that it is unique. But what the hell is a contraction map-

ping, and how do we know if we have one? The full definition of a contraction mapping 

requires that we introduce a bunch of new concepts – Cauchy sequences, convergent se-

quences, metric spaces, complete metric spaces, and more --  that build one on the other 

like a set of Russian dolls. We will leave as much of that as possible to the theorists (and 

the budding theorists should refer to Stokey and Lucas [1989]). What we will do here is 

provide an intuitive definition of a contraction mapping.  

 

DEFINITION (Contraction mapping): Let f(x) be a function mapping elements from the 

closed interval [a,b] back into the same closed interval. Let {x,y} be two real numbers from 

the closed interval, and let d(x,y) be a distance function that measures the distance between 
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x and y in an appropriate sense to be discussed below. Then, the function f(x) is a contrac-

tion mapping if ( )( ), ( ) ( , )d f x f y d x y<  for any x and y from the closed interval. 

 

 Intuitively, f is a contraction mapping if operating on x and y with the function f 

makes them closer together. However, we do need to deal with the notion of an "appro-

priate" measure of distance. For a function d(x,y) to be an admissible distance function, it 

must satisfy the following properties:  

• Nonnegativity: d(x,y)>0 if x y≠ , and d(x,y)=0 if x=y. 

• Symmetry: d(x,y)=d(y,x). 

• Triangle inequality: d(x,y)+d(y,z)≥ d(x,z). 

 The first condition states that the distance between x and y is positive if they are 

not equal and zero if they are. The symmetry property states that x is the same distance 

from y as y is from x. For the third property, let x be Pittsburgh, y Philadelphia, and z  

Washington. The triangle inequality states that the distance between Pittsburgh and 

Washington via Philadelphia cannot be less than the direct distance between Pittsburgh 

and Washington. These are reasonable properties to demand of a function intended to 

measure distance, and they delimit the sort of functions that that are admissible. For ex-

ample, the function ( , )d x y x y= −  is not admissible, because it violates at least the first 

two properties. However, the functions ( , )d x y x y= −  and ( )2( , )d x y x y= −  do satisfy 

the three properties, so they are admissible distance functions. 

 Now we have defined a contraction mapping, we can prove the uniqueness result in 

the contraction mapping theorem. It is easy. Given a difference equation 1( )t tx f x −= , 

suppose that f is a contraction mapping, and suppose there were two distinct fixed points, 

x* and x**. Then for any distance function d, d(f(x*),f(x**))<d(x*,x**), since f is a con-

traction mapping. But as these are fixed points, x*=f(x*) and x**=f(x**), so 

d(x*,x**)=d(f(x*),f(x**))<d(x*,x**), a contradiction. Thus, there cannot be two fixed 

points.   • 
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 The requirement that ( )( ), ( ) ( , )d f x f y d x y<  for any x and y effectively means that 

f(x) must be a continuous function. To see why, consider the right-hand panel of Figure 

3.4. Clearly, if the function f(x) is not continuous, ( )( ), ( )d f x f y  cannot be less than d(x,y) 

for values of x and y close enough to, and opposite sides of, the discontinuity. Second, for 

differentiable functions (although the contraction mapping theorem does not require dif-

ferentiability), it is easy to see that, if ( )( ), ( ) ( , )d f x f y d x y<  for all x and y, then /( )f ⋅  

must be less than one in absolute value everywhere.  

 We are almost done now, so this is a good time to summarize. Imagine you have a 

difference equation, 1( )t tx f x −= . You want to verify whether this difference equation has 

any fixed points, and whether it has a unique fixed point. There are several steps to go 

through.  

(1). Is the function a mapping from a compact closed interval back into the 

same compact closed interval? Remember that a compact closed interval means 

that the interval includes its own finite end points. 

(2). If (1) is satisfied, then is the function f(x) continuous? If it is, then you 

have established that at least one fixed point exists. If not, then turn to Border 

(1985) to see if the function satisfies a more general fixed point theorem. If 

Border does not help you, then you cannot conclude anything about whether 

there is a fixed point, and you have to get to work to find some yourself (with-

out knowing in advance whether there are any). 

(3). We next turn to the question of uniqueness. We need to check whether the 

function f(x) is a contraction mapping by checking that an appropriate distance 

function satisfies ( )( ), ( ) ( , )d f x f y d x y<  for any feasible pair of values, x and y. 

This last step is invariably the most difficult one. Fortunately, as we have already noted a 

bit of calculus can help us for differentiable functions because if /( ) 1f x <  for all 

[ , ]x a b∈ , then we have uniqueness. This is easy to see if we let the absolute difference 

between x and y be our distance function: 
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 /( ) ( ) ( )
y y

x x

f x f y f s ds ds y x− = < = −∫ ∫ , 

so we have a contraction mapping as long as the function f is a mapping in a closed inter-

val.  

 

EXAMPLE 3.3. Let [0,1]x ∈ , and consider the difference equation 1( )t tx f x −= . Check the 

following functions for existence and uniqueness of fixed points. 

(a) ( ) ln( 0.5) 0.2f x x= + + . This fails the first step because it does not map into the 

unit interval. For example, for x=0, f(x)=−0.4931. Nor can we adjust the closed 

compact interval to accommodate the negative number: choose any negative number 

a for the lower bound on the interval and you will find that f(a)<a because f/(x)>1 

for any x<0. This also implies, of course, that the function is not a contraction map-

ping. 

(b) ( ) 0.5f x x= +  for x<0.5, and ( ) 0.5f x x= −  for x≥0.5. This passes the first 

test, as it maps [0,1] back into [0,1] but it fails the continuity test. 

(c) ( ) ln( 1) 0.2f x x= + + . This passes the first test, as it maps [0,1] back into the 

same interval (in fact f(x) ranges between 0.2 and 0.89). It passes the continuity test 

in this interval also.6 Thus there is at least one fixed point. To check for uniqueness 

we need to evaluate whether ( ) ( )ln( 1) 0.2 ln( 1) 0.2x y x y+ + − + + < − . As this is 

difficult to do directly, we note that /( ) 1/( 1)f x x= +  which is less than one in ab-

solute value almost everywhere (i.e. except when x=0). Thus, there is a unique fixed 

                                            
6  Continuity is often checked by inspection of the function. However, to see how it might be done 

formally, note that f(x)=1/(x−1) does not pass a continuity test in the range [0,2]. This is formally 

shown by identifying a value of x, x=z, such that the value of the function as x approaches z from 

below is different from the value of the function as x approaches z from above. In this case, as x 

approaches 1 from below, the function tends to −∞; as it approaches 1 from above the function 

tends to +∞. However this function does have a fixed point at x*=1.618. In contrast, the function 

f(x)=1/(1−x) also has a discontinuity at x=1, but it does not have a fixed point anywhere. 
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point. Moreover, Theorem 3.1 tells us that in this case the fixed point is attracting.   

• 

(d) Does the difference equation 1 3 2t tx x+ = + , defined on a closed interval, have a 

unique fixed point? That is, is it a contraction mapping? We can see immediately 

that /( ) 2f x = , so the contraction mapping theorem does not work. However, we can 

invert the equation and write it as 10.5 1.5t tx x += − , which now is a contraction 

mapping. Hence there is a unique fixed point. It turns out that this fixed point is at 

–x*. Whether this makes sense to do depends on whether the reversibility of the time 

subscript is economically meaningful. If there is a notion of causation, then it might 

not be. If this is a means to find a fixed point of an implicit equation, then it does 

make sense. 

 

This must all seem a little convoluted. Why not just study the differential equation di-

rectly? For many applications that is exactly what one should do. But recall that in many 

economic models we want to make as few assumptions about functional form as possible, 

and then see what predictions we can make. But how can we solve for the fixed point 

without specifying the function f? The answer is we do not have to. Consider the follow-

ing example. Let st denote a firm's market share and let the evolution of market share 

satisfy the difference equation 1( ; )t ts f s β−= , where β is a parameter. Because market 

shares are bounded, f must be a mapping from [0,1] into [0,1]. If we are willing to assume 

that f is a continuous function, then we know there is at least one fixed point. Let us fur-

ther assume that 0 ( ; ) 1sf s β< < , where the subscript denotes the derivative. That is, if 

there is an autonomous shock to market share this period, only a fraction of this shock 

persists into the next period. This assumption that shocks to market share decay means 

that f is a contraction mapping, so now we have established that there is a unique fixed 

point. Moreover, Theorem 3.1 tells us this unique fixed point is stable. Having made this 

much progress, it is now an easy matter to see how the long-run market share of the firm 

is affected by changes in the parameter. Differentiating at the unique fixed point gives 

* ( *; ) * ( *; )sds f s ds f s dββ β β= + , or 



DIFFERENCE EQUATIONS  116

 
( *; )*

1 ( *; )s

f sds
d f s

β β
β β
=

−
. (3.8) 

 That is, having a theory about how changes in the parameter β affect market share 

at any point in time allows us to derive an expression for changes in the steady-state 

market share without ever actually solving for the steady state. Equation (3.8) tells us 

that the total effect of a change in β on the long-run market share consists of two terms. 

The first is the direct effect, fβ, while the second is the feedback effects 1/(1−fs). Note also 

why we would like to have a unique fixed point for this analysis (but whether we have one 

depends on the economics of the problem). If s* is unique, then (3.8) provides a unique 

answer to the question of how parameter changes affect long-run market share. If there 

are multiple fixed points, the answer is different at each one. 

Notes on Further Reading 
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