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What gets measured, gets done. 
If you don’t measure results, you can’t tell success from failure. 
If you can’t recognize failure, you can’t correct it. 
If you can’t see success, you can’t reward it. 
If you can’t see success, you can’t learn from it. 
 From “Reinventing Government” 
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Introduction 
Effective technologies for learning and doing mathematics should be based on sound 
cognitive theory, be empirically tested against alternatives, and be primarily addressed at 
mathematics as a modeling language.  I illustrate these points in the context of an 
educational technology we call “Cognitive Tutors” (Anderson, Corbett, Koedinger, 
Pelletier, 1995).  Cognitive Tutors are based in computer science research on artificial 
intelligence techniques and cognitive psychology research on the nature of human 
learning and performance.  Cognitive Tutors have been created to help students learn in a 
variety of mathematics and computer programming domains and have been subject to 
laboratory and classroom evaluations that demonstrate the potential for dramatic learning 
gains from appropriate use of this technology.   

This chapter will focus primarily on a Cognitive Tutor for algebra originally called the 
Pump Algebra Tutor or PAT (Koedinger, Anderson, Hadley, & Mark, 1997; Koedinger 
& Sueker, 1996).   PAT is part of a complete algebra course that, in the 1998-1999 school 
year, had been disseminated by our university-based PACT Center1 to thousands of 
students in some 70 schools across the country.  This course, now called “Cognitive 
Tutor Algebra I”, was designated by the US Department of Education as an exemplary 
mathematics curriculum in 1999.  With the help of the Technology Transfer Office at 
Carnegie Mellon University, we formed a spin-off company “Carnegie Learning”2 to 
market, support, and further develop Cognitive Tutors.  In the 1999-2000 school year, 
Carnegie Learning had spread Cognitive Tutor Algebra I to over 150 schools.  A few of 
these schools are high performing, resource rich suburban schools, but most of them are 
urban or rural schools, involve average teachers, and include a large number 
economically disadvantaged, minority or learning disabled students. 

Before turning to a summary of Cognitive Tutors in general and Cognitive Tutor Algebra 
in particular, I want to make three general comments about:  

• the role of empirical testing in the development of technology-enhanced learning 
innovations,  

• the role of cognitive theory in guiding such development, and  

• the role of mathematical modeling as an appropriate core focus for mathematics 
instruction.   

                                                 
1 The Pittsburgh Advanced Cognitive Tutor (PACT) Center is codirected by Albert Corbett, Kenneth R. 
Koedinger, and John R. Anderson and is located in the Human-Computer Interaction Institute at Carnegie 
Mellon University.  See http://act.psy.cmu.edu/ACT/tutor/tutoring.html. 
2 For more information on Carnegie Learning see the web site at http://carnegielearning.com. 



Why empirical tests against alternatives? 
Why is it important that we perform empirical tests of educational innovations in 
comparison with alternatives?  If the intuitions and beliefs that guide the design of 
learning environments were fully informed and perfect, there would be no need for such 
experiments.  Unfortunately, intuitions and beliefs about learning and instruction are 
limited and are not always accurate.  One problem is that intuitions are based largely on 
conscious learning experiences, but a great fraction, perhaps the majority, of what we 
learn is at a level below our awareness.  The grammar rules of our first natural language, 
English in my case, are an excellent example.  We learn these rules, in the sense that they 
determine our behavior in language comprehension and production, well before we are 
consciously aware of them.  To use an old twist of phrase, as early language learners we 
go from “not knowing we don’t know” to “not knowing we know” without going through 
the intermediate states of conscious learning: “knowing we don’t know” and “knowing 
we know”.  As we get older, of course, conscious learning processes play a greater role.  
However, it is a mistake to think conscious learning takes over.  In fact, there is ample 
evidence from cognitive psychology research that our brains continue to engage in 
implicit learning processes (e.g., Berry & Dienes, 1993; Dienes & Perner, 1999).   

Our intuitions about learning are biased by limited information -- overly influenced by 
our memories of our conscious learning experiences.  We are subject to what I call expert 
blindspot -- as experts in a domain we are often poor judges of what is difficult and 
challenging for learners.  Perhaps few would disagree about the importance of evaluating 
our educational innovations to better understand how they do or do not improve on 
current practice.  Nevertheless, I think it is worth emphasizing the danger of being biased 
by expert blindspot and lured by our personal intuitions into assuming that our 
educational innovations and reforms will necessarily be for the better. 

Why design systems based on cognitive theory? 
Not every experiment can be run comparing alternative features of instruction and their 
interactions.  Thus, we need a way to guide the generation of new instructional designs.  
Such a guide should help us prune design ideas not likely to enhance learning and inspire 
new ideas that will.  Cognitive theory also provides a way to accumulate reasons for past 
successes and failures to inform future practices. 

Why address math as a modeling language? 
Although technology has mastered calculation of various kinds -- arithmetic, graphic, 
symbolic, logical -- humans are the only masters of translating problems into 
mathematics, building theories and producing communicative forms.  Learning how to 
create mathematical models of problem situations is difficult but it is the key to 
mathematical success in our modern world.   



An Example: Cognitive Tutors 
The Cognitive Tutors technology is particularly suited (though certainly not exclusively) 
to facilitate these three goals: need for empirical testing, need for cognitive theory, and a 
focus on mathematics as a modeling language.  Cognitive Tutors are based on the ACT 
theory of learning and performance (Anderson & Lebiere, 1998).  ACT is a complex and 
broad “unified theory of cognition” (Newell, 1990).  I highlight just a few key features 
that are particularly relevant to learning mathematics.  The theory distinguishes between 
tacit performance knowledge, so-called “procedural knowledge” and static verbalizable 
knowledge, so-called “declarative knowledge”.  According to ACT, performance 
knowledge can only be learned by doing, not by listening or watching.  In other words, it 
is induced from constructive experiences -- it cannot be directly placed in our heads.  
Such performance knowledge is represented in the notation of if-then production rules 
that associate internal goals and/or external perceptual cues with new internal goals 
and/or external actions.  Here are three examples of English version of production rules: 

  IF the goal is to prove two triangles congruent 
   and the triangles share a side 
  THEN  check for other corresponding sides or angles that may congruent. 
 
  IF the goal is to solve an equation in X 
  THEN graph the left and right sides of the equation 
   and find the intersection point(s). 
 
  IF the goal is to find the value of quantity Q 
   and Q divided by Num1 is Num2 
  THEN  find Q by multiplying Num1 and Num2. 
 
It is important to note that the rules of mathematical thinking (which production rules are 
intended to represent) are not the same as the rules of mathematics (e.g., theorems, 
procedures, or algorithms) as they appear, for instance, in textbooks.  Production rules 
represent people’s tacit knowledge of when to chose particular mathematical rules as well 
as other tacit performance knowledge like plans and informal intuitions.  Reading 
English versions of production rules like those above can be misleading because the rules 
are stated explicitly: however, production rules represent tacit or implicit knowledge.  
When we say people know a production rule we do not mean they can state it, as written 
above or otherwise, but only that it characterizes their behavior.  In other words, a person 
is said to know a production when in the situation described by the if-part of the 
production, the person can perform the action described by the then-part3. 

The particular if-then notation of production rules is not as important as the features of 
human knowledge that production rules represent and the implications of these features 
for instruction.  Production rules are modular, and this means that we can diagnose 
specific student weaknesses and focus instructional activities on improving these.  
                                                 
3 Because a number of different production rules can be applicable in any particular situation, a person may 
have a production rule yet we do not see evidence of it in that situation because some other competing 
production “fires” instead (cf. Anderson & Lebiere, 1998). 



Production rules are context specific, and this means that mathematics instruction cannot 
be effective if it disconnects mathematics from its contexts of use.  Students need true 
problem solving experiences to learn the if-part of productions, the conditions for 
appropriate use of mathematical rules, as well as some occasional small exercises (which 
are still over-emphasized in many curricula) to introduce or reinforce the then-parts of 
productions, the mathematical rules themselves.  Production rules are of limited 
generality.  In other words, cognitive research (e.g., Singley & Anderson, 1989) has 
shown that the performance knowledge, though general (i.e., it applies in multiple 
contexts), tends to be fairly narrow in its applicability and tied to particular contexts of 
use and limited generalizations thereof (cf., Cheng & Holyoak, 1985).  Thus, we must 
gauge our expectations about how far student learning will transfer and construct 
curricula that both encourage general encodings of mathematical ideas and also provide 
multiple examples and activities that apply these ideas in a variety of well-chosen 
contexts. 

In applying the ACT theory to instruction, we have focused on the idea that human one-
to-one assistance or tutoring is extremely effective in facilitating learning.  Bloom (1984) 
showed that an individual human tutor can improve student learning by two standard 
deviations over classroom instruction.  In other words, the average tutored student 
performs better than 98% of students receiving classroom instruction.  This result 
provides a sort of “gold standard” for comparing the effectiveness of educational 
technologies.  The results of meta-analyses of hundreds of studies of traditional 
computer-aided instruction (CAI) suggest that CAI leads, on average, to a significant 0.3 
to 0.5 standard deviation improvement over non-computer-aided control classrooms (e.g., 
Kulik & Kulik, 1991).  There are too few studies of multimedia and simulations at this 
point to provide a generic figure, though some of these studies indicate little effect, for 
instance, of animations (e.g., Pane, Corbett, & John, 1996) or of game-like simulations 
(e.g., Miller, Lehman, & Koedinger, 1999).  In studies of our Cognitive Tutor technology 
we have shown Cognitive Tutors to yield about a one standard deviation effect 
(Anderson, Corbett, Koedinger, & Pelletier, 1995; Koedinger, Anderson, Hadley, & 
Mark, 1997). 

To build a Cognitive Tutor, we create a cognitive model of student problem solving by 
writing production rules that characterize the variety of strategies and misconceptions 
students acquire.  These productions are written in a modular fashion so that they can 
apply to a goal and context independent of what led to that goal.  For simplicity of 
illustration, I provide an example from the domain of equation solving: 

  Strategy 1: IF the goal is to solve a(bx+c) = d 
   THEN rewrite this as  bx + c = d/a 
  Strategy 2: IF the goal is to solve a(bx+c) = d 
   THEN rewrite this as  abx + ac = d 
  Misconception: IF the goal is to solve a(bx+c) = d 
   THEN rewrite this as   abx + c = d 

 
The first two productions illustrate alternative strategies for the same problem-solving 
goal.  By representing alternative strategies for the same goal, the cognitive tutor can 
follow different students down different problem solving paths of the students’ own 



choosing.  The third “buggy” production represents a common misconception (cf., Matz, 
1982).  Buggy production rules allow the cognitive tutor to recognize such 
misconceptions and thus, provide appropriate assistance.  The Cognitive Tutor makes use 
of the cognitive model to follow students through their individual approaches to a 
problem.  It does so using a technique called “model tracing”.  Model tracing allows the 
Cognitive Tutor to provide students individualized assistance that is just-in-time and 
sensitive to the students’ particular approach to a problem. 

The cognitive model is also used to trace students’ knowledge growth across problem-
solving activities.  The “knowledge tracing” technique is dynamically updating estimates 
of how well the student knows each production rule (Corbett & Anderson, 1995).  These 
estimates are used to select problem-solving activities and to adjust pacing to adapt to 
individual student needs. 

Cognitive Tutors have been subject to comparative evaluations in the lab and in 
classroom for more than 12 years (Anderson, Corbett, Koedinger, & Pelletier, 1995).  A 
Cognitive Tutor for writing programs in the LISP computer language (Anderson, Conrad, 
& Corbett, 1989) was compared to a control condition in which students solved the same 
programming problems without the aid of the Cognitive Tutor. Students in the 
experimental group completed the problems in 1/3 the time with better post-test 
performance than students in the control group.  The LISP tutor allowed students to 
engage in productive problem solving search, but reduced unproductive floundering.  
Two different Cognitive Tutors for geometry proof design were used in classroom studies 
compared to control classes using a traditional geometry curriculum without the 
Cognitive Tutor.  In both studies, students in the experimental classes scored 1 standard 
deviation better than students in control classes (Koedinger & Anderson, 1993).   

There were two important lessons from these studies.  First, echoing results from 
experiments with LOGO (Lehrer, Randle, Sancillo, 1989; Klahr & Carver, 1988), we 
demonstrated that careful curriculum integration and teacher preparation were critical to 
our effectiveness results (Koedinger and Anderson, 1993).  A second lesson came from a 
third party evaluator who studied changes in student motivation and classroom social 
processes as a consequence of the use of the Geometry Proof Tutor.  Schofield, Evans-
Rhodes, and Huber (1990) found the classroom evolved to be student centered with the 
teacher taking a greater facilitator role supporting students as-needed on the particular 
learning challenges each was experiencing.  This point was repeated in a Math Teacher 
article by one of the participating teachers (Wertheimer, 1990).  In that article, 
Wertheimer emphasized that because the Cognitive Tutor was effectively engaging 
students he was more free to provide individualized assistance to students who most 
needed it. 

The Pump Algebra Tutor (PAT) 
When we began to develop the Pump Algebra Tutor, two past experiences led us to take a 
different “client-centered” approach to development (Koedinger, et al., 1997).  First, at 
the time of the geometry studies, the National Council of Teachers of Mathematics 



Standards (1989) were coming out and suggesting a deemphasis on proof in high school 
geometry.  Second, we had experienced the importance and difficulty of integrating the 
technology with the classroom and paper-based curriculum (Koedinger & Anderson, 
1993).  Thus, in the Pump Algebra Tutor project we designed the tutor and the 
curriculum hand-in-hand.  A high school math teacher, Bill Hadley, and a curriculum 
supervisor, Diane Briars, had been working on a new algebra curriculum.  Their goals 
were to make algebra accessible to more students, to help students make connections 
between algebra and the world outside of school, and to prepare students for the "world 
of work" as well as further academic study.  We teamed up with Hadley and began 
evolving the curriculum and designing the tutor by sharing ideas from both research and 
practice.  This client-centered process we used and continue to use is a form of 
“participant design” (cf., Beyer & Holtzblatt , 1998) whereby end-users, in this case 
teachers, fully participate on the design team.   

Functional Models of Authentic Problem Situations 
Table 1 shows the first part of a two-day performance assessment used in the Pump 
Algebra curriculum.  Students are asked to analyze the financial costs and benefits of 
three alternative educational paths to a photography career.  Unlike traditional algebra 
story problems that ask for a particular numerical answer, activities in Pump Algebra and 
PAT ask students to produce an analysis and models of that analysis in multiple 
mathematical representations including tables, graphs, equations, and words.  

The assessment activity in Table 1 illustrates a number of key features of the course that 
are typical of both the text curriculum and computer tutor.  Students are expected to read 
realistic problem contexts: “Your friend has decided he is very interested in a career as a 
photographer.  You look up Photographer in the Pennsylvania Career Guide and find out 
that there are three different paths to becoming a photographer.”  They must compare 
alternatives: 

 High School Diploma: Start photographing right away and make $1115 per 
month. 

 Technical School: Study for 18 months, pay $18,000, and make $1925 per month. 

 College: Study for 4 years, pay $50,000, and make $2754 per month. 

Students are asked to “use algebra” to make this analysis and, like most activities in the 
curriculum, they build tabular and graphical models of these alternatives as well as 
symbolic equations like “1115x = 1925(x – 18) – 18,000”.  Students use these models to 
find break even points (e.g., how many months before Technical School pays off), for 
instance, by finding points of intersection in a graph or by solving equations.  In other 
words, the course emphasizes the use of multiple representations and strategies to 
provide students with both different perspectives on mathematical understanding and a 
variety of tools for problem solving.  In the classroom component of the course, writing 
is emphasized and students are asked to make recommendations based on the 
mathematical models they create: “use this analysis to write a letter to your friend 



explaining clearly the advantages and disadvantages of each option.  You also want to 
make a recommendation to him as to what he should do!” 

The beginning of the course starts with simpler situations than the Photographer problem, 
but such activities usually include many of these features: reading a problem situation, 
constructing multiple representations, comparing alternatives, and writing an answer.  A 
major goal is to aid students in developing successively more sophisticated models of 
quantitative relationships using multiple representations each with different costs and 
benefits (cf., Koedinger & Anderson, 1998; Tabachneck, Koedinger, & Nathan, 1994). 

Table 1. An Assessment from Pump Algebra that Illustrates the Problem Solving and 
Mathematical Modeling Objectives of the Curriculum 

My Life as a Photographer  
Final - Day One 

Your friend has decided he is very interested in a career as a photographer.  You look up 
Photographer in the Pennsylvania Career Guide and find out that there are three different paths to 
becoming a photographer.  You can enter the field upon graduating from high school, go to a 
technical school or attend college.  You research these options and find out the following: 
 
Option 1: High School Diploma.  He can become a photographer with only a high school diploma.  
The average salary for these photographers is $1115 per month. 
 
Option 2: Technical School.  Completing high school and attending a technical school for an 
eighteen-month (1 and 1/2 years) course in photography is a second option.  This technical program 
costs about $18,000 and the average salary for those completing the course is $1925 per month. 
 
Option 3: College.  Completing high school and attending a four-year college program in 
photography is the third option.  The average cost for a four-year program is $50,000 and a graduate 
can expect to earn about $2745 per month.  
 
You want to make a complete comparison of these three options for your friend.  Since you are an 
excellent algebra student you want to use algebra to make this analysis, and then use this analysis to 
write a letter to your friend explaining clearly the advantages and disadvantages of each option.  
You also want to make a recommendation to him as to what he should do! 

 

Learning to Model with Algebraic Symbols: The Inductive Support 
Strategy 

To reach the goal of creating improved instructional supports to help students learn to be 
successful on assessments like the Photographer Career problem in Table 1, we began to 
research issues of mathematical modeling and the underlying competencies required.  In 
particular, we focused on studying what students know and do not know about symbolic 
modeling.  Skills for symbolic modeling are important because they are not currently 
automated, they are the entry point to using today’s powerful calculation tools (e.g., 
graphic and symbolic calculators, spreadsheets, programming), and they are particularly 
difficult skills for students to acquire.  We began to experiment with different approaches 
to helping students learn to model with algebraic symbols (Koedinger & Anderson, 
1998).  



Table 2 shows a problem from a popular algebra textbook (Forester, 1984).  Hadley had 
been using a similar problem format, but put a particular emphasis on problem contexts 
that would be more authentic to students and that contained real data.  Forester intended 
this problem format to illustrate the nature of an algebraic variable as truly varying, in 
contrast to traditional algebra word problems (e.g., leave out questions 1-3 in Table 2) in 
which there is an unknown constant, but no variable.  As I began to observe and analyze 
student thinking on such problems, I formed the simple hypothesis that having students 
answer the concrete “result-unknown” questions 2 and 3 before answering the 
symbolization question 1 might facilitate student learning, particularly of the 
symbolization process.   

Table 2.  Textbook problem with different question types. 

Drane & Route Plumbing Co. charges $42 per hour plus 
$35 for the service call.   

 

1.  Create a variable for the number of hours the company 
works.   Then, write an expression for the number of 
dollars you must pay them. 

Symbolization  
 Question 

2.  How much you would pay for a 3 hour service call? Result-Unknown 
3.  What will the bill be for 4.5 hours?  Questions 
4.  Find the number of hours worked when you know the 

bill came out to $140. 
Start-Unknown  
 Question 

 

This hypothesis followed from my prior cognitive science research on the importance of 
inductive experiences in the evolution of geometry knowledge (Koedinger & Anderson, 
1990).  It also followed from observations of students who could successfully solve 
concrete result-unknown questions, like 2 and 3, but could not produce the corresponding 
algebraic sentence to answer question 1 (Koedinger & Anderson, 1998).  Such students 
already had effective performance knowledge (or production rules) for comprehending 
the English problem statement, for extracting the relevant quantities and quantitative 
relations, and for a producing a numerical answer.  However, production rules for 
“writing algebra”, that is, for taking a problem understanding and expressing it in 
algebraic symbols, were either weak or missing (cf., Heffernan & Koedinger, 1997; 
1998).  One such production rule is illustrated below: 

If the goal is express a quantity Q1 in algebraic symbols 
and Q1 is result of combining Q2 and Q3 with operator Op 
and the expression for Q2 is Expr2 
and the expression for Q3 is Expr3 
Then set a goal to write:  Expr2 Op Expr3 
         set a goal to check for correct order of operations 

This production rule characterizes tacit performance knowledge for composing algebraic 
"embedded clauses" for a quantity, like 42h + 35 for the total bill (Q1), from knowledge 
of simple clauses, like 42h for the hourly charge (Q2) and 35 for the service charge (Q3). 



Why should learners solve result-unknown questions (questions 2 and 3 in Table 2) 
before attempting to symbolize (question 1)?45  It is easier for students to step through the 
arithmetic operations in a problem with concrete numbers than to write the corresponding 
algebraic sentence.  As they do so, declarative memory traces are stored that characterize 
the problem’s quantitative structure (e.g., 42 times 3 is 126 and 126 plus 35 is 161).  
These traces are analogous to the structure of the algebraic sentence students need to 
produce (e.g., 42h and 42h+35).  In attempting this more difficult step of symbolizing, 
students’ brains perform analogical problem solving processes (Anderson & Lebiere, 
1998) that make use of these concrete traces to guide the writing of an algebraic sentence.  
As a side effect of these processes the brain induces new production rules, like the one 
illustrated above, for writing algebraic sentences.   

I call this learning strategy of making use of concrete modes of thinking (numeric 
instances in this case) to help induce abstract modes of thinking (writing algebraic 
sentences) the inductive support strategy.  

We used an early version of PAT to implement an experimental learning study in which 
we compared a control “Textbook” condition to an experimental “Inductive Support” 
condition.  In the Textbook condition students solved problems in the Forester textbook 
format.  In the Inductive Support condition, students solved the same problems but with 
the questions rearranged so that the concrete result-unknowns (#2 and #3) appeared 
before the symbolization question (#1).  Figure 1 shows the results of that study.  
Students in the Inductive Support group learned significantly more from pre-test to post-
test than students in the Textbook group (Koedinger & Anderson, 1998).  This inductive 
support effect was successfully replicated by Gluck (1999), who also collected eye 
movement data that provides an interesting and more direct window into the changes in 
the thinking process that result from inductive support. 

                                                 
4 The following explanation makes use of aspects of the ACT-R theory, in particular, the declarative and 
procedural memories and the analogical learning process that operates between them  (Anderson & 
Lebiere, 1998). 
5 The original “PUMP” Algebra curriculum stood for Pittsburgh Urban Mathematics Project and expressed 
the goal of making algebra a “pump” not a “filter” to further academic and workplace success.  



Pre to Post
Improvement
Score

5

4

3

2

1

0
Textbook

(Symbolize first)
Inductive Support

(Solve & then symbolize)

1. 35 + 42h = d

2. 35 + 42*3    = d
3. 35 + 42*4.5 = d

4. 35 + 42h = 140

1. 35 + 42*3    = d
2. 35 + 42*4.5 = d

3. 35 + 42h = d

4. 35 + 42h = 140
 

Figure 1. Improving algebraic modeling by bridging off students' existing knowledge. 

A crucial point to emphasize here is that students not only need to learn mathematical 
concepts, but they must also develop a mastery or fluency with mathematical modeling 
languages such as algebraic symbols, programming languages, statistics notation, and 
dynamic geometry tools.  This experiment illustrates one effective way to assist students 
in developing mathematical language fluency.  The inductive support strategy suggests 
that we create instructional activities that help students bridge from existing, more 
concrete modes of thinking (e.g., situations and numbers) and more familiar languages 
(e.g., English) to more abstract and powerful modes of thinking and languages (e.g., 
algebra and algebraic symbols).  The inductive support strategy is a demonstrated 
realization of “progressive formalization” (Bransford, Brown, & Cocking, 1999, p. 125). 

Description of PAT: A Cognitive Tutor for Practical Algebra 
As part of the development of the Pump Algebra Tutor (PAT), Pittsburgh teachers wrote 
problem situations, like the Photography problem discussed above, intended to be 
personally or culturally relevant to students.  Some problem situations are of potential 
general interest (e.g., the decline of the condor population), while others are somewhat 
more specific to Pittsburgh 9th graders (e.g., making money shoveling snow or declining 
population in Pittsburgh after the demise of the steel mills).  These problems were added 



to PAT using an intelligent problem authoring system in which teachers type the problem 
description and enter an example solution (Ritter, Anderson, Cytrynowitz, & Medvedeva, 
1998).  This authoring system has an incomplete and imperfect model for reading English 
text but can make reasonable guesses about how quantities and relations in the entered 
solution map to phrases in the text.  The author can then correct or edit these guesses.  
The connections formed between elements of the problem and elements of the solution 
are the basis for the automated feedback and hints the tutor can provide as needed. 

 
Figure 2.  In the Pump Algebra Tutor (PAT), students create tabular (lower-left), 
graphical (upper-right), and symbolic (lower-center) models of problem situations 

(upper-left) with as-needed assistance (middle-right) and dynamic assessment (lower-
right) from the Cognitive Tutor. 

Students begin work on PAT problem situations by reading a description of the situation 
and a number of questions about it.  They investigate the situation by representing it in 
tables, graphs, and symbols and by using these representations to answer the questions.  
Helping students understand and use multiple representations is a major focus of PAT 
(cf., Hall, Kilber, Wenger, & Truxaw, 1989; Janvier, 1987; Koedinger & Tabachneck, 
1994; Tabachneck, Koedinger, & Nathan, 1994).  

In Figure 2, the PAT screen shows a student's partial solution for a problem.  This 
problem appears in the later stages of the curriculum after students have acquired some 
expertise with constructing and using graphs and tables for single linear equations.  The 
top-left corner of the tutor screen provides a description of the problem situation.  This 



problem involves comparison of costs between two rental companies, Hertz and Avis, 
that charge different rates for renting large trucks.  Students investigate the problem 
situation using multiple representations and computer-based tools, including a 
spreadsheet, grapher, and symbolic calculator (in Figure 2 these are the Worksheet, 
Grapher and Equation Solver windows, respectively).   

Students construct the Worksheet (lower-left of Figure 2) by identifying the relevant 
quantities in the situation, labeling the quantities (at the top of the columns), identifying 
appropriate units (first row), answering the questions in the problem description 
(numbered rows), and entering algebraic expressions (in the “Formula” row).  The 
Formula row is at the bottom of the table in early lessons to facilitate use of the Inductive 
Support strategy, but moves to the top in later lessons.  Like a spreadsheet, in later 
lessons the formula automatically generates a dependent (y) variable value when a value 
of the independent variable (x) has been entered.   

Students construct the graph of the problem situation (upper-right of Figure 2) by 
labeling axes, setting appropriate bounds and scale, graphing the lines, and identifying 
the point of intersection.  The Equation Solver (lower-center) can be used at any time to 
help fill in the spreadsheet or identify points of intersection in the graph.  The student can 
use these representations to reason about real-world concerns, such as deciding when it 
becomes better to rent from one company rather than another. 

The steps in table, graph, and equation construction and use emphasize multiple 
perspectives on quantities and their relationships through the description to these in 
multiple forms.  Understanding of quantity emerges when students actively engage in 
making connections between, and practicing correct use of, these multiple 
representational forms (cf., Hall, Kilber, Wenger, & Truxaw, 1989; Janvier, 1987; 
Koedinger & Tabachneck, 1994; Tabachneck, Koedinger, & Nathan, 1994).  The PAT 
interface representations and problem structure encourage these connections, and the 
PAT tutor component assists students, as needed, in appropriate use of these 
representations.  By supporting students in thinking about quantity labels, PAT assists 
students in making connections to more concrete situational and verbal knowledge.  By 
thinking about units, students are making connections to more abstract verbal knowledge.  
By thinking about numerical relationships, students make connections to arithmetic 
knowledge and, as we have shown in the Inductive Support studies (Koedinger & 
Anderson, 1998; Gluck, 1999), this thinking process facilitates the difficult 
developmental transition to fluent use of algebraic symbols.  In addition to the aspects of 
PAT’s Worksheet noted above, students are also assisted in graph and equation 
construction and use.  The problem-solving activities in the PAT curriculum are 
structured and ordered to engage students in increasingly sophisticated uses of and 
translations among a variety of representations.  The goal is for students to achieve 
“representational fluency” through developmentally appropriate connections and 
sufficient practice.  

At all times the tutor is monitoring student activities and providing feedback and 
assistance as needed. This provision of timely feedback is one way in which Cognitive 
Tutor’s individualize instruction.  Like good human tutors, PAT's tutorial interactions 
with students are brief and focused on individual students' particular learning needs as 



they arise in the context of problem solving.  When a student is having trouble, PAT does 
not immediately provide correct answers or even detailed advice.  Instead, PAT tries to 
maximize student opportunities to discover or reinforce appropriate concepts or skills on 
their own.  PAT provides two kinds of assistance: just-in-time feedback on problem 
solving steps taken and on-demand hints on next steps needed.   

Like human tutors, PAT’s feedback on student errors avoids direct verbal statements like 
“wrong” and instead uses non-verbal cues.  PAT cannot raise its eyebrows, but it does 
provide non-verbal feedback by “flagging” errors using a font highlight such as outline 
text or color.  As Schofield et al. (1990), Wertheimer (1990), and many of our current 
teachers have observed, students do not feel the same social stigma when making errors 
on the computer as they do when making errors in class.  Commonly occurring slips or 
misconceptions are recognized by "buggy" production rules and specific advice can be 
provided that may explain what is wrong with the current step or hint toward an 
appropriate correct step.  Examples of student errors that are recognized by PAT’s buggy 
productions include leaving out the initial value (intercept) in a formula, leaving out 
parentheses or otherwise violating order of operations, confusing the dependent and 
independent variable in a table, graph or formula, and many others.    

The provision of timely feedback is a critical feature of Cognitive Tutors that leads to 
substantial cognitive and motivational benefits.  In a parametric study with the LISP 
tutor, Corbett and Anderson (1991) compared levels of timing of feedback.  Students 
receiving immediate feedback (after each problem-solving step) learned significantly 
faster than students receiving delayed feedback (at the end of the problem)..  In addition 
to cognitive benefits, there also appear to be motivational benefits of timely feedback.  
Much like the motivational attraction of video games, students know right away that they 
are making progress and get satisfaction from this success at a challenging task. 

In addition to timely feedback, a second way PAT individualizes instruction is by 
providing context-sensitive hints.  Using the model tracing mechanism described above, 
PAT is always following each student's particular approach to a problem.  At any point in 
constructing a solution, a student can request a hint and PAT will provide one that is 
sensitive to what the student has done up to that point.  The tutor chooses a hint message 
by using the production system to identify the set of possible next strategic decisions and 
ultimate external actions.  It chooses among these based on the student's current focus of 
activity, what tool and interface objects the student has selected, the overall status of the 
student's solution, and internal knowledge of relative utility of alternative strategies.  
Successive levels of assistance are provided in order to maximize the students' 
opportunities to construct or generate knowledge on their own.  This approach to learning 
through assisted performance bears close resemblance to cognitive apprenticeship 
(Collins, Brown & Newman, 1989) and procedural facilitation (Vygotsky, 1978). 

The "Message" window in Figure 2 shows the result of a student help request. At any 
stage in problem solving, the tutor can provide assistance on whatever interface element 
the student has selected (e.g., a cell in the Worksheet, a point in the Grapher, an equation 
in the Equation Solver).  Based on the tutor’s representation of alternative strategies and 
solution contingencies, the tutor may suggest an alternative selection in some situations.  



For instance, it will recommend that students complete a row in the Worksheet (an x-y 
pair) before graphing the corresponding point in the Grapher.   

In the situation shown in Figure 2, the student has selected the Worksheet cell for 
question 4 in the column she labeled “MILES DRIVEN”.  Question 4 reads “If we have 
budgeted a total of $1000 to rent this truck, how many miles can we drive it if we rent it 
from Avis?".  To process the hint request, the tutor’s cognitive model is run to see what 
different production rule paths are potentially relevant at this point in the problem.  
Possibilities include the following: 

1. In the Grapher, graph one or the other of the lines corresponding to either of 
expressions in the FORMULA row of the Worksheet. 

2. In the Worksheet, enter the given value $1000 in the “COST OF RENTING 
FROM AVIS” column in row 4. 

3. In the Equation Solver, enter an equation, like “0.13x + 585 = 1000”, that can be 
solved to find the MILES DRIVEN. 

4. In the Worksheet, enter the value or an expression for computing the value (e.g., 
“(1000 – 585) / .13”) of MILES DRIVEN in the selected cell. 

In tracing student problem solving, the tutor is flexible and would follow the student no 
matter which of these paths she pursued.  In this case, though, the student has requested a 
hint and the tutor must decide which of these paths to hint toward.  This decision is 
constrained by both flow and pedagogical concerns.  To preserve the flow, if possible, a 
path is chosen that is relevant to the window in which the student is working. Thus, path 
#1 is not chosen since it is relevant to the Grapher not the Worksheet.  Also to preserve 
flow, if possible, a path is chosen that is relevant to the currently selected interface 
object, in this example, the cell in column 1, row 4.  Thus, path #2 is not chosen since it 
is relevant to the cell in column 3, row 4.  Besides flow concerns, hint selection is also 
driven by content-specific pedagogical concerns (see Shulman, 1987 for discussions of 
the importance of pedagogical content knowledge).  Both paths #3 and #4 are relevant to 
the student’s selected cell.  Path #3 is an equation solving strategy, which is the typical 
textbook approach to such problems. Path #4 recommends an informal “unwind” strategy 
and is chosen for pedagogical-content reasons described below.  In general, the flow 
constraints on hint selection are implemented within the Cognitive Tutor architecture and 
apply in all tutors, whereas the pedagogical constraints are implemented in content-
specific production rules and apply to specific situations within a tutor.  

To the surprise of many teachers (Nathan, Koedinger, & Tabachneck, 2000), students are 
able to solve problems like question 4 without an equation (Koedinger & MacLaren, 
1997).  Students use informal strategies, like guess-and-test and unwind, that they can 
perform more effectively and efficiently than equation solving on such problems 
(Koedinger & Alibali, 1999; Nhouyvanisvong, 1999).  Thus, for problems like question 
4, PAT hints toward the informal unwind strategy because it better builds off students’ 
prior verbal knowledge of informal strategies.  PAT also includes problems, like question 
5, that thwart the unwind strategy and thus motivate the need for and practice the use of 



equation solving.  I now provide examples of hint sequences associated with questions 4 
and 5. 

Hints along a chosen path begin with general assistance, and the tutor provides 
incrementally more specific assistance only as demanded by the student.  In this example, 
the initial hint focuses the student’s attention on the fact that the usual given and goal 
variables are reversed and therefore the need to “unwind” the arithmetic procedure: “To 
find the distance driven, instead of the cost of renting from avis, unwind your calculation.  
Do the reverse of what you would normally do.”   If the student asks for more help, the 
tutor provides a more specific hint toward how to unwind: "To find the distance driven, 
instead of the cost of renting from avis, take the value you are given for the cost of 
renting from avis, first subtract numbers that you would normally add and then divide by 
numbers you would normally multiply."  This hint provides a general strategy for how to 
unwind expressions like the one in this problem.  If student requests it, the next and final 
hint provides the specific expression to which the unwind strategy should be applied: “To 
calculate the distance driven, try unwinding as a way of solving the expression 1000 
equals 0.13 times the distance driven plus 585.”  Sometimes the final hint in a sequence 
can be quite specific, for instance, “Subtract 585 from 1000 and then divide by 0.13” or 
even “Type 3192.3”.  Such detailed hints are like the examples provided in textbooks 
illustrating a new idea.  The difference is that, in PAT, these examples come in the 
process of problem solving when students are better able to understand and make use of 
the example.  Also, in such cases PAT will give students later opportunities to perform 
this skill on their own. 

In the case above, the last hint is still fairly general.  In some contexts, like this one, 
teachers have asked to have the hint stay relatively vague so that they are aware and can 
intervene if a student gets really stuck.  This case is also an example of how our basic 
cognitive research, in this case on students’ invented informal strategies  (Koedinger & 
MacLaren, 1997; Nathan, Koedinger, & Tabachneck, 2000), has influenced teacher 
practices and the content of our teacher professional development.  The vocabulary and 
associated strategy of “unwinding” an arithmetic procedure to find an unknown is 
emphasized in our teacher professional development workshops.  However, like students, 
teachers also learn by doing, and thus it helps to have this idea reinforced as teachers 
observe the tutor and interactions with students in the computer lab.   

Although the hint messages recommend the unwind strategy for questions like 3 and 4, 
the students are free to choose whichever path they like.  The Equation Solver window 
(lower-center in Figure 2) illustrates how the equation solving strategy (path #3) can be 
performed to answer question 3.  The student enters her own equation, “850 = 0.21X + 
525” and solves it by indicating standard algebraic manipulations.  As is the case for all 
tools in PAT, students can receive feedback and hints in the Equation Solver that are 
sensitive to their chosen strategy and current state of the solution.  If the student were to 
ask for hints prior to the second step shown in Figure 2, the successive hints would be the 
following: 

• What can you do to both sides to get x by itself? 
• To change 0.21x to x, divide by 0.21. 



• Divide both sides by 0.21. 

In contrast, a second student might have started differently, by dividing both sides of the 
equation by 0.21 rather than subtracting 525 from both sides.  If requested, a hint on the 
next step in this case would follow through on this student’s chosen path6 and be 
different from the hint sequence shown above. 

Question 5 asks the student to find out the crossover point where the cost of one option 
(Hertz in this case) catches up with the cost of another (Avis).  Alternative strategies for 
finding this point include equation solving or using the Grapher tool (upper right in 
Figure 2) to graph the lines to find the intersection.  In this case if requested, PAT hints 
toward equation solving:  “Given that the expression for the cost of renting from hertz 
and the cost of renting from avis are equal, write an equation and solve it to find the 
distance driven.”  If needed, the student is further hinted toward setting up and solving 
the equation “0.21x + 525 = 0.13x + 585”. 

By keeping students engaged in successful problem solving, PAT's feedback and hint 
messages reduce student frustration and provide for a valuable sense of accomplishment.  
In addition to these functions of model tracing, PAT provides learning support through 
knowledge tracing.  Results of knowledge tracing are shown to student and teacher in the 
Skillometer window (labeled “Lesson Ten” in the bottom right of Figure 2).  By 
monitoring a student's acquisition of problem solving skills through knowledge tracing, 
the tutor can identify individual areas of difficulty (Corbett, Anderson, & O’Brien, 1995) 
and present problems targeting specific skills that the student has not yet mastered.  For 
example, a student who was skilled in writing equations with positive slopes and 
intercepts, but had difficulty with negative slope equations would be assigned problems 
involving negative slopes.  Knowledge tracing can also be used for "self-pacing", that is, 
the promotion of students through sections of the curriculum based on their mastery of 
the skills in that section. 

The activities in PAT are organized hierarchically so that related problem situations that 
draw on a core set of skills are organized into "sections" and then sections that use the 
same set of notations, tools, and broader concepts are organized into "lessons".  For 
instance, the PAT curriculum used in schools in the 1997-98 school year included 22 
lessons, each of which contained about 4 sections on average, and each section contained 
about 5 required problems and about 5 additional problems.  Initially, students explore 
common situations involving positive quantities, mostly whole numbers and some simple 
fractions and decimals, and represent these situations mathematically in tables, 
expressions and graphs.  As the year progresses more complex situations are analyzed, 
involving negative quantities, and four-quadrant graphing is introduced.  Similarly, as 
situations increase in complexity, more sophisticated equation solving and graphing 
techniques are introduced to enable students to better find solutions.  Systems of linear 
equations and quadratics are developed through the introduction of situations in which 
                                                 
6 This hint would recommend to either distribute or to subtract 2500 (i.e., 525/.21) from both sides 
depending on the option settings in the Equation Solver, which would determine whether the second step is 
displayed as “850/0.21 = (0.21x + 525)/0.21” or “4047.619 = x + 2500”.  



they naturally occur, for example, modeling and comparing the price structures of two 
rival companies that make custom T-shirts.  Modeling vertical motion and area situations 
provide contexts for introducing and using quadratic functions. 

Unlike the short “two minute problems” of most math software and traditional classroom 
instruction (Schoenfeld, 1989), the PAT curriculum includes mini-projects, like the one 
in Figure 2, which may last 20-30 minutes.  Shorter practice exercises (e.g., equation 
solving exercises) are also interspersed to zoom in on particularly difficult and important 
skills.  Over the weeks of the course, students alternate between playing the larger game 
of mathematical problem solving and engaging in decontextualized practice of the more 
difficult component skills, much like: play tennis, practice backhand, play tennis, practice 
serve, play tennis ….  The emphasis is on using project activities first to motivate the 
need for particular kinds of practice and then, after practice, put them back to use in 
context.  

Classroom Context of PAT Use 
The majority of schools using PAT also use the Pump curriculum and text materials.  The 
typical procedure is to spend 2 days a week in the computer lab using PAT and 3 days a 
week in the regular classroom.  In the classroom, learning is active, student-centered, and 
focused primarily on learning by doing.  Teachers spend less time in whole-group lecture 
and more time in individual and cooperative problem solving and learning.  Teachers are 
often playing a facilitator role, but also lead whole-group discussions to highlight student 
discoveries or to introduce new concepts or procedures that, ideally, respond to student 
needs that have emerged from prior activities. 

In the classroom, students often work together in collaborative groups to solve problems 
similar to those presented by the tutor. Teams construct their solutions by making tables, 
expressions, equations, and graphs that they then use to answer questions and make 
interpretations and predictions.  Teachers play a key role in helping students to make 
connections between the computer tools and paper and pencil techniques and to see how 
the general concepts and skills for representation construction and interpretation are the 
same on paper and on the computer. Literacy is stressed by requiring students to answer 
all questions in complete sentences, to write reports and to give presentations of their 
findings to their peers. 

The Pump curriculum uses alternative forms of assessment including performance tasks, 
long term projects, student portfolios, and journal writing.  From the first day all answers 
must be written in complete sentences to be accepted.  At the end of each quarter students 
are given a performance assessment, like the excerpt shown in Table 1.  At the end of 
each semester teachers grade these assessments in a group scoring conference.  In the 
span of an intense afternoon, teachers inspect student solutions, construct a scoring 
rubric, and double-grade all the student papers.  Because all teachers score papers from 
every other teacher’s class as well as their own, they come to have a better understanding 
of the objectives of the curriculum, what students know and do not know, and in what 
ways other teachers' students may differ. 



Replicated Field Study Results 
An important, sometimes hard-learned, lesson of classroom use of educational 
technology is that to be effective in improving student learning, educational technology 
must be closely integrated with curriculum goals and other learning resources such as 
texts and teacher practices.  Research with intelligent tutors (Koedinger & Anderson, 
1993) and other educational technologies, like LOGO (Lehrer, Randle, Sancilio, 1989; 
Klahr & Carver, 1988), has demonstrated the importance of curriculum integration and 
teacher support. We have emphasized these contextual factors throughout the 
development of PAT.  The benefits of cognitive tutors, as with individualized just-in-time 
assistance in the context of rich problem solving activities, can be reduced or masked if 
the social context of classroom use is not addressed (Koedinger & Anderson, 1993).  
However, if such factors are addressed, use of cognitive tutors in the classroom can have 
dramatic impact on student learning and achievement.  We have demonstrated this impact 
in experimental field studies in city schools in Pittsburgh and Milwaukee, replicated over 
3 difference school years.  The assessments used in these field studies targeted both 1) 
higher order conceptual achievement as measured by performance assessments of 
problem solving and representation use and 2) basic skills achievement as measured by 
standardized test items, for instance, from the math SAT.  In comparison with traditional 
algebra classes at the same and similar schools, we have found that students using PAT 
and the Pump curriculum perform 15-25% better than control classes on standardized test 
items and 50-100% better on problem solving & representation use (Koedinger, 
Anderson, Hadley, & Mark, 1997; Corbett, Koedinger, & Anderson, 1999). 

Following the observations of Schofield, Evans-Rhodes, & Huber (1990) and 
Wertheimer (1990), we have also observed the impact of the use of PAT on changes in 
classroom social and motivational processes (Corbett, Koedinger, & Anderson, 1999).  
Visitors to our classrooms often comment on how engaged students are.  PAT may 
enhance student motivation for a number of different reasons.  First, authentic problem 
situations make mathematics more interesting, sensible, or relevant.  Second, students on 
the average would rather be doing than listening, and the incremental achievement and 
feedback within PAT problems provide a video-game-like appeal.  Third, the safety net 
provided by the tutor reduces potential for frustration and provides assistance on errors 
without social stigma.  Finally, the longer-term achievement of mastering the 
mathematics is empowering. 

In the computer lab, teachers are glad to essentially have a teacher's aid for every student 
and thus be freed to be facilitators and provide more one-on-one instruction with 
individual students.  This experience is eye opening for many teachers who may see new 
aspects of student thinking and feel the advantages of greater student-centered learning 
by doing. 

Cognitive Tutors as Teacher Change Agents 
How and why does the use of Cognitive Tutors facilitate the spread of effective teaching 
principles and practices and the institution of curriculum reform?  Is there something 



special about Cognitive Tutors that makes such spread more likely than from alternative 
educational technologies like books, traditional CAI, simulations, or representational 
tools?  Unlike other educational technologies, Cognitive Tutors have a running model of 
student thinking and of adaptive student-centered instruction.  Thus, the system provides 
an active "living example" of research-based principles and practices.  Much like 
teachers use textbooks to guide their teaching practices, teachers often borrow from 
Cognitive Tutor problems, representational tools, feedback and hint strategies and 
incorporate them in their teaching practices.  However, there are crucial differences 
between the instructional model provided by textbooks and that provided by Cognitive 
Tutors.  Whereas examples of instruction in textbooks are static and non-interactive, 
examples of instruction in Cognitive Tutors are dynamic and can be observed in live 
interaction with students.   

By serving as a teacher's aid for each student in the classroom, Cognitive Tutors free 
teachers to observe individual student thinking more often and more closely and to reflect 
on their instructional practices in this context.  Student responses in such close 
interactions provide teachers with immediate and detailed feedback on the effectiveness 
of the tutor’s or their own practices.  Teachers can thus adjust their practices accordingly 
(as well as give feedback, as they often do, on how to improve the Cognitive Tutor). 

We had the opportunity to observe PAT-inspired changes in curricula and teacher 
practices over multiple semesters through a Department of Education, FIPSE project in 
which we adapted PAT for use in college-level developmental math courses (Koedinger 
& Sueker, 1996).  These PAT-inspired changes were accompanied by significant 
quantitative improvements in student learning.  The general methodology we employed, a 
multi-semester “design experiment” (Brown, 1992; Collins, 1992), involved an iterative 
process of course design, qualitative and quantitative observation and evaluation, and 
course redesign. 

PAT was initially used at the University of Pittsburgh in the fall semester of 1995 as an 
add-on to a traditional "Intermediate Algebra" course.  As shown in the left of Figure 3, 
this supplementary use led to significant improvement in students' problem solving 
abilities over a traditional course without PAT (45% vs. 30% average correct as 
measured using a rubric scoring scheme of an assessment much like the one in Table 1).   

In the spring of 1996, University of Pittsburgh instructors used the PAT authoring tool to 
create new problems better adapted to the particular needs and interests of their students.  
More interestingly, changes were not limited to the software.  Instructors began to use 
PAT problems in their regular classes and began to experiment with more student-
centered learn by doing outside of the computer lab.  The consequence of these new 
practices was an increase in end-of-course achievement beyond that found in the 
experimental classes in the fall (65% vs. 45%).    

Over the next two semesters, these practices evolved, and PAT use became better 
integrated with regular classroom instruction, resulting in further modest increases in 
student learning over past semesters (68%, 71%).  In preparation for the Spring of 1997, 
the University of Pittsburgh, led by Lora Shapiro, made a decision to fully reform their 
Intermediate Algebra course to more generally target "quantitative literacy".  Lecturing 



was deemphasized in favor of more “workshop” time in which students worked on 
projects in collaborative groups.  The typical college level approach consisting of a lot of 
instructor-centered lecture time and a little student-centered recitation time, was replaced 
with a lot of student-centered work and a little whole-group reflection and targeted 
lectures.  The consequence of these changes, in the first semester of their implementation, 
was another increase in end-of-course student performance (79%). 
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Figure 3.  Increasing PAT-inspired reforms lead to increasing scores across five 
semesters. 

Conclusions 
Effective technologies for learning and doing mathematics should be based on sound 
cognitive theory, be empirically tested against alternatives, and be primarily addressed at 
mathematics as a modeling language.  I have argued for and illustrated these points in the 
context of Cognitive Tutors generally and in particular, the Pump Algebra Tutor (PAT).  
PAT is based on the ACT theory of cognition and a production rule model of student 
problem solving and mathematical modeling.   

PAT has been subject to empirical tests both in the laboratory and in the field.  In an 
early laboratory study with PAT, we contrasted a research-inspired “inductive support” 
strategy with an existing textbook strategy. This study demonstrated improved student 
learning, particularly of difficult symbolic modeling skills. 

In field studies of the use of PAT and the Pump curriculum, we demonstrated that the 
combination of the two leads to dramatic increases in student learning on both 
standardized test items (15-25% better than control classes) and on new standards-
oriented assessments of problem solving and representation use (50-100% better than 
control classes).  The focus of PAT and the Pump curriculum is on developing student 



competence in creating mathematical models of problem situations rather than on 
answers to isolated questions.  By developing mathematical modeling skills, students can 
construct a deeper understanding of problem situations such that multiple, unanticipated 
questions can be addressed and answered.  Better mathematical understanding and 
learning result from such multi-representational approaches. 

Cognitive Tutors, like PAT, have the potential not only to dramatically increase student 
achievement, but also to serve a professional development function for teachers.  Because 
of the underlying cognitive model and associated pedagogical strategies, Cognitive 
Tutors can provide a living example of effective instructional practices.  Teachers 
working in the computer lab have more time to observe student performance on thought-
revealing problems and to observe learn-by-doing instruction in action.  In this way, 
Cognitive Tutors can carry research-based practices into the classroom and serve as 
change agents for professional development.   

In addition to the Cognitive Tutor Algebra course, our PACT Center has developed 
Cognitive Tutor courses for high school Geometry (e.g., Aleven, Koedinger, & Cross, 
1999) and Algebra II (e.g., Corbett, McLaughlin, & Scarpinatto, in press).  These three 
courses are being marketed by our spin-off company, Carnegie Learning.  Recently, 
Carnegie Learning has funded a three-year PACT Center project for research and 
development of Cognitive Tutor courses for middle school mathematics.  Through the 
combined efforts of the PACT Center and Carnegie Learning, Cognitive Tutors are 
beginning to reshape the mathematics classroom, the way teachers teach, and what and 
how students learn. 
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