

Causality and Machine Learning (80-816/516)

Classes 4 (Jan 23, 2025)

From Statistics to ML: Settings, Assumptions, Basic Methods, and Model Selection

Instructor:

Kun Zhang (kunzl@cmu.edu)

Zoom link: <u>https://cmu.zoom.us/j/8214572323</u>)

Office Hours: W 3:00-4:00PM (on Zoom or in person); other times by appointment

Outline

- Supervised learning
 - From linear regression to nonlinear methods
 - Properties of regression
 - From parametric models to nonparametric models
 - Model selection: Why? What? How?
 - Classification
- Unsupervised learning
 - Clustering ↓
 - Dimensionality reduction... \rightarrow

Remember This Example?

Example of ML: Satisfaction prediction

ID,Gender,Age,Customer Type,Type of Travel,Class,Flight Distance,Departure Delay,Arrival Delay,Departure and Arrival Time Convenience,Ease of Online Booking,Check-in Service,Online Boarding,Gate Location,On-board Service,Seat Comfort,Leg Room Service,Cleanliness,Food and Drink,In-flight Service,In-flight Wifi Service,In-flight Entertainment,Baggage Handling,Satisfaction

9,Male,50,Returning,Business,

- 10, Female, 38, Returning, Busine 11, Female, 28, First-time, Busin
- 12, Female, 27, First-time, Busin
- 13, Male, 24, First-time, Busines
- 14, Male, 9, Returning, Personal,
- 15, Male, 52, Returning, Personal
- 16,Male,70,Returning,Personal
- 17, Female, 48, Returning, Person
- 18, Female, 61, Returning, Person
- 19, Female, 11, Returning, Person

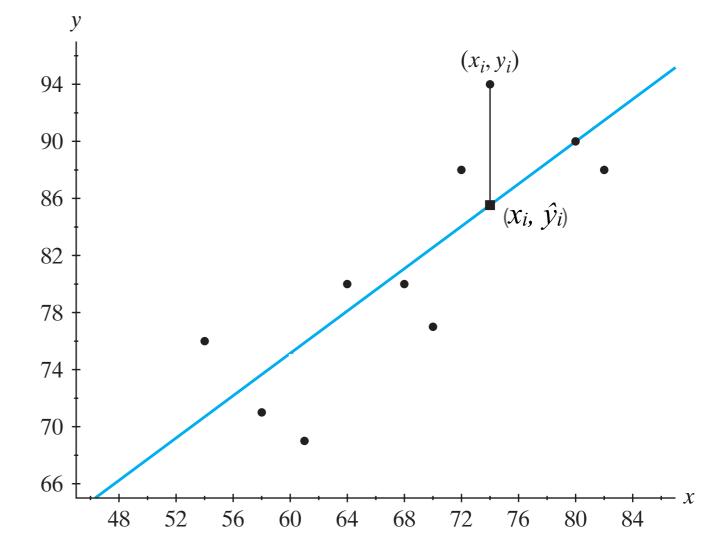
Example 1: Airline-Passenger-Satisfaction Prediction

 'Satisfaction' is our *target variable* and the remaining are the *feature variables* based on which we will predict the value of Satisfaction.

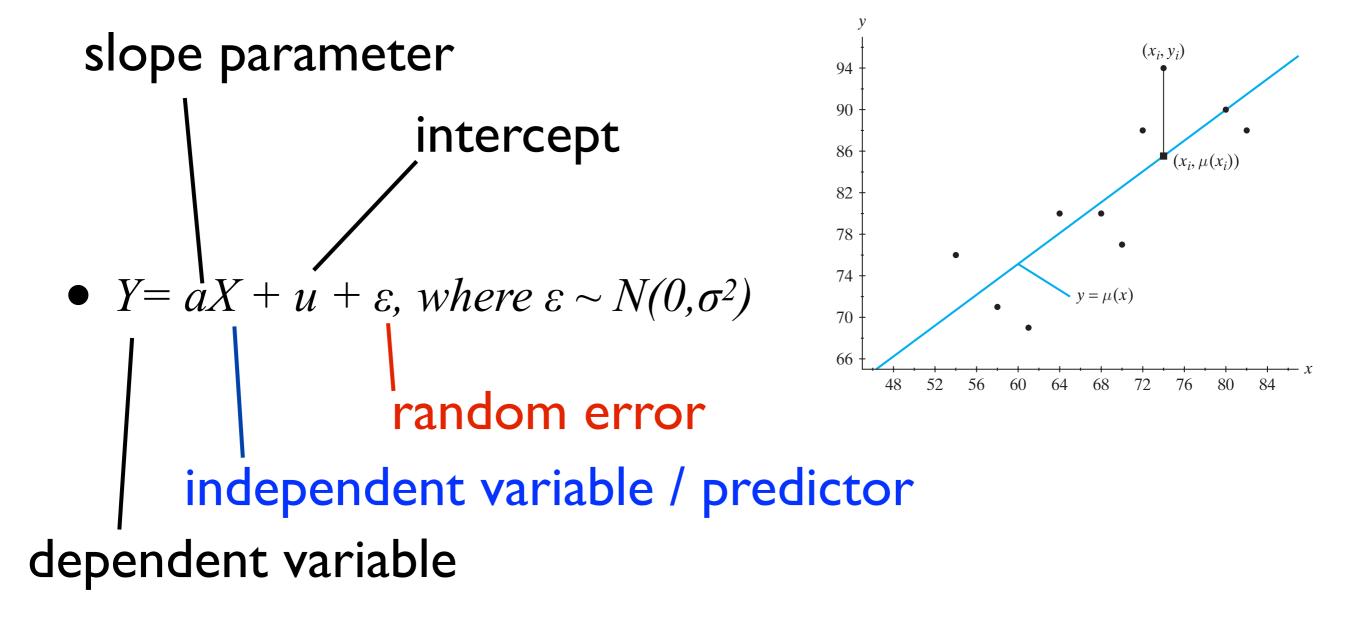
20, Female, 42, Returning, Personal, Economy, 021, 4, 0, 3, 3, 3, 3, 4, 1, 4, 3, 3, 1, 1, 3, 1, 1, Neutral or Dissatisfied 21, Female, 14, Returning, Personal, Economy, 853, 12, 1, 1, 3, 4, 3, 3, 1, 4, 3, 4, 4, 3, 3, 4, 2, Neutral or Dissatisfied 22, Female, 70, Returning, Personal, Economy, 853, 0, 0, 4, 1, 4, 4, 2, 1, 4, 1, 4, 2, 1, 1, 1, 1, Neutral or Dissatisfied 23, Female, 56, Returning, Personal, Economy, 821, 0, 0, 4, 3, 4, 4, 3, 5, 3, 3, 4, 3, 5, 4, 5, 5, Neutral or Dissatisfied

Linear Regression

- How to find the regression line $\hat{y}=\alpha x + \underline{c}$ from data points $(x_1, y_1), \dots, (x_n, y_n)$?
- To explain/predict *Y* with *X*
- Probabilisitic model: $Y = aX + u + \varepsilon$
- Y: dependent variable; X: explanatory / independent variable.

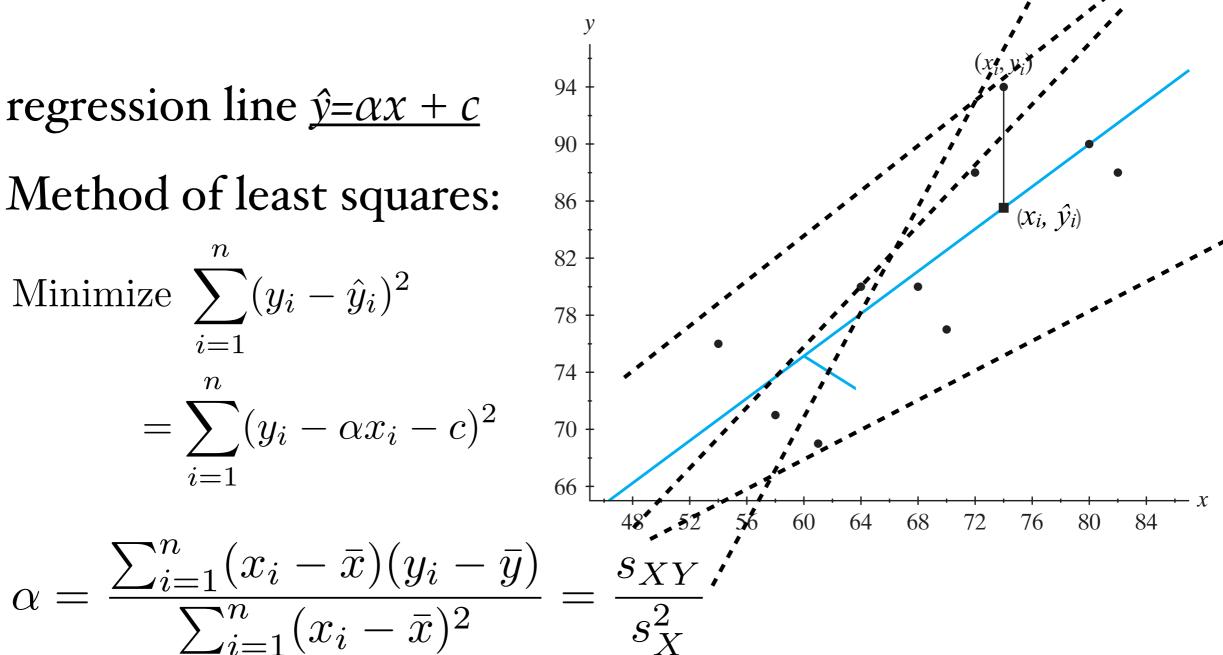


Linear Regression: Terminology



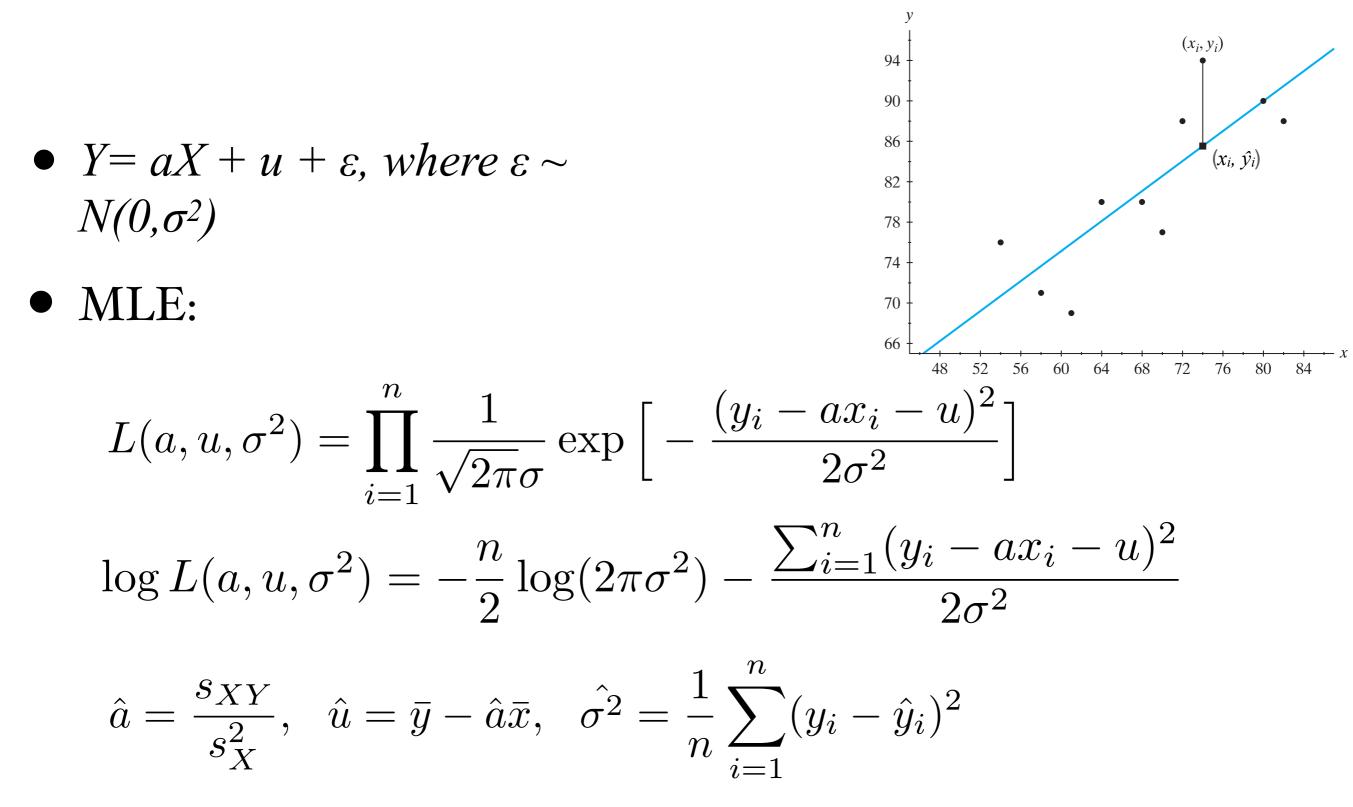
Linear Regression: Least Squares

- regression line $\hat{y} = \alpha x + c$
- Method of least squares:
 - Minimize $\sum (y_i \hat{y}_i)^2$ i=1 $=\sum (y_i - \alpha x_i - c)^2$ i-1

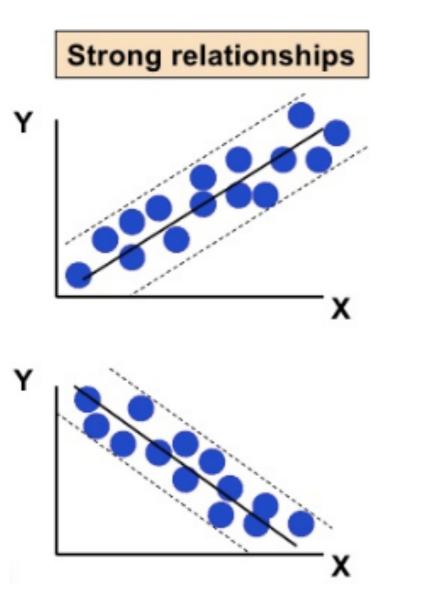


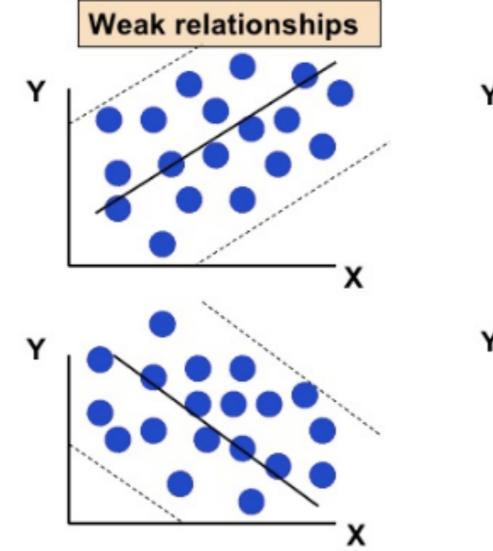
 $c = \bar{y} - \alpha \bar{x}$

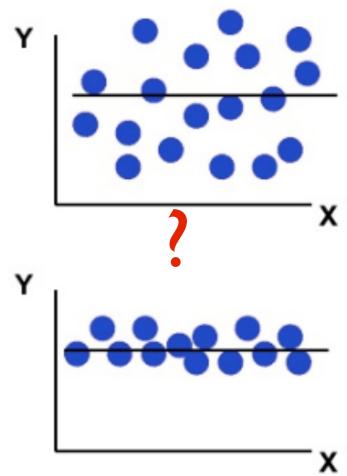
Linear Regression: MLE



Linear Regression: Strong/ Weak Relations





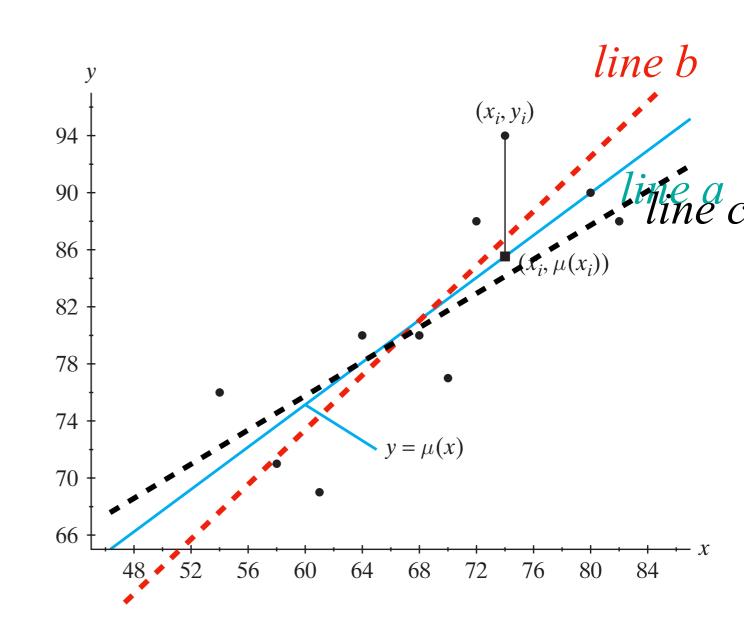


Linear Regression: The Two Directions

- Data generated by Y= $aX + u + \varepsilon$, where $\varepsilon \sim N(0, \sigma^2)$
- Regression line in the reverse direction:

 $\hat{x} = \beta y + c_2$

• Consider different situations...



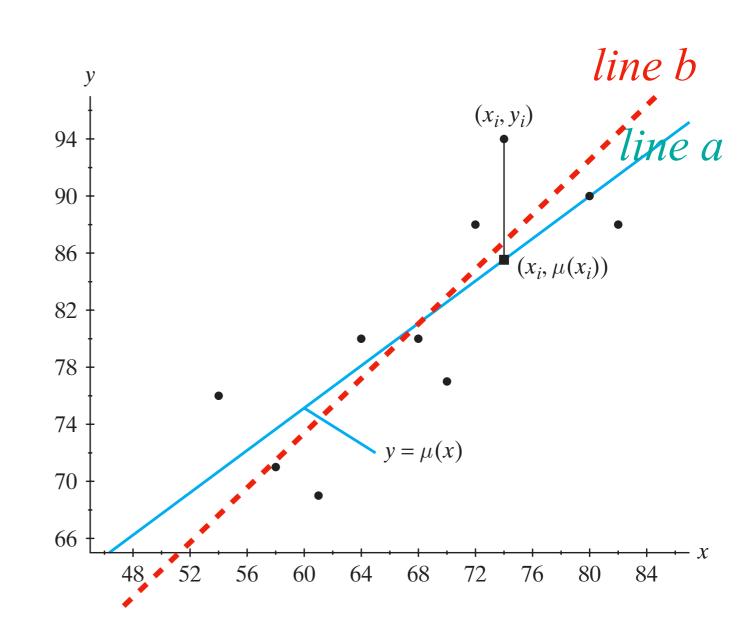
Question: 1. Interpretation of the parameter. 2. Are the regression lines from X to Y and from Y to X identical?

Linear Regression: The Two Directions

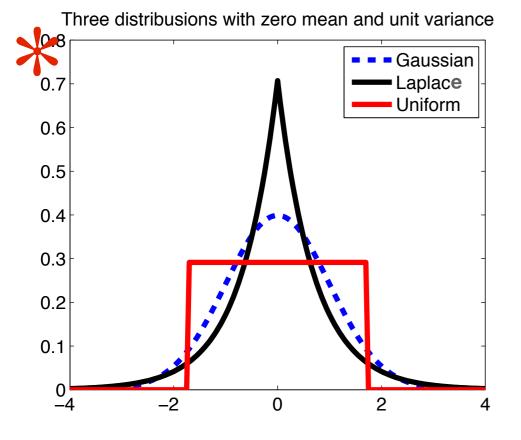
- Data generated by Y= $aX + u + \varepsilon$, where $\varepsilon \sim N(0, \sigma^2)$
- Regression line in the reverse direction:

 $\hat{x} = \beta y + c_2$

Consider different situations...

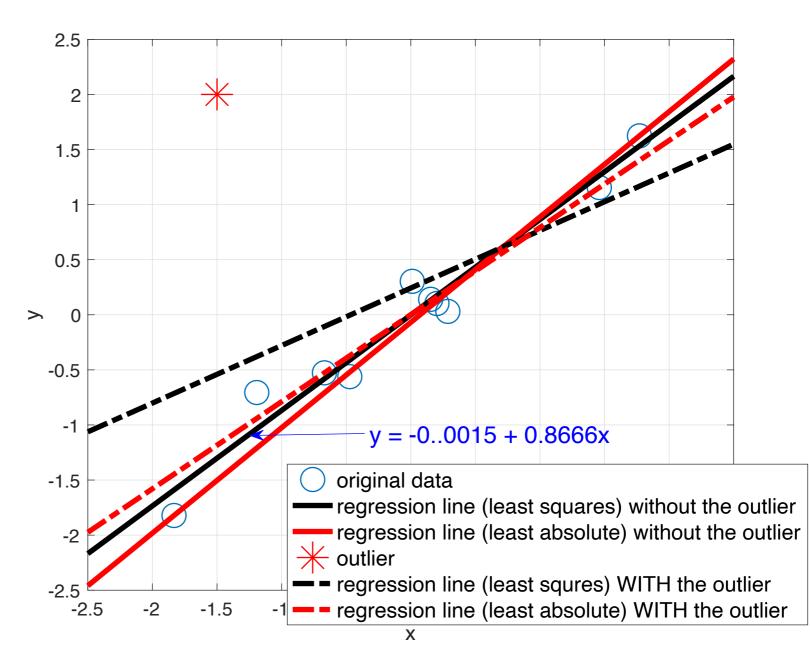


Question: 1. Interpretation of the parameter. 2. Are the regression lines from X to Y and from Y to X identical?



- What if we use other distributions for the error in regression?
 - Laplace distribution?
 - What will you minimize?

With Different Noise Distributions



Supervised Learning: An Example

The Boston Housing Dataset

A Dataset derived from information collected by the U.S. Census Service concerning housing in the area of Boston Mass.

Delve

This dataset contains information collected by the U.S Census Service concerning housing in the area of Boston Mass. It was obtained from the StatLib archive (<u>http://lib.stat.cmu.edu/datasets/boston</u>), and has been used extensively throughout the literature to benchmark algorithms. However, these comparisons were primarily done outside of **Delve** and are thus somewhat suspect. The dataset is small in size with only 506 cases.

The data was originally published by Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978.

Dataset Naming

😎 Origin

The name for this dataset is simply boston. It has two prototasks: nox, in which the nitrous oxide level is to be predicted; and price, in which the median value of a home is to be predicted

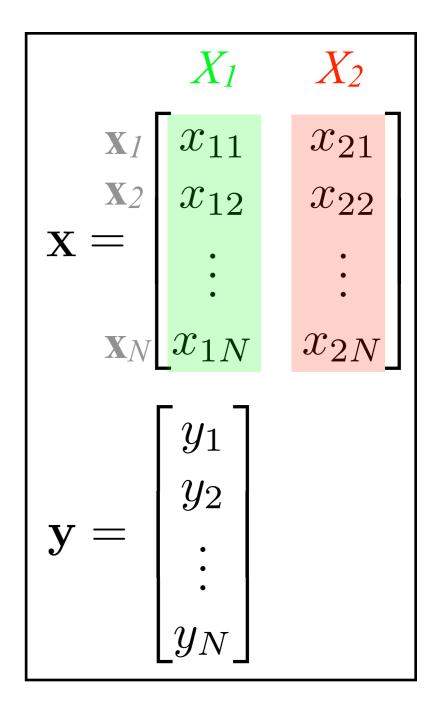
Miscellaneous Details

The prices of the house indicated by the variable MEDV is our *target variable* and the remaining are the *feature variables* based on which we will predict the value of a house.

The origin of the boston housing data is Natural .												
Usage		bles in order:										
This dataset may be used for Assessment.	CRIM	per capita crime rate by town										
Number of Cases	ZN	proportion of residential land zoned for lots over 25,000 sq.									¦q.ft.	
The dataset contains a total of 506 cases.	INDUS							per town				
	CHAS	Charles River dummy variable (= 1 if tract bounds river; 0 otherw										
► Order	NOX	nitric oxides concentration (parts per 10 million)										
The order of the cases is mysterious .	RM	average number of rooms per dwelling										
Variables	AGE	proportion of owner-occupied units built prior to 1940								40		
There are 14 attributes in each case of the dataset. They are:	DIS	weighted distances to five Boston employment centres										
1. CRIM - per capita crime rate by town	RAD	index of accessibility to radial highways										
2. ZN - proportion of residential land zoned for lots over 25,000 sq.ft.	TAX	full-value property-tax rate per \$10,000										
3. INDUS - proportion of non-retail business acres per town.	PTRATIO											
4. CHAS - Charles River dummy variable (1 if tract bounds river; 0 otherwise)	В	1000(Bk - 0.63) ² where Bk is the proportion of blacks by town										
5. NOX - nitric oxides concentration (parts per 10 million)	LSTAT											
6. RM - average number of rooms per dwelling	MEDV											
7. AGE - proportion of owner-occupied units built prior to 1940								,				
8. DIS - weighted distances to five Boston employment centres	0.00632	18.00	2.310	0	0.5380	6.5750	65.20	4.0900	1	296.0	15.30	
9. RAD - index of accessibility to radial highways	396.90		24.00		0.0000	0.0700	00120	110500	-	29010	10.00	
	0.02731	0.00	7.070	0	0.4690	6.4210	78.90	4 9671	2	242.0	17.80	
10. TAX - full-value property-tax rate per \$10,000	396.90		21.60	v	0.1070	0.1210	/0./0	1.9071	-	212.0	17.00	
11. PTRATIO - pupil-teacher ratio by town	0.02729	0.00	7.070	0	0.4690	7.1850	61 10	4.9671	2	242.0	17 80	
12. B - 1000(Bk - 0.63) ^A 2 where Bk is the proportion of blacks by town	392.83	4.03	34.70	0	0.4000	/.1050	01.10	4.9071	2	242.0	17.00	
13. LSTAT - % lower status of the population	0.03237	0.00	2.180	0	0.4580	6.9980	45 90	6.0622	3	222.0	18.70	
MEDV - Median value of owner-occupied homes in \$1000's	394.63	2.94	33.40	0	0.4580	0.9900	45.80	0.0022	3	222.0	10.70	
	0.06905	2.94	2.180	0	0.4580	7 1470	E4 20	6 0622	3	222 0	18.70	
				0	0.4580	7.1470	54.20	0.0022	3	222.0	10.70	
	396.90	5.33	36.20	•	0 45 00	6 4200	E0 70	6 0622	2	222 0	10 70	
	0.02985	0.00	2.180	0	0.4580	6.4300	58.70	6.0622	3	222.0	18.70	
	394.12	5.21	28.70	•		C 0100			-		15 00	
	0.08829	12.50	7.870	0	0.5240	6.0120	66.60	5.5605	5	311.0	15.20	
	395.60	12.43	22.90	-					_			
	0.14455	12.50	7.870	0	0.5240	6.1720	96.10	5.9505	5	311.0	15.20	

Multiple Regression

- Regress Y on $X = (X_1, X_2)^T$
- $\hat{y} = \alpha_1 x_1 + \alpha_2 x_2 + c$
- What if $(x_{11}, x_{12}, \dots, x_{1N})$ and $(x_{21}, x_{22}, \dots, x_{2N})$ are linearly dependent?
- Least squares
- In matrix form

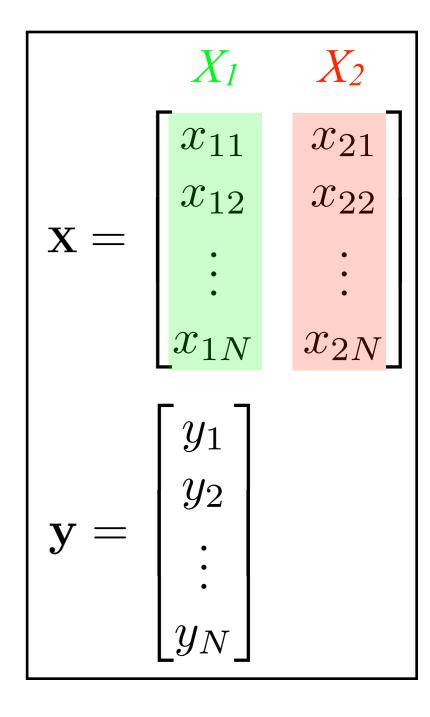


Multiple Regression

- Regress Y on $X = (X_1, X_2)^T$
- $\hat{y} = \alpha_1 x_1 + \alpha_2 x_2 + c$
- For simplicity, *assume all variables have zero mean*

Minimize
$$S_E = (\mathbf{y} - \mathbf{x}\boldsymbol{\alpha})^{\mathsf{T}}(\mathbf{y} - \mathbf{x}\boldsymbol{\alpha})$$

$$\frac{\partial S_E}{\partial \boldsymbol{\alpha}} = 2 \cdot \mathbf{x}^{\mathsf{T}} (\mathbf{y} - \mathbf{x} \boldsymbol{\alpha})$$

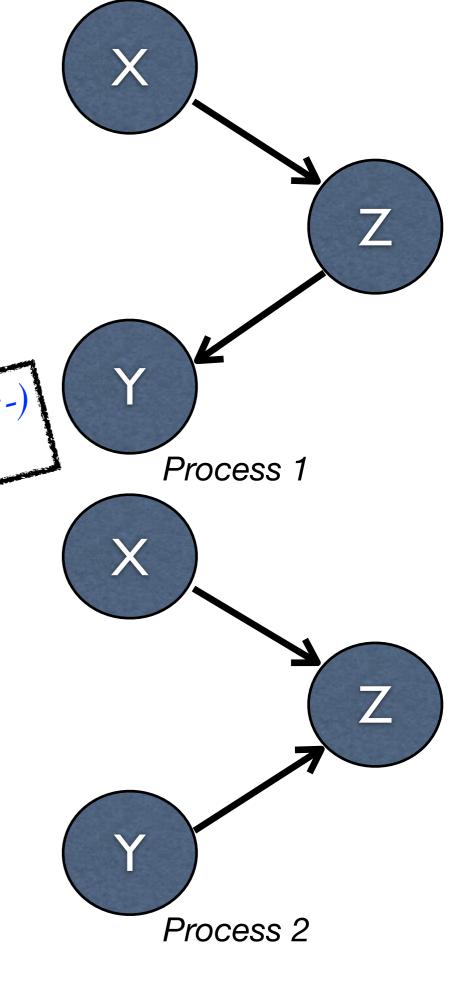


If $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ is invertible, setting $\frac{\partial S_E}{\partial \boldsymbol{\alpha}} = 0$

$$\Rightarrow \ \alpha = (\mathbf{x}^{\mathsf{T}} \mathbf{x})^{-1} (\mathbf{x}^{\mathsf{T}} \mathbf{y})$$

Simple Regression vs. Multiple Regression

- Let's do simple regression from X to Y: $\hat{y} = \alpha x + c$
- Will α be zero?
 Will α be zero?
 Independence vs. conditional independence ;-)
 Independence ;-)
- Will the coefficient of *x* be zero?



What is Next: Nonlinear Regression

Supervised Learning: An Example

The Boston Housing Dataset

A Dataset derived from information collected by the U.S. Census Service concerning housing in the area of Boston Mass.

Delve

This dataset contains information collected by the U.S Census Service concerning housing in the area of Boston Mass. It was obtained from the StatLib archive (<u>http://lib.stat.cmu.edu/datasets/boston</u>), and has been used extensively throughout the literature to benchmark algorithms. However, these comparisons were primarily done outside of **Delve** and are thus somewhat suspect. The dataset is small in size with only 506 cases.

The data was originally published by Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978.

Dataset Naming

😎 Origin

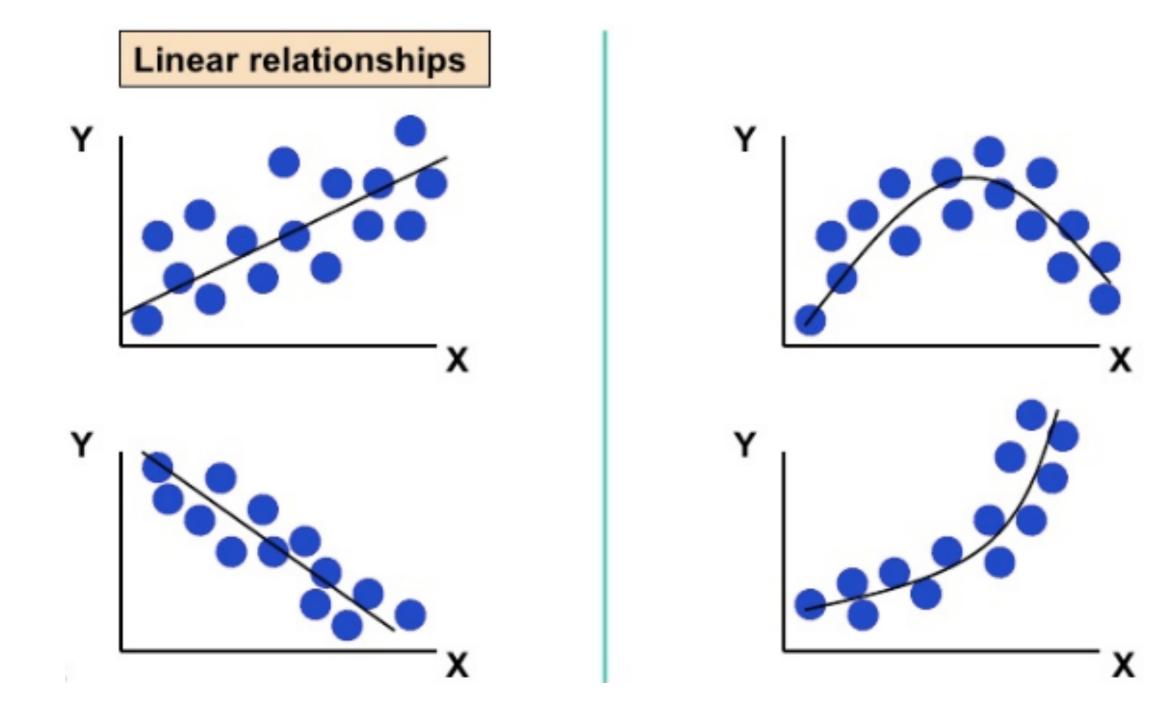
The name for this dataset is simply boston. It has two prototasks: nox, in which the nitrous oxide level is to be predicted; and price, in which the median value of a home is to be predicted

Miscellaneous Details

The prices of the house indicated by the variable MEDV is our *target variable* and the remaining are the *feature variables* based on which we will predict the value of a house.

The origin of the boston housing data is Natural .												
Usage		bles in order:										
This dataset may be used for Assessment.	CRIM	per capita crime rate by town										
Number of Cases	ZN	proportion of residential land zoned for lots over 25,000 sq.									¦q.ft.	
The dataset contains a total of 506 cases.	INDUS							per town				
	CHAS	Charles River dummy variable (= 1 if tract bounds river; 0 otherw										
► Order	NOX	nitric oxides concentration (parts per 10 million)										
The order of the cases is mysterious .	RM	average number of rooms per dwelling										
Variables	AGE	proportion of owner-occupied units built prior to 1940								40		
There are 14 attributes in each case of the dataset. They are:	DIS	weighted distances to five Boston employment centres										
1. CRIM - per capita crime rate by town	RAD	index of accessibility to radial highways										
2. ZN - proportion of residential land zoned for lots over 25,000 sq.ft.	TAX	full-value property-tax rate per \$10,000										
3. INDUS - proportion of non-retail business acres per town.	PTRATIO											
4. CHAS - Charles River dummy variable (1 if tract bounds river; 0 otherwise)	В	1000(Bk - 0.63) ² where Bk is the proportion of blacks by town										
5. NOX - nitric oxides concentration (parts per 10 million)	LSTAT											
6. RM - average number of rooms per dwelling	MEDV											
7. AGE - proportion of owner-occupied units built prior to 1940								,				
8. DIS - weighted distances to five Boston employment centres	0.00632	18.00	2.310	0	0.5380	6.5750	65.20	4.0900	1	296.0	15.30	
9. RAD - index of accessibility to radial highways	396.90		24.00		0.0000	0.0700	00120	110500	-	29010	10.00	
	0.02731	0.00	7.070	0	0.4690	6.4210	78.90	4 9671	2	242.0	17.80	
10. TAX - full-value property-tax rate per \$10,000	396.90		21.60	v	0.1070	0.1210	/0./0	1.9071	-	212.0	17.00	
11. PTRATIO - pupil-teacher ratio by town	0.02729	0.00	7.070	0	0.4690	7.1850	61 10	4.9671	2	242.0	17 80	
12. B - 1000(Bk - 0.63) ^A 2 where Bk is the proportion of blacks by town	392.83	4.03	34.70	0	0.4000	/.1050	01.10	4.9071	2	242.0	17.00	
13. LSTAT - % lower status of the population	0.03237	0.00	2.180	0	0.4580	6.9980	45 90	6.0622	3	222.0	18.70	
MEDV - Median value of owner-occupied homes in \$1000's	394.63	2.94	33.40	0	0.4580	0.9900	45.80	0.0022	3	222.0	10.70	
	0.06905	2.94	2.180	0	0.4580	7 1470	E4 20	6 0622	3	222 0	18.70	
				0	0.4580	7.1470	54.20	0.0022	3	222.0	10.70	
	396.90	5.33	36.20	•	0 45 00	6 4200	E0 70	6 0622	2	222 0	10 70	
	0.02985	0.00	2.180	0	0.4580	6.4300	58.70	6.0622	3	222.0	18.70	
	394.12	5.21	28.70	•		C 0100			-		15 00	
	0.08829	12.50	7.870	0	0.5240	6.0120	66.60	5.5605	5	311.0	15.20	
	395.60	12.43	22.90	-					_			
	0.14455	12.50	7.870	0	0.5240	6.1720	96.10	5.9505	5	311.0	15.20	

Types of Relationships

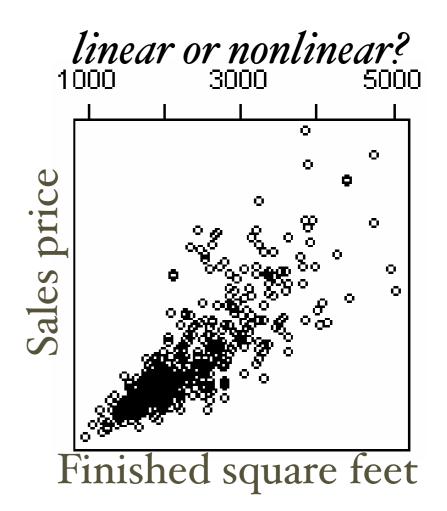


Nonlinear Relationships

• $Y = a_1 X + a_2 X^2 + \varepsilon$

• $Y = a_1 X_1 + a_2 X_1 X_2 + a_3 X_2^2 + \varepsilon$

- $Y = a_0 \exp(a_1 X + \varepsilon)$
 - What if you consider log *Y* and *X* (suppose $a_0 > 0$)?



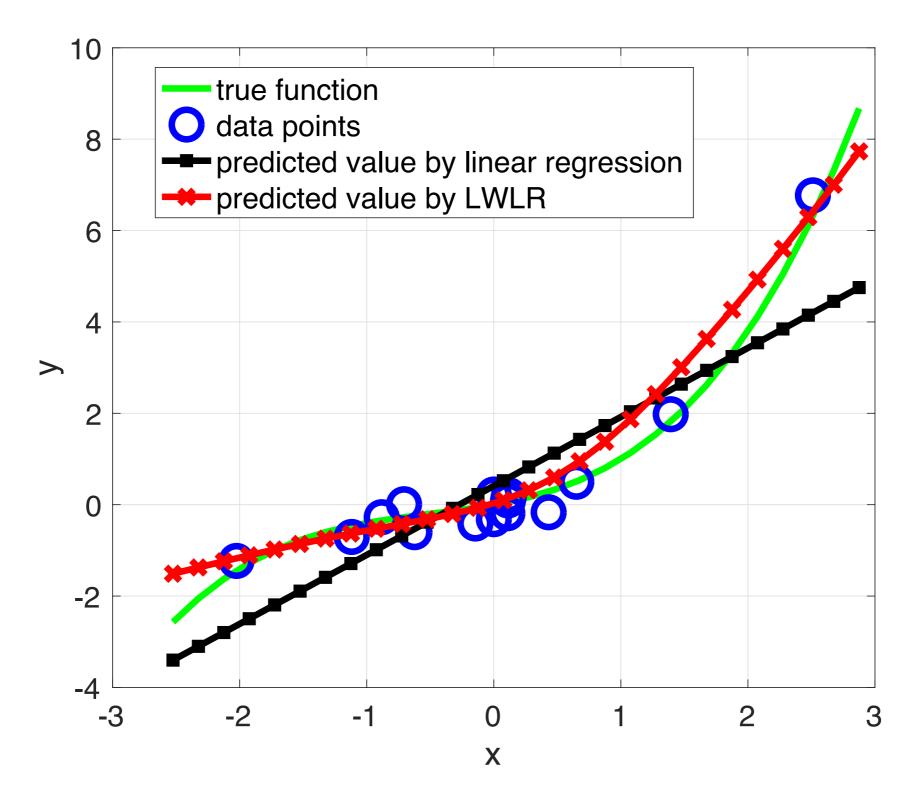
Polynomial Regression

- *m*-th order polynomial regression $\hat{y} = f(x; \boldsymbol{\alpha})$ is given by $f(x; \boldsymbol{\alpha}) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + ... + \alpha_m x^m$
- If *m* is larger than 1, it is *nonlinear* in *x*,
- but *linear* in $\boldsymbol{\alpha}$
- How to estimate **α**?

Additive Models

- More generally, predictions can be based on a linear combination of a set of basis functions {φ₁(**x**), ..., φ_m(**x**)}:
 f(**x**; α) = α₀ + α₁φ₁(**x**) + ... + α_mφ_m(**x**)
- Examples...
- How to estimate **α**?

Locally Weighted Linear Regression

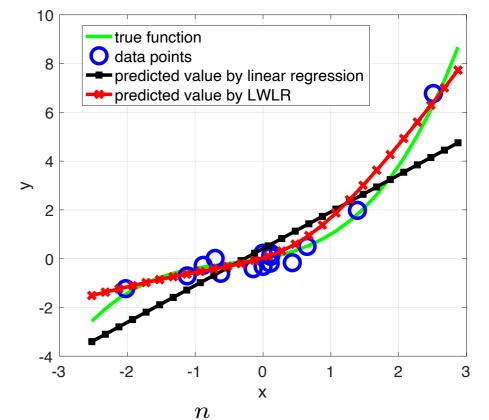


(see the demo with 'LocallyWeightedLinearRegression.m')

Locally Weighted Linear Regression

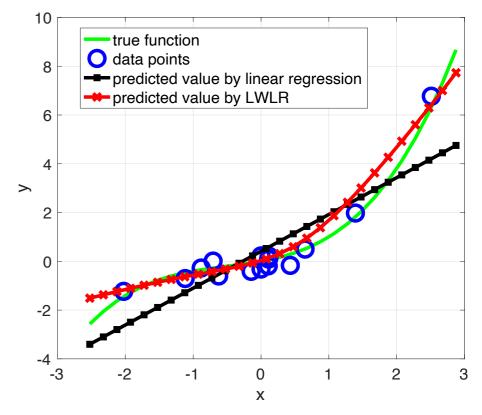
- Linear regression
 - Find parameter $\boldsymbol{\alpha}$ to minimize squared error $\sum (y_i \alpha^{\mathsf{T}} \mathbf{x}_i)^2$
 - Predicted value is $\hat{y} = \boldsymbol{\alpha}^T \mathbf{x}$
- Locally weighted linear regression
 - Find parameter $\boldsymbol{\alpha}$ to minimize weighted error $\sum_{i=1}^{n} w_i (y_i \alpha^{\mathsf{T}} \mathbf{x}_i)^2$
 - Predicted value is $\hat{y} = \boldsymbol{\alpha}^T \mathbf{x}$
 - w_i : non-negative valued weights; a typical choice is

$$w_i = e^{-\frac{||\mathbf{x}_i - \mathbf{x}||^2}{2\tau^2}}$$



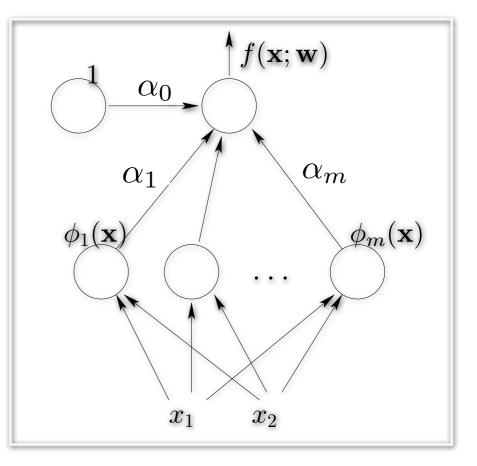
Parametric vs. Nonparametric Models

- Linear regression algorithm: *parametric*
 - has a fixed, finite number of parameters
 - Once they are learned and stored, we no longer need the training data for future predictions
- Locally weighted linear regression
 - For making prediction, we need to keep the entire training set around
 - *Nonparametric*: the amount of stuff we need to keep in order to represent the model grows with the size of the training set



With Radial Basis Functions

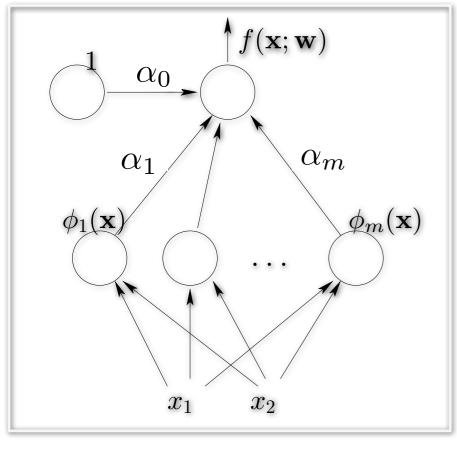
$$f(\mathbf{x}; \boldsymbol{\alpha}) = \alpha_0 + \alpha_1 \phi_1(\mathbf{x}) + \dots + \alpha_m \phi_m(\mathbf{x})$$



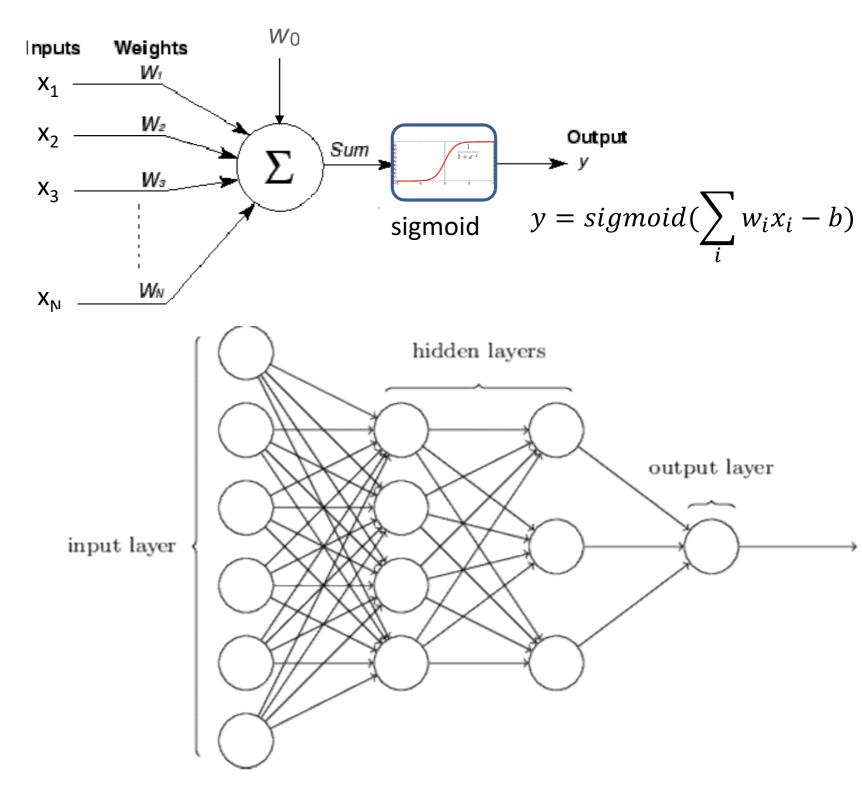
• Can also make predictions by gauging the similarity of new examples to "prototypes", with "radial basis functions" measuring the similar to a "prototype":

$$\phi_k(\mathbf{x}) = e^{-\frac{||\mathbf{x} - \mathbf{x}_k||^2}{2\tau^2}}$$

• Training data points themselves could serve as prototypes



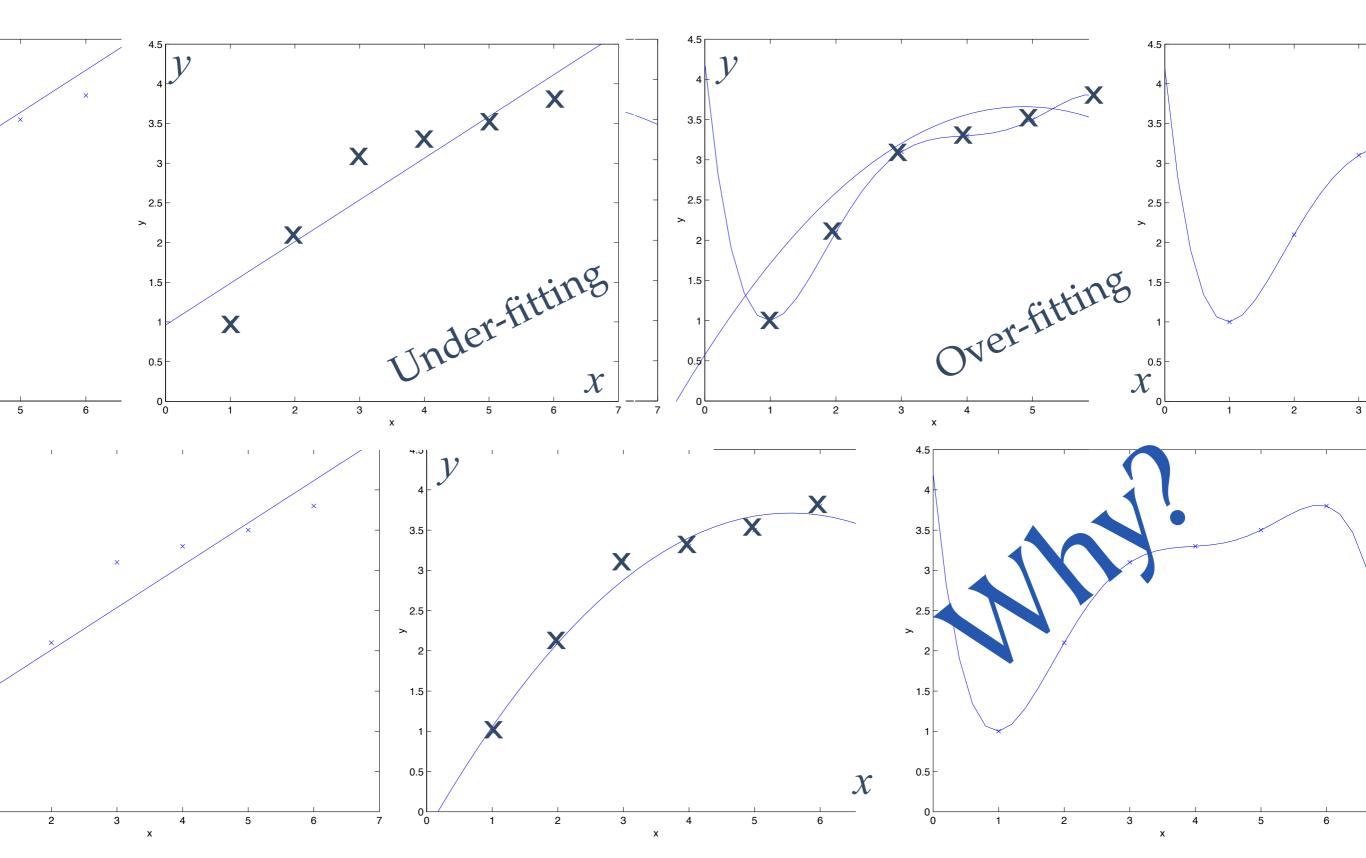
Neural Networks

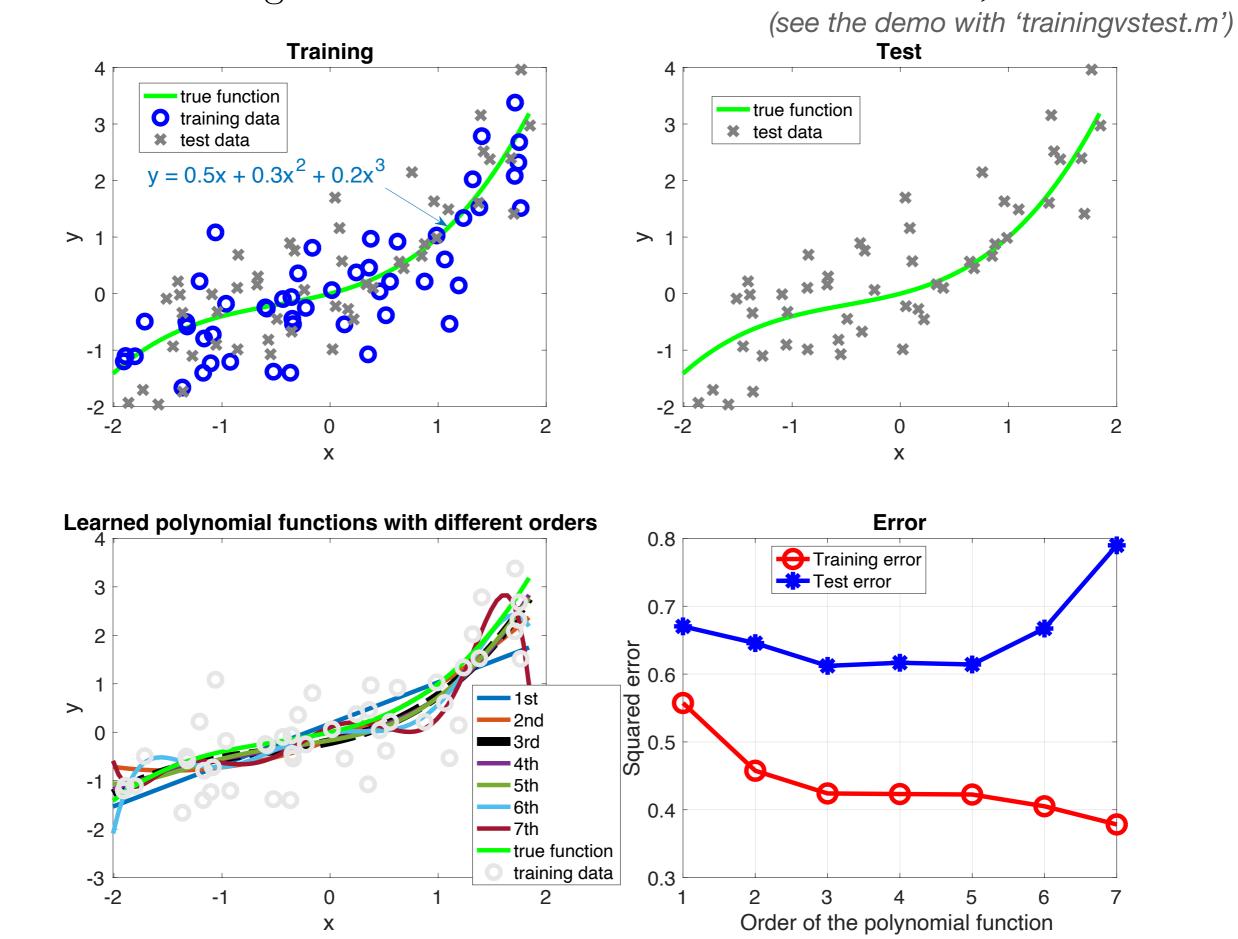


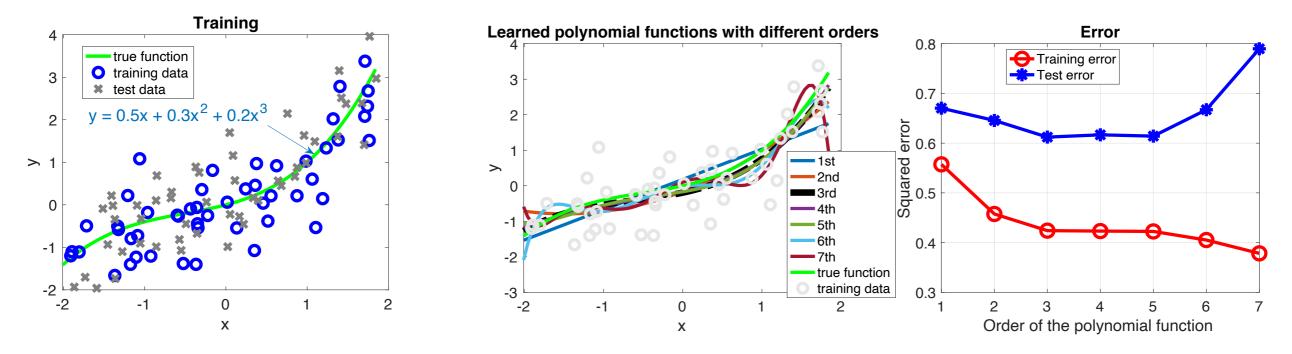
- In neural networks the basis functions then *adjus* er
 - and : **multiple layers**

Basic Ideas of Model Selection

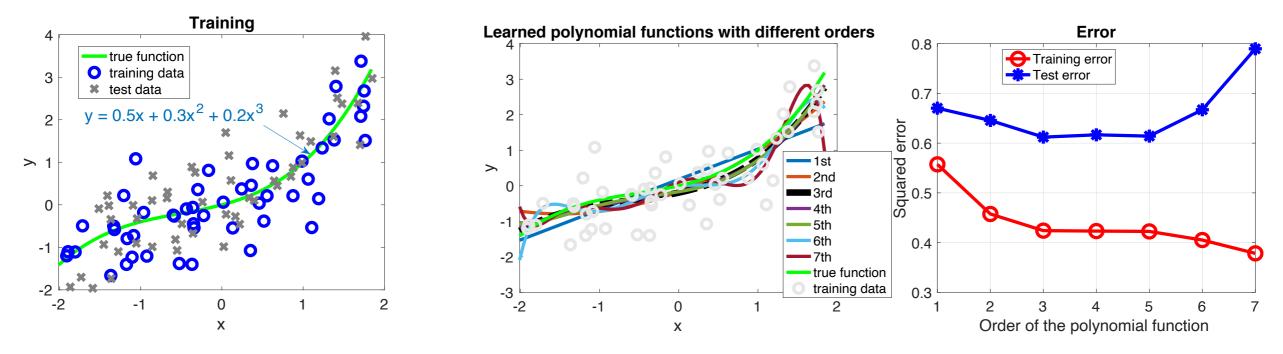
Avoiding under-fitting and over-fitting



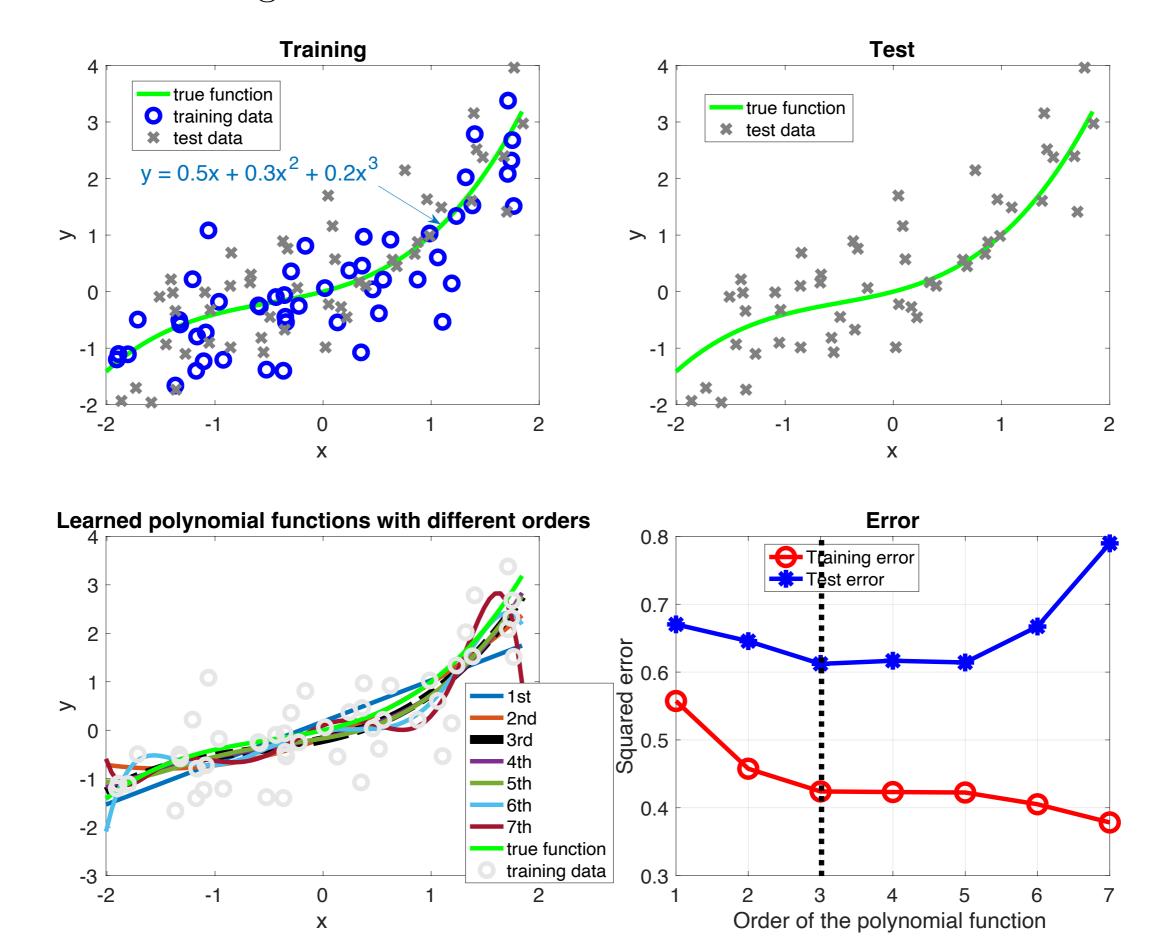




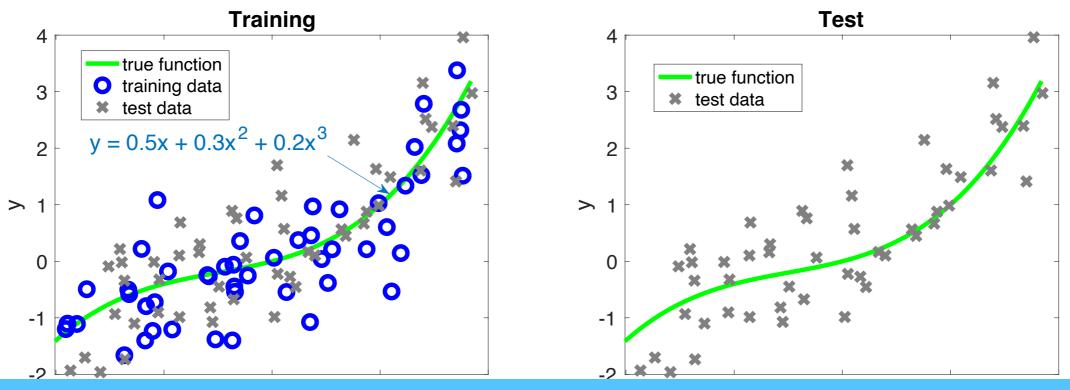
- Machine learning problems (e.g., regression) are typically ill-posed: the observed data is finite and does not uniquely determine the classification or regression function.
- In order to find a unique solution, and learn something useful, we must make assumptions
- The goal of ML is not to replicate the training data, but to predict unseen data well, i.e., to generalize well.



- The goal of ML: predict unseen data well, i.e., to generalize well
- Training error $\frac{1}{n} \sum_{i=1}^{n} (y_i f(\mathbf{x}_i, \hat{\boldsymbol{\alpha}}))^2$ vs. test error $E_{(X,Y) \sim P} (Y f(X; \hat{\boldsymbol{\alpha}}))^2$
- If the class of functions is
 - less complex: underfitting (e.g., fitting a line in the above example)
 - more complex: overfitting (e.g., fitting a 7th order polynomial)



Bias-Variance Tradeoff: A Rough Picture



Assume that data were generated according to $y = f^*(x) + \varepsilon$, where the noise ε has zero mean and variance σ^2 .

We aim to find function $\hat{y} = f(x; D)$, where D denote the training dataset, to approximate the true function $f^*(x)$. Its expected error on an unseen sample x is

$$E_D[(y - f(x; D))^2] = \left(\operatorname{Bias}_D[f(x; D)]\right)^2 + \operatorname{Var}[f(x; D)] + \sigma^2,$$

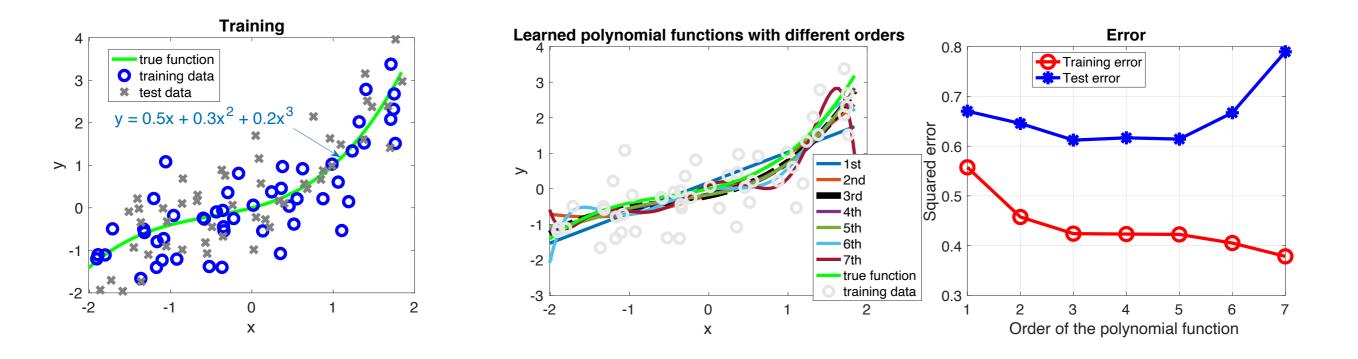
where

Bias_D[
$$f(x; D)$$
] = $E_D[f(x; D)] - f^*(x)$,

and

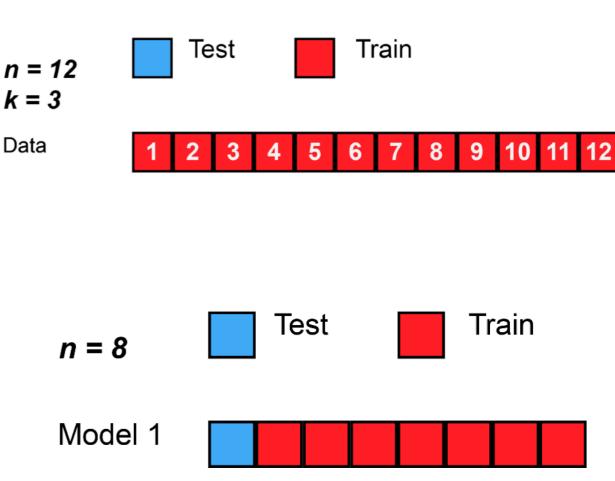
$$\operatorname{Var}[f(x;D)] = E_D\left[\left(f(x;D) - E_D[f(x;D)]\right)^2\right]$$

Model Selection

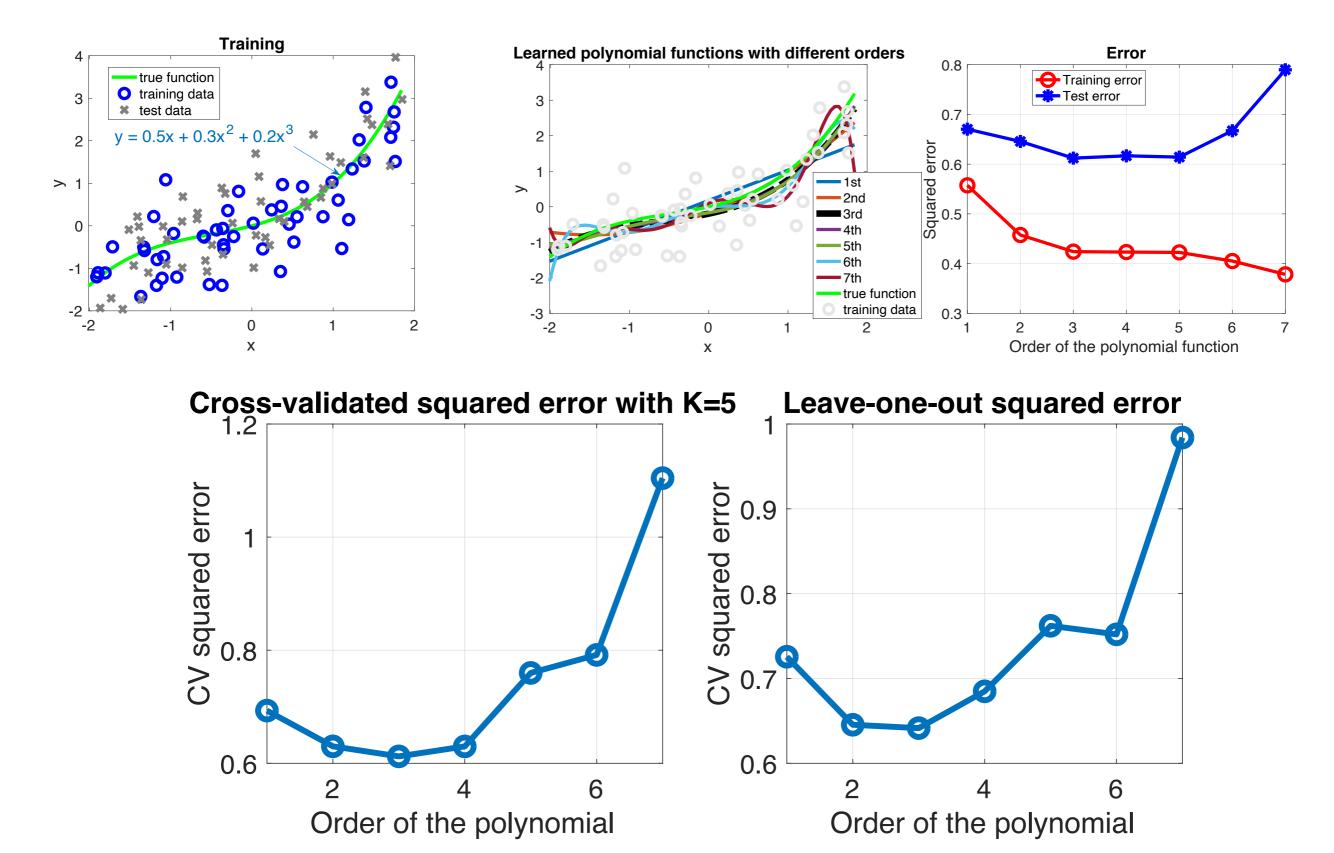


- *Cross validation* allows us to estimate the generalization error based on training examples alone...
- *Information Criterion* takes into account by the training error and the model complexity...

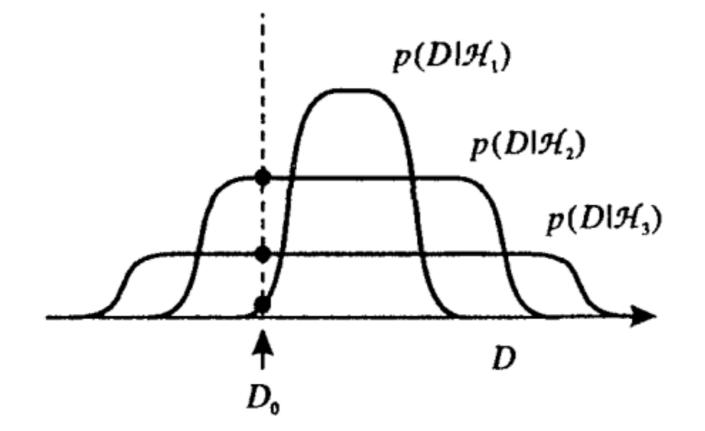
- *Cross validation* allows us to estimate the generalization error based on training examples alone
- *k*-fold cross validation
- Leave-one-out cross-validation treats each training example in turn as a test example (k=n).



Cross Validation: Illustration



Complex Models Not Necessarily Good



Schematic example of three models, \mathcal{H}_1 , \mathcal{H}_2 and \mathcal{H}_3 , which have successively greater complexity, showing the probability (known as the *evidence*) of different data sets D given each model \mathcal{H}_i . We see that more complex models can describe a greater range of data sets. Note, however, that the distributions are normalized. Thus, when a particular data set D_0 is observed, the model \mathcal{H}_2 has a greater evidence than either the simpler model \mathcal{H}_1 or the more complex model \mathcal{H}_3 .

Bayesian Information Criterion (BIC)

• *Cross validation* also known as the Schwarz Criterion after Gideon Schwarz (1978)

Let M_j denote the model of *j*th polynomial. The posterior of the model is

 $P(M_j | \text{Data}) \propto p(\text{Data} | M_j) P(M_j).$

Suppose all candidate models are equally likely, then maximizing the posterior probability of a model given the data is the same as maximizing the 'marginal' likelihood:

$$p(\text{Data} \mid M_j) = \int p(\text{Data} \mid \boldsymbol{\alpha}_j, M_j) p_0(\boldsymbol{\alpha}_j \mid M_j) d\boldsymbol{\alpha}_j = \int L(\boldsymbol{\alpha}_j \mid \text{Data}) p_0(\boldsymbol{\alpha}_j \mid M_j) d\boldsymbol{\alpha}_j.$$

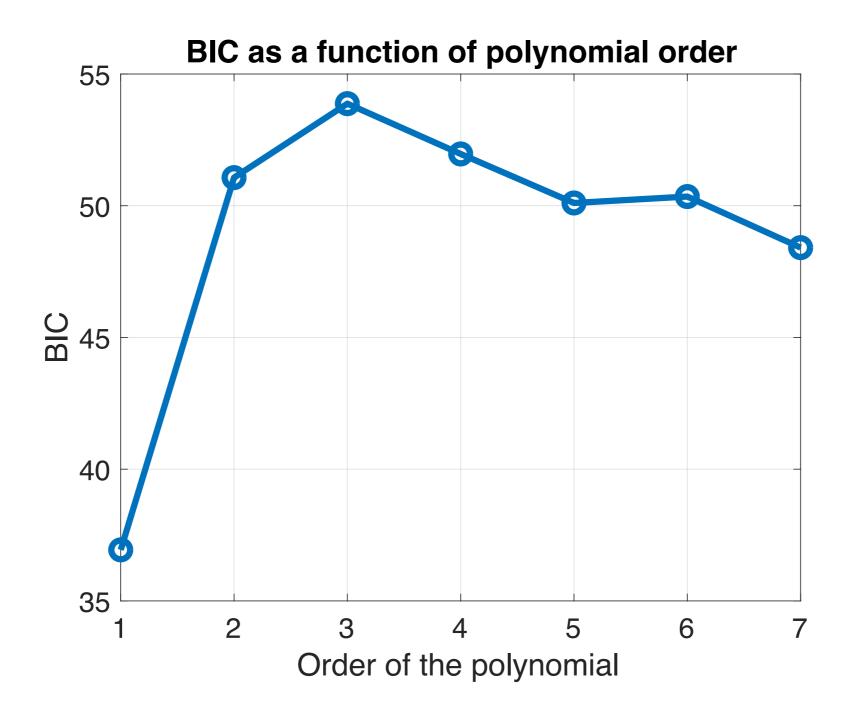
Further use an uninformative, flat prior $p_0(\alpha_j)$, and then

$$\log p(\text{Data} | M_j) \approx \log L(\hat{\boldsymbol{\alpha}}_j | \text{Data}) - \frac{d_j}{2} \log n, + O\boldsymbol{\Gamma} -$$

where $\hat{\alpha}_j$ is the maximum likelihood estimator and d_j is the number of free parameters in M_j .

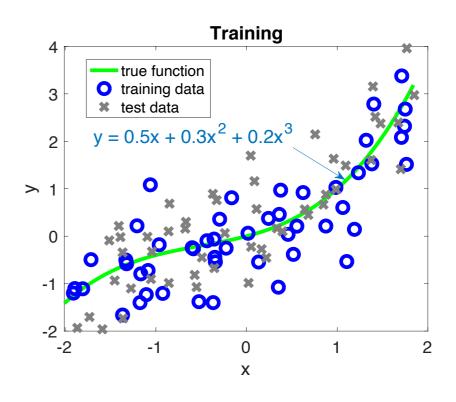
Bayesian Information Criterion (BIC)

$$\log p(\text{Data} | M_j) \approx \log L(\hat{\boldsymbol{\alpha}}_j | \text{Data}) - \frac{d_j}{2} \log n$$



Summary: Basic Ideas of Model Selection

- Why prefer simple models?
- How simple is simple enough?
- The simplest model and the most probable model
 - Help find causal model?
- Methods for model selection
 - Cross validation
 - Information criteria



Supervised Learning: Examples

- Regression: the target variable to be predicted is continuous
 - Predict the price of a car from its mileage.
 - Navigating a car: angle of the steering.
- Classification:
 - Face recognition (difficult because of the complex variability in the data: pose and illumination in a face image, occlusions, glasses/beard/make-up/etc.)

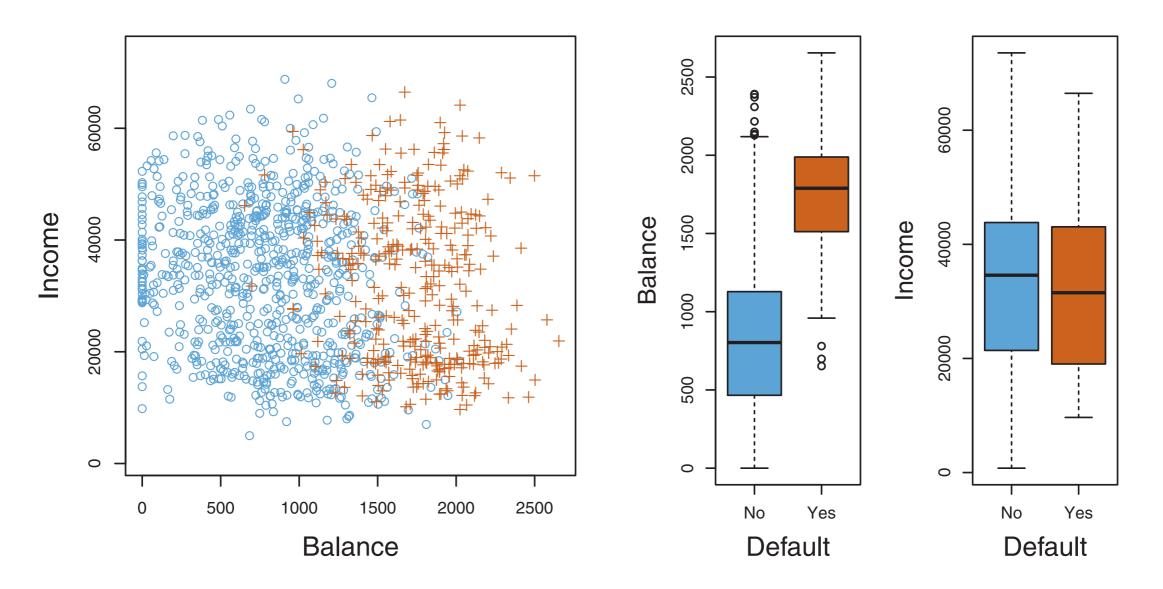
Training

- Optical character recognition
- Medical diagnosis

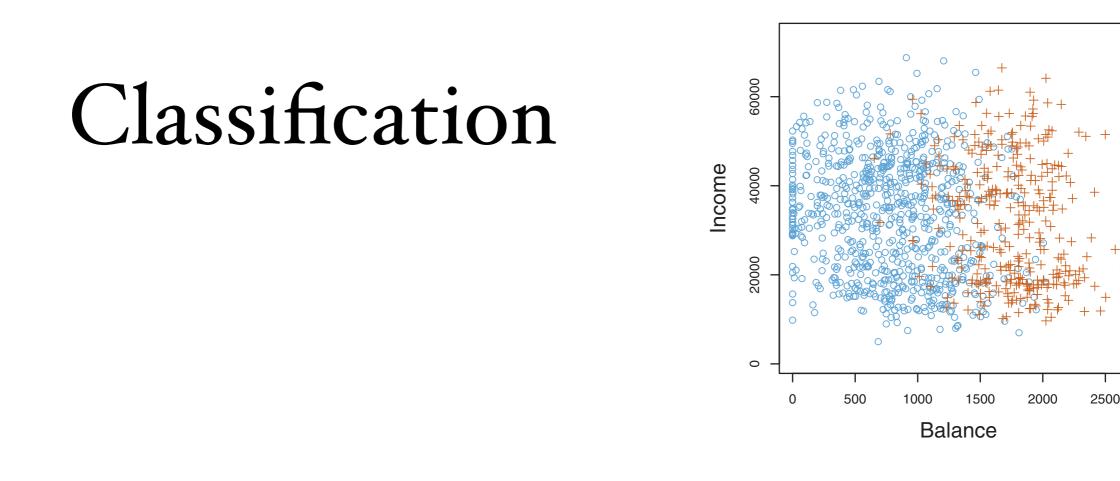
0123456789

0123456789

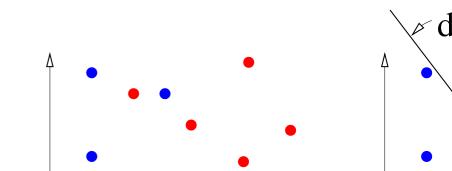
Classification: Example

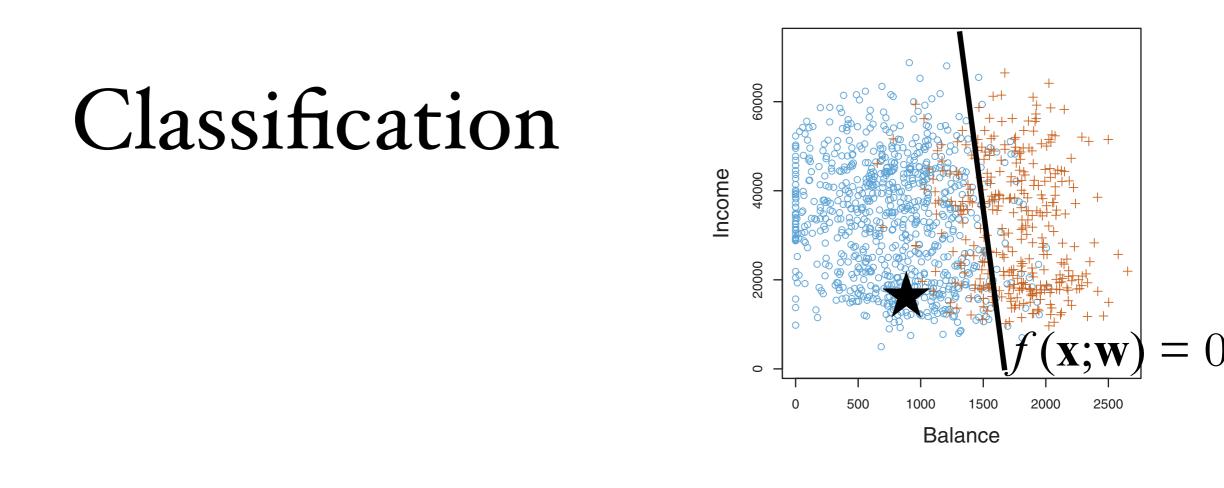


The Default data set. Left: The annual incomes and monthly credit card balances of a number of individuals. The individuals who defaulted on their credit card payments are shown in orange, and those who did not are shown in blue. Center: Boxplots of balance as a function of default status. Right: Boxplots of income as a function of default status.



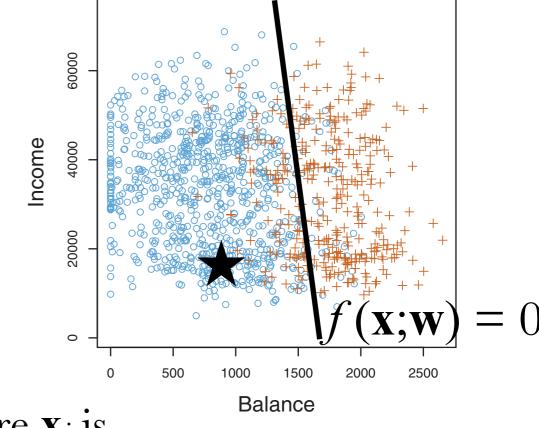
- We are given a training set of labeled examples (positive and negative) and want to learn a classifier that we can use to predict *unseen* examples, or to understand the data.
- Training set: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, where \mathbf{x}_i is the *i*th input vector and $y_i \in \{0,1\}$ its class label.



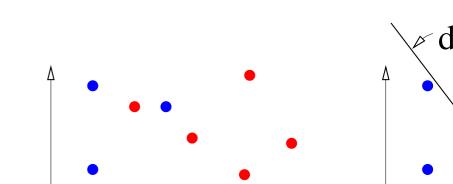


- We are given a training set of labeled examples (positive and negative) and want to learn a classifier that we can use to predict *unseen* examples, or to understand the data.
- Training set: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, where \mathbf{x}_i is the *i*th input vector and $y_i \in \{0,1\}$ its class label.
- How? A natural way is to find a decision boundary! $f(\mathbf{x};\mathbf{w}) = \emptyset$

Classification with Linear Regression?

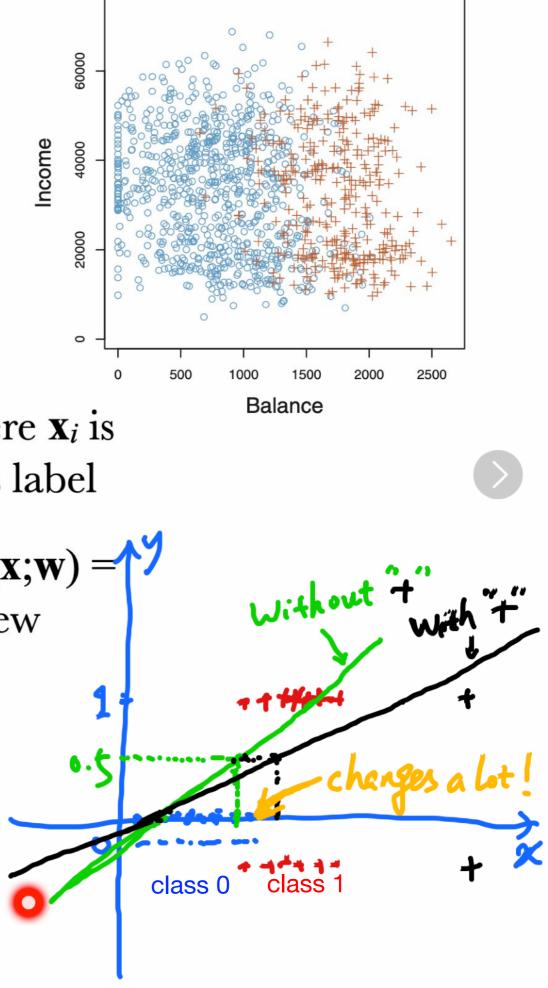


- We have training set: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, where \mathbf{x}_i is the *i*th input vector and $y_i \in \{0,1\}$ its class label
- How about using linear regression? $\hat{y} = l(\mathbf{x}; \mathbf{w}) = \mathbf{w}_0 + \mathbf{w}_1^T \mathbf{x}$ for prediction then classify a new (test) example according to
 - label = 1 if *l*(**x**;**w**)>0.5, and label = 0 otherwise
- Not a good idea... See why...



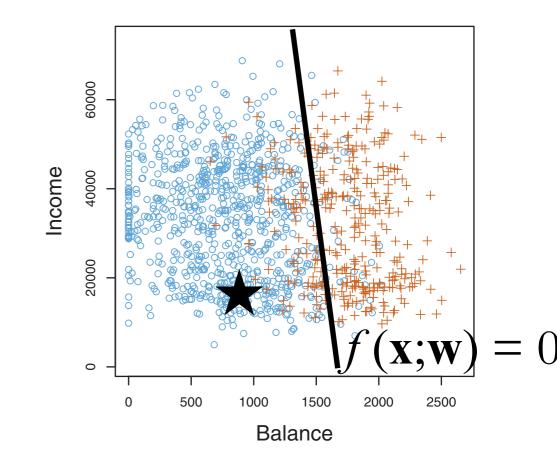
Classification with Linear Regression?

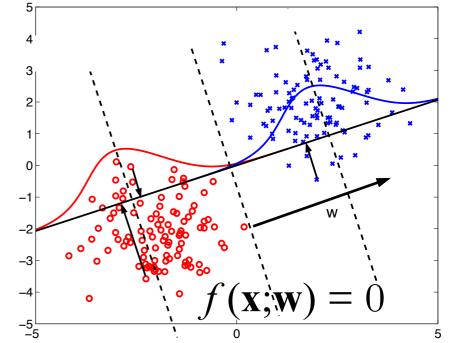
- We have training set: $\{(\mathbf{x}_i, y_i)\}_{i=1}^n$, where \mathbf{x}_i is • the *i*th input vector and $y_i \in \{0,1\}$ its class label
- How about using linear regression? $\hat{y} = l(\mathbf{x}; \mathbf{w}) = \mathbf{w}_0 + \mathbf{w}_1^T \mathbf{x}$ for prediction then classify a new (test) example according to
 - label = 1 if *l*(**x**;**w**)>0.5, and label = 0 otherwise
- Not a good idea... See why...

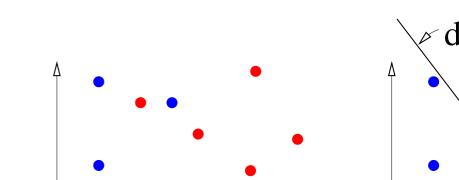


Projections of the Data

- A linear function $f(\mathbf{x};\mathbf{w}) = \mathbf{w}_0 + \mathbf{w}_1^T \mathbf{x}$ projects each point $\mathbf{x} = (x_1, x_2)^T$ to a line parallel to \mathbf{w}_1 .
- Let's see how well the projected points, determined by **w**₁, are separated across the classes.

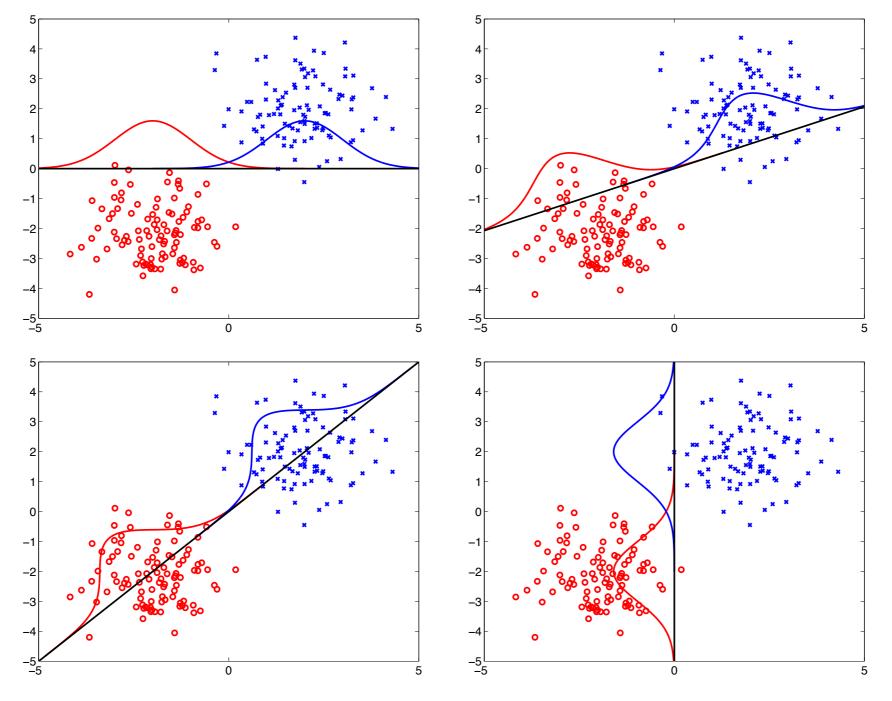






Effect of Different Projects

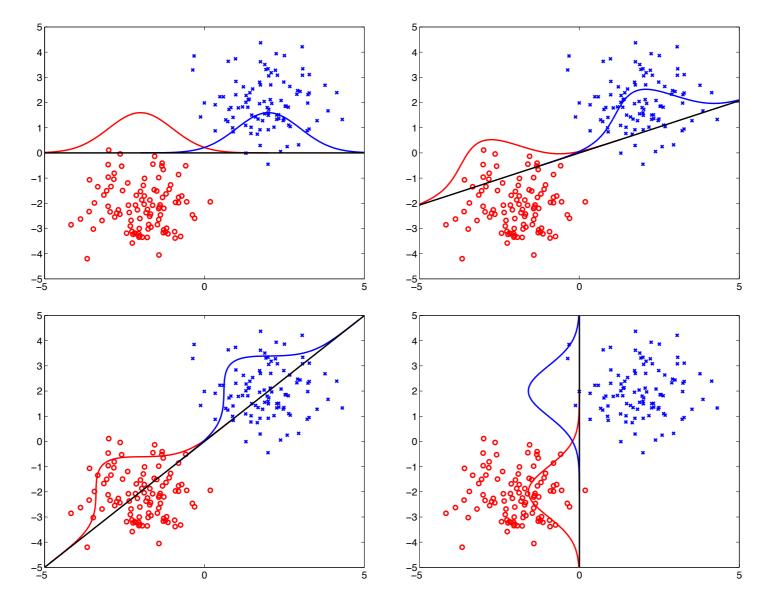
• With different **w**₁:



(Partly adapted from Tommi Jaakkola's slides)

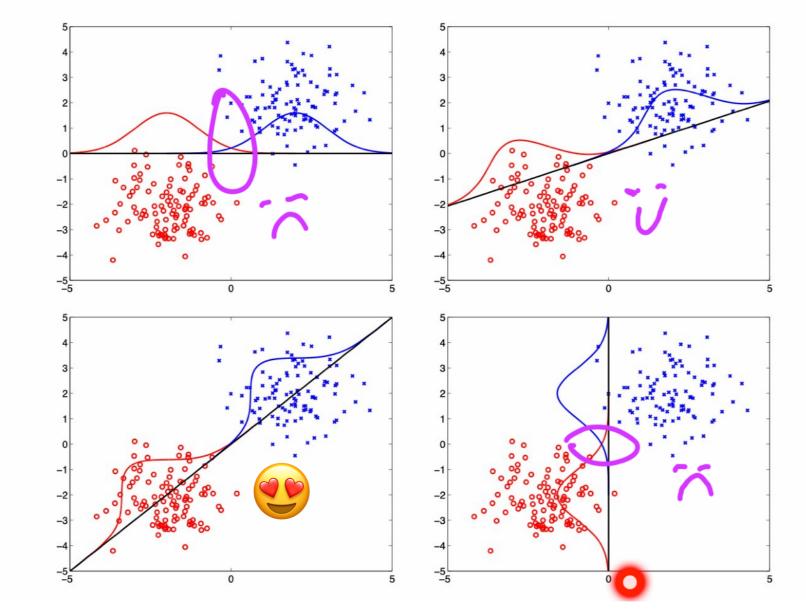
Finding the Optimal Projection

- Find \mathbf{w}_1 to maximize the "separation" of the projected points across classes
- Quantify the separation (overlap) in terms of means and variances of the resulting 1-dimensional class distributions

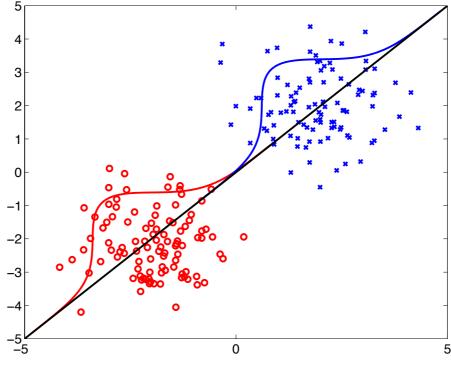


Finding the Optimal Projection

- Find \mathbf{w}_1 to maximize the "separation" of the projected points across classes
- Quantify the separation (overlap) in terms of means and variances of the resulting 1-dimensional class distributions

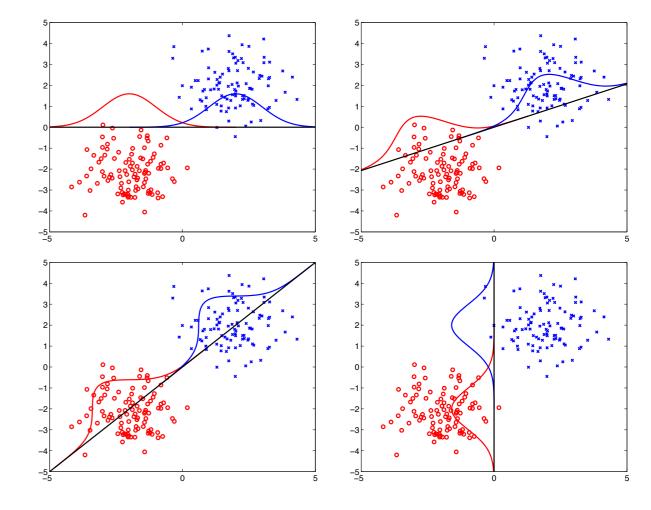


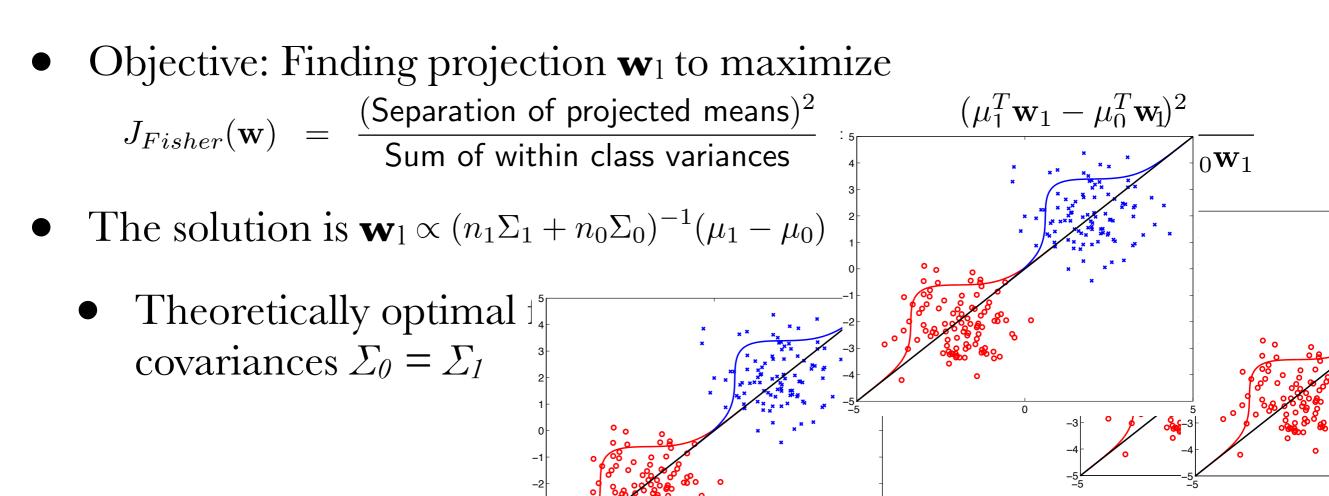
Before & After the Projection



- For original **x** (*d*-dimensional):
 - class 0: n_0 samples, mean μ_0 , covariance Σ_0
 - class 1: n_1 samples, mean μ_1 , covariance Σ_1
- Projected class descriptions (1-dimension):
 - class 0: n_0 samples, mean $\mathbf{w}_1^T \mu_0$, variance $\mathbf{w}_1^T \Sigma_0 \mathbf{w}_1$
 - class 1: n_1 samples, mean $\mathbf{w}_1^T \mu_1$, variance $\mathbf{w}_1^T \Sigma_1 \mathbf{w}_1$

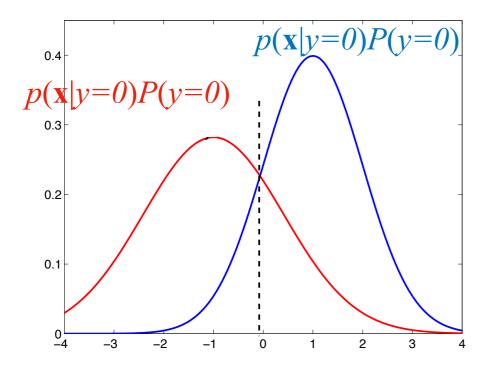
Fisher Linear Discriminant





Simple Decision Theory

- Suppose we know the class-conditional densities $p(\mathbf{x}|y)$ for y = 0, 1 as well as the overall class frequencies P(y).
- How do we decide which class a new example **x**^{new} belongs to in order to minimize the overall probability of error?



The minimum probability of error decisions are given by

$$y^{new} = \arg \max_{y=0,1} P(y|\mathbf{x}^{new})$$
$$= \arg \max_{y=0,1} \{p(\mathbf{x}^{new}|y)P(y)\}$$

Known as Bayes classifier.

Logistic Regression

• For binary classification problems, we can write these decisions as

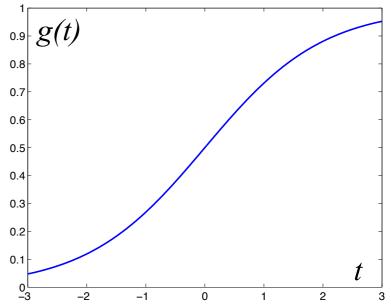
$$y = 1$$
 if $\log \frac{P(y=1 \mid \mathbf{x})}{P(y=0 \mid \mathbf{x})} > 0$, and $y = 0$ otherwise.

• We generally don't know P(y|x), but we can parametrize the log-odds with a liner function:

$$\log \frac{P(y=1 \mid \mathbf{x})}{P(y=0 \mid \mathbf{x})} = f(\mathbf{x}; \mathbf{w}) = w_0 + \mathbf{w}_1^\mathsf{T} \mathbf{x}.$$

• It gives rise to the logistic model

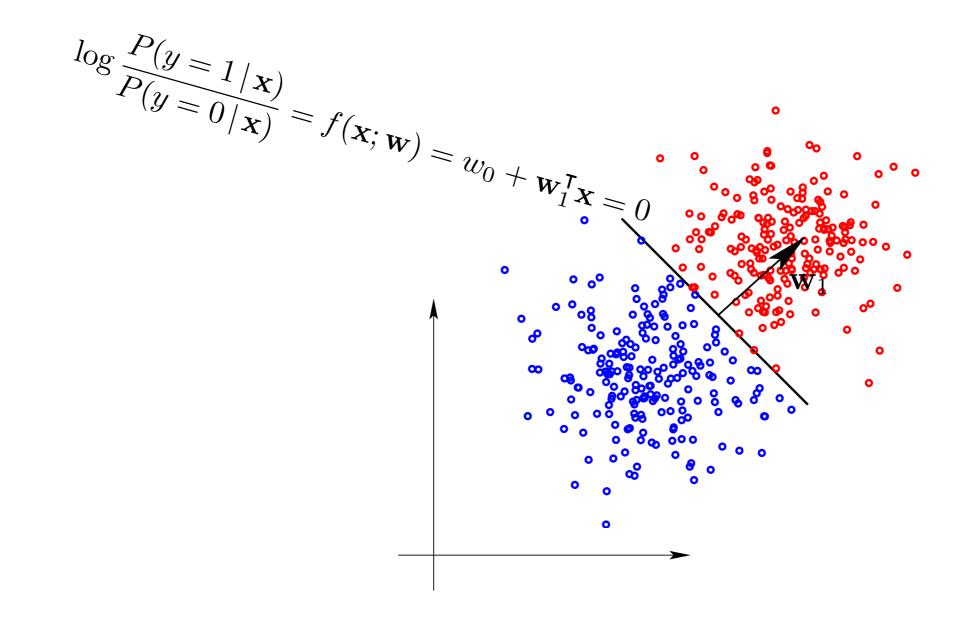
 $P(y = 1 | \mathbf{x}) = g(w_0 + \mathbf{w}_1^\mathsf{T} \mathbf{x}),$ where $g(t) = \frac{1}{1+e^{-t}}$ is a logistic "squashing function" that turns linear functions into probabilities.



Logistic Regression for Classification: Illustration

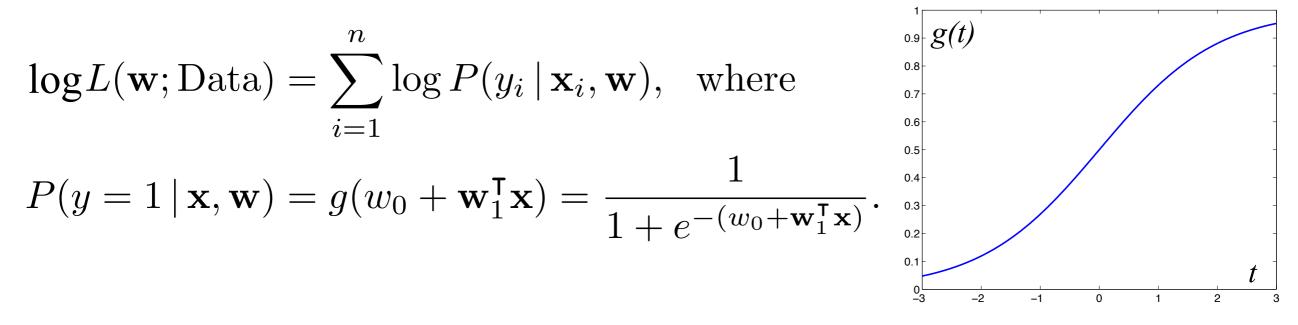
• For binary classification problems, we can write these decisions as

y = 1 if $\log \frac{P(y=1 \mid \mathbf{x})}{P(y=0 \mid \mathbf{x})} > 0$, and y = 0 otherwise.



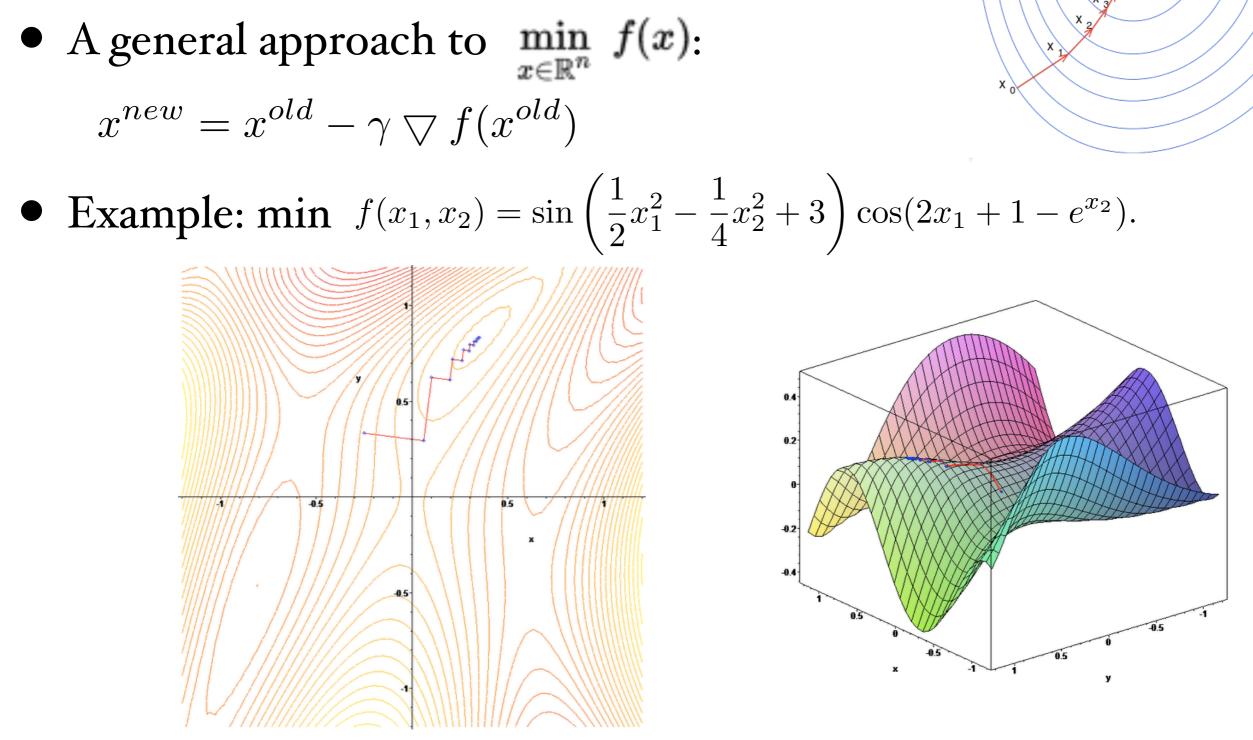
Parameter Estimation for Logistic Regression

• As with regression models, we can fit the logistic models using maximum (conditional) log-likelihood:



- No closed-form solution (like optimization of parameters in neural networks—remember?)
- By gradient-based method (or more advanced numerical methods)

Elementary Optimization: Gradient Method



A nice demo is given on https://www.benfrederickson.com/numerical-optimization/

Logistic Regression: Example

	Concentration of anesthetic													
	0.8	1	1.2	1.4	1.6	2.5								
Move	6	4	2	2	0	0								
Still	1	1	4	4	4	2								
Total	7	5	6	6	4	2								
Prop.	0.17	0.2	0.67	0.67	1	1								

- Maximize the Likelihood function
- Fitted model:

$$P(y = 1 \mid x) = \frac{1}{1 + e^{-(-6.47 + 5.57x)}}.$$

Extended Logistic Regression

• As with regression models, we can fit the logistic models using maximum (conditional) log-likelihood:

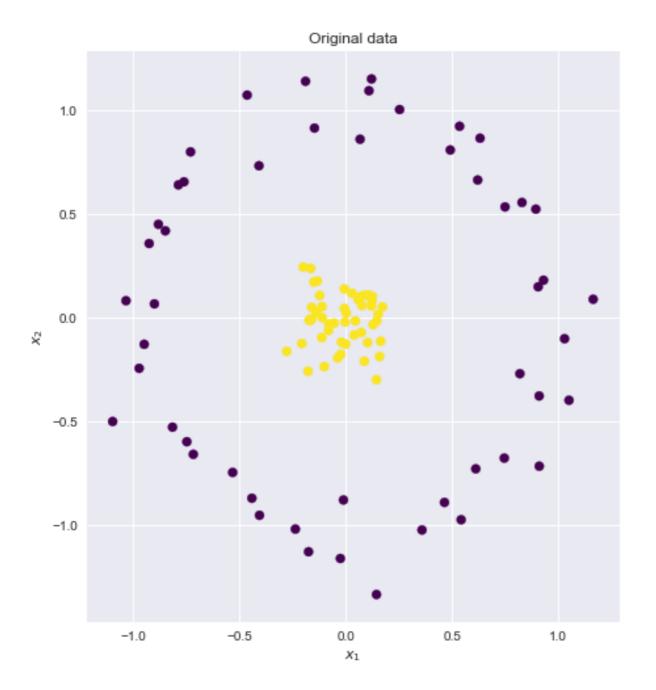
$$L(\mathbf{w}; \text{Data}) = \sum_{i=1}^{n} \log P(y_i | \mathbf{x}_i, \mathbf{w}), \text{ where }$$

$$P(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + \mathbf{w}_1^\mathsf{T} \mathbf{x}) = \frac{1}{1 + e^{-(w_0 + \mathbf{w}_1^\mathsf{T} \mathbf{x})}}.$$

For instance, we can use additive models instead of the linear model:

$$f(\mathbf{x};\mathbf{w}) = w_0 + w_1\phi_1(\mathbf{x}) + \dots + w_M\phi_M(\mathbf{x}).$$

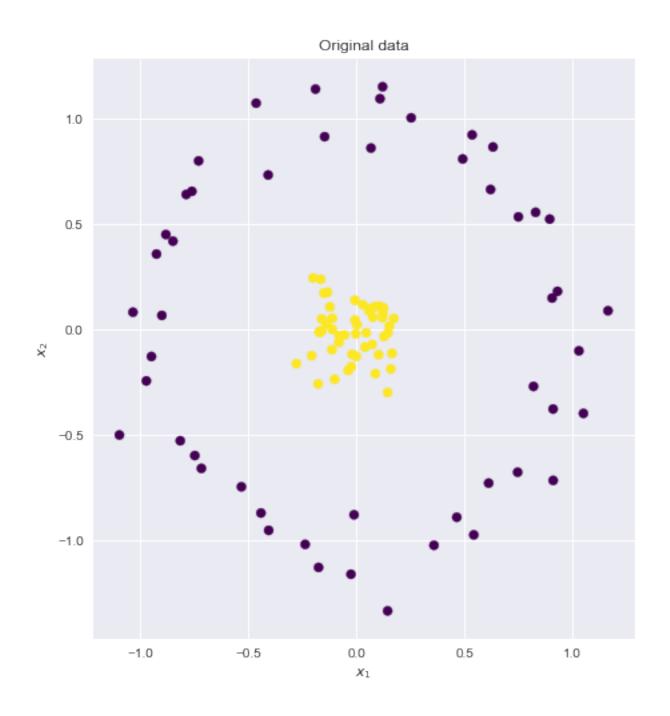
Kernel Methods for Classification

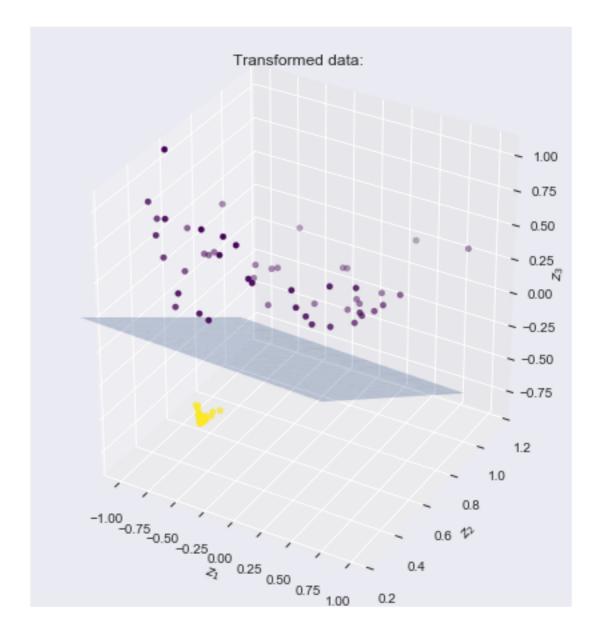


The two classes are not linearly separable. :-(

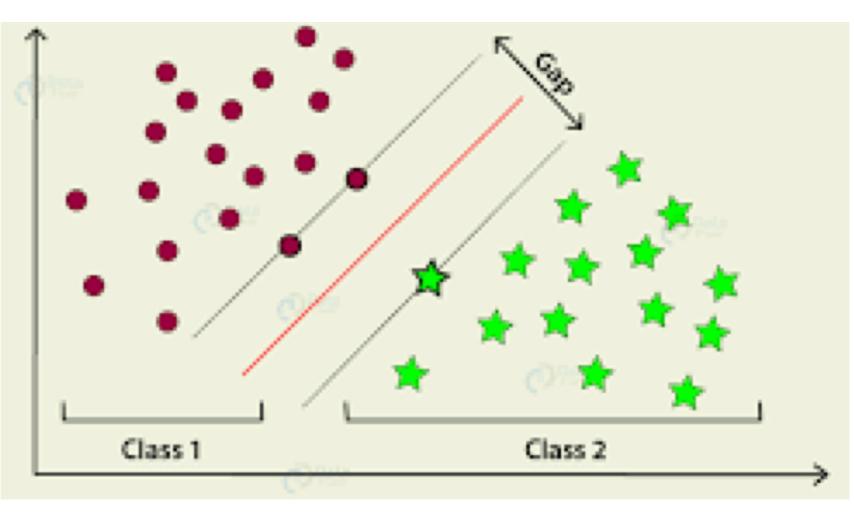
Kernel Methods for Classification

What if you use a polynomial kernel with p=2?

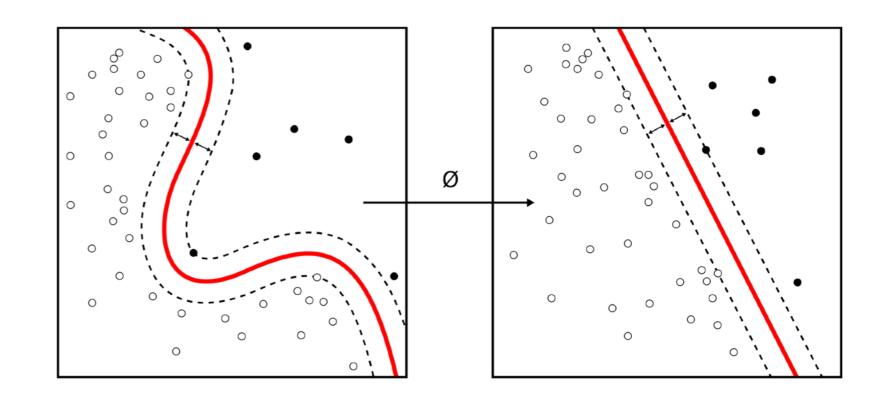




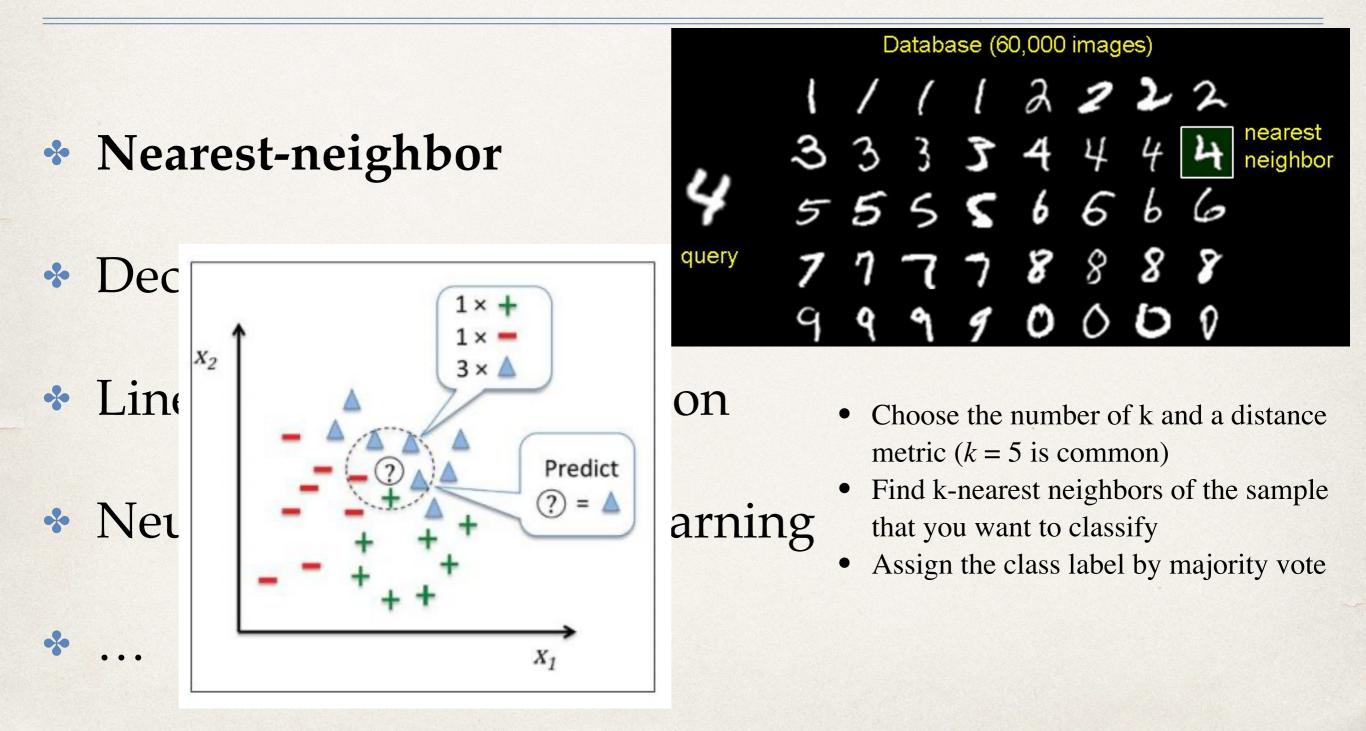
Support Vector Machines



Can perform nonlinear classification with kernel trick.



Supervised Learning Algorithms

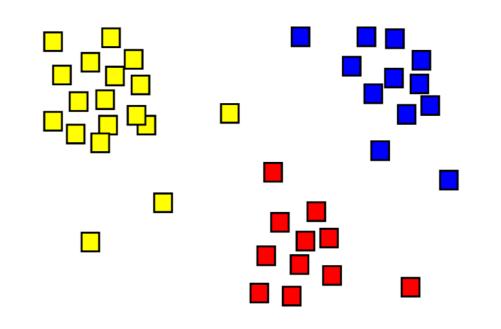


Supervised Learning Algorithms



Summary: From Regression to Classification

- Classification
 - Fisher linear discriminant, Bayes classifier, logistic regression, decision trees, nearest neighbors, SVM, Kernel methods...
 - What if we are not given y?



Outline

- Supervised learning
 - From linear regression to nonlinear methods
 - Properties of regression
 - From parametric models to nonparametric models
 - Model selection: Why? What? How?
 - Classification
- Unsupervised learning
 - Clustering ↓
 - Dimensionality reduction... \rightarrow

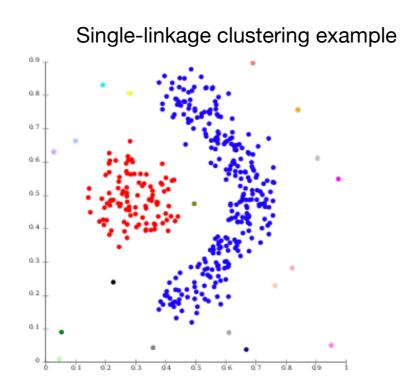
Two Ways of Finding *Simpler* Data Representations

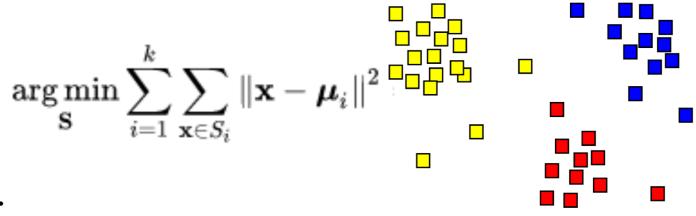
• Fewer "data points" vs. fewer dimensions (#variables)?

- 2	A	В	C	D	E	F	G	Н	1	J	K		L	M	N	0	Р	Q	R	S	Т	U
1	Id	Population	Sex	Cranial size	Diet or subsister	nce				Paramasti	c Denta	wear		Geographic lo	cation per popula	ation	Climate per	population				
2	Concerna -		(Male, fem	(Centroid S	Gathering Hun	ting	Fishing	Pastoralism	Agriculture	Yes=1, no	=(Averaj	ge ati At	trition pe	Distance to Lo	ongitude	latitude	Tmean	Tmin	Tmax	Vpmean	Vpmin	Vpmax
3	AINU31_1	Ainu	Unknown	713.2942	2	3	4	0	1	(D	1.5	2	16464	43.548548	142.639159	2.86	-11.19	17.01	7.43	2.27	16.83
4	AINU7_1	Ainu	Unknown	676.148	2	3	4	0	1		D	1.5	1	16464	43.548548	142.639159	2.86	-11.19	17.01	7.43	2.27	16.83
5	AINU7_2	Ainu	Unknown	675.4924	2	3	4	0	1		D	1.5	1	16464	43.548548	142.639159	2.86	-11.19	17.01	7.43	2.27	16.83
6	AINU_1016	Ainu	Male	684.3304	2	3	4	0	1		D	1.5	2.5	16464	43.548548	142.639159	2.86	-11.19	17.01	7.43	2.27	16.83
7	AINU_1016	Ainu	Female	686.285	2	3	4	0	1		D	1.5	4	16464	43.548548	142.639159	2.86	-11.19	17.01	7.43	2.27	16.83
8	AUSM245	Australia	Male	673.8749	6	4	0	0	0		1	2.5	1	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
9	AUSM246	Australia	Male	647.4586	6	4	0	0	0		1	2.5	4	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
10	AUSM8217	Australia	Male	658.6616	6	4	0	0	0		1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
11	AUSM8177	Australia	Male	667.5444	6	4	0	0	0		1	2.5	4	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
12	AUSM8173	Australia	Male	629.7138	6	4	0	0	0		1	2.5	3.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
13	AUSM8173	Australia	Male	648.7064	6	4	0	0	0	(C) (1)	1	2.5	3.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
14	AUSM8171	Australia	Male	643.0378	6	4	0	0	0		1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
15	AUSM8165	Australia	Male	616.55	6	4	0	0	0		1	2.5	3.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
16	AUSM8154	Australia	Male	635.0605	6	4	0	0	0		1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
17	AUSM8153	Australia	Male	650.6959	6	4	0	0	0		1	2.5	3	20164	-24.287027	135.615234	22,46	13.33	30.27	11.10	7.55	15.96
18	AUSF1412	Australia	Female	618.4781	6	4	0	0	0		1	2.5	1	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
19	AUSF8179	Australia	Female	634.3122	6	4	0	0	0		1	2.5	3.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
20	AUSF8175	Australia	Female	605.1759	6	4	0	0	0		1	2.5	1.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
21	AUSF8172	Australia	Female	613.8324	6	4	0	0	0		1	2.5	3	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
22	AUSF8169	Australia	Female	619.1206	6	4	0	0	0		1	2.5	2.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
23	AUSF8157	Australia	Female	628.2819	6	4	0	0	0		1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
24	AUSF8155	Australia	Female	628.4609	6	4	0	0	0		1	2.5	3.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
25	AUSF1578	Australia	Female	640.6311	6	4	0	0	0		1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
26	AUSF243	Australia	Female	606.164	6	4	0	0	0		1	2.5	2.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
27	AUSF8158	Australia	Female	631.6258	6	4	0	0	0		1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
28	DENM1432	Denmark	Male	663.6198	0	0	1	3	6		0	2.1	2	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
29	DENM1011	Denmark	Male	651.4847	0	0	1	3	6		0	2.1	3	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
30	DENM1205	Denmark	Male	636.9831	0	0	1	3	6		0	2.1	1.5	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
31	DENM116	Denmark	Male	642.9192	0	0	1	3	6		0	2.1	3	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
32	DENM116	Denmark	Male	646.6609	0	0	1	3	6	1	D	2.1	2.5	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
33	DENM116	Denmark	Male	674.9799	0	0	1	3	6		0	2.1	2	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
34	DENM7_77	Denmark	Male	666.53	0	0	1	3	6		D	2.1	2.5	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
35	DENM1_58	Denmark	Male	627.4583	0	0	1	3	6		D	2.1	1.5	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
36	DENM903		Male	662.5953	0	0	1	3	6		D	2.1	2	10440	55.717055	11.711426		-0.02	16.66	9.67	5.59	15.27
37	DENM901	Denmark	Male	672.8408	0	0	1	3	6		0	2.1 Na	N	10440	55.717055	11.711426		-0.02	16.66	9.67	5.59	15.27
38	DENE1559		Female	604 4864	n	0	1	3	6	1	n	21	05	10440	55 717055	11 711426		-0.02	16.66	9.67	5 59	15 27
	GG		INFO	A Shape_	rawcoordinates	S A Sh	ape_symm	ProcCoord.	Factor	S Backg	ground	Geod	distance	extra +								

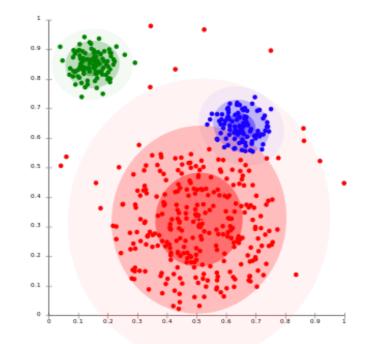
Unsupervised Learning

- Draw inferences from datasets consisting of input data without labeled responses
- Visualization, understanding...
- Clustering
 - Centroid-based clustering
 - Distribution-based clustering
 - Connectivity-based clustering...





Gaussian mixture model clustering example

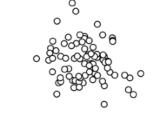


K-Means Clustering

- Goal: Partition *n* observations into *K* clusters in which each observation belongs to the cluster with the nearest mean (or center), serving as a prototype of the cluster (as a method of vector quantization in signal processing).
- A bit history (https://en.wikipedia.org/wiki/K-means clustering#History): The term "K-means" was first used by James MacQueen in 1967, though the idea goes back to Hugo Steinhaus in 1956. The standard algorithm was first proposed by Stuart Lloyd of Bell Labs in 1957 as a technique for pulse-code modulation, although it was not published as a journal article until 1982. In 1965, Edward W. Forgy published essentially the same method, which is why it is sometimes referred to as the Lloyd–Forgy algorithm.
- Given a set of observations $(\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n)$, where each observation is a d-dimensional real vector, K-means clustering aims to partition the *n* observations into $K (\leq n)$ sets $\mathbf{S} = \{S_1, S_2, ..., S_K\}$ so as to minimize the within-cluster sum of squares:

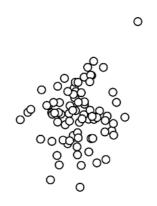
$$\arg\min_{\mathbf{S}} \sum_{k=1}^{K} \sum_{\mathbf{x}_i \in S_k} ||\mathbf{x}_i - \boldsymbol{\mu}_k||^2, \text{ where } \boldsymbol{\mu}_k = \frac{1}{|S_k|} \sum_{\mathbf{x}_i \in S_k} \mathbf{x}_i.$$

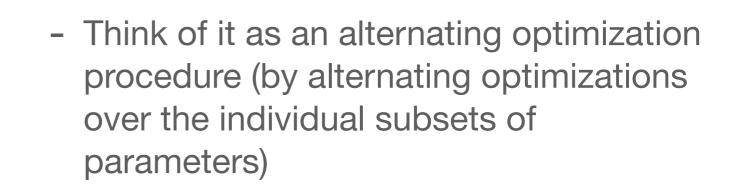




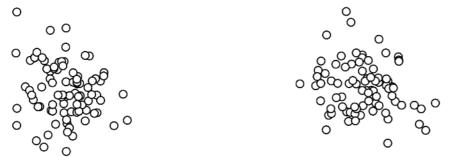
K-Means Clustering: Procedure

$$\arg\min_{\mathbf{S}} \sum_{k=1}^{K} \sum_{\mathbf{x}_i \in S_k} ||\mathbf{x}_i - \boldsymbol{\mu}_k||^2, \text{ where } \boldsymbol{\mu}_k = \frac{1}{|S_k|} \sum_{\mathbf{x}_i \in S_k} \mathbf{x}_i.$$





- Start with some guess of the means of the clusters



 Refer to <u>https://www.naftaliharris.com/</u> <u>blog/visualizing-k-means-clustering/</u> to see how we can update the partitioning and means iteratively

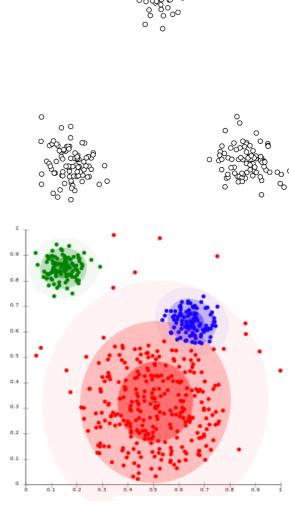
K-Means Clustering: Procedure

$$\arg\min_{\mathbf{S}} \sum_{k=1}^{K} \sum_{\mathbf{x}_i \in S_k} ||\mathbf{x}_i - \boldsymbol{\mu}_k||^2, \text{ where } \boldsymbol{\mu}_k = \frac{1}{|S_k|} \sum_{\mathbf{x}_i \in S_k} \mathbf{x}_i.$$

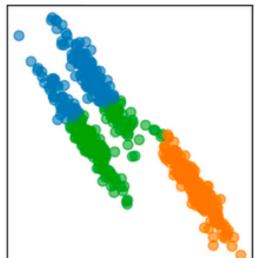
Procedure: Given an initial set of K means $\mu_1^{(1)}, \ldots, \mu_{K}^{(1)}$, the algorithm proceeds by alternating between two steps, until convergence:

> **Assignment** step: Assign each observation to the cluster with the nearest mean (i.e., with the least squared Euclidean distance)

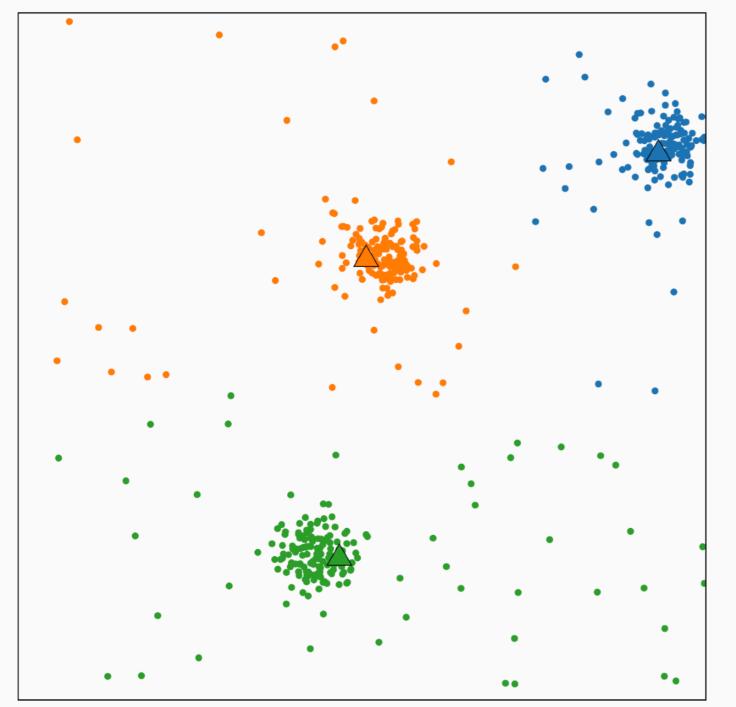
- **Update** step: Recalculate means (centroids) μ_k for observations assigned to each cluster.
 - Problems: local minima, strong assumptions...
 - How to make it more flexible?



Issues...



Visualizing K-Means Clustering



Mean square point-centroid distance: 6006.18

The k-means algorithm is an iterative method for clustering a set of N points (vectors) into k groups or clusters of points.

Algorithm

Repeat until convergence:

Find closest centroid

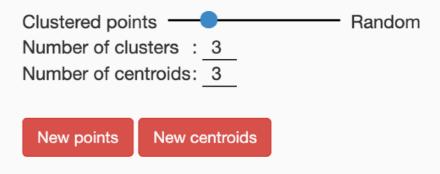
Find the closest centroid to each point, and group points that share the same closest centroid.

Update centroid

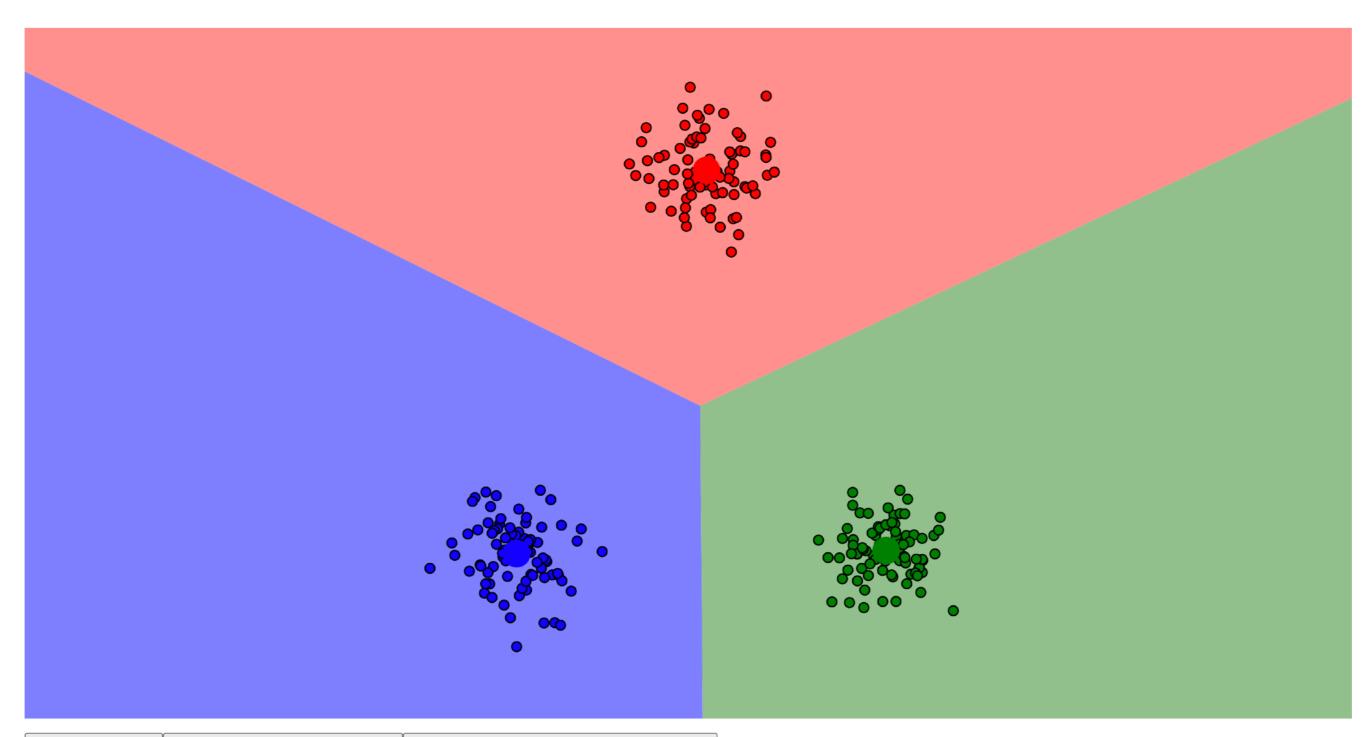
Update each centroid to be the mean of the points in its group.

Find closest centroid

Data



https://stanford.edu/class/engr108/visualizations/kmeans/kmeans.html



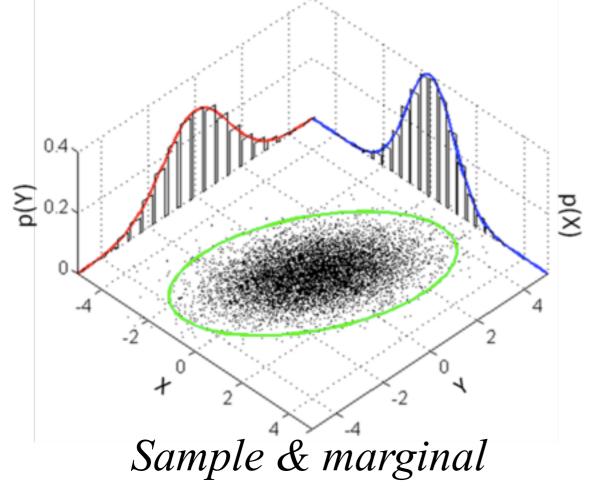
Restart Add Centroid Update Centroids

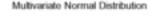
https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

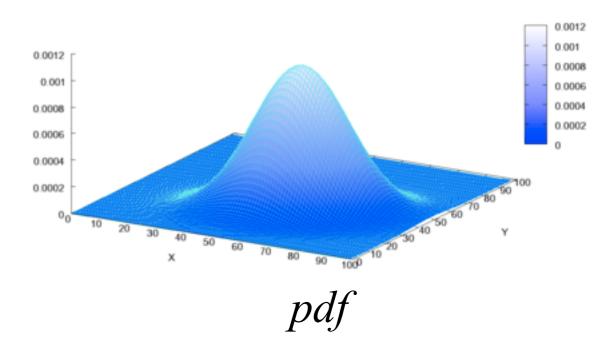
Multivariate NormalDistribution $\Sigma = \begin{bmatrix} Var(X_1) & Cov(X_1, X_2) \\ Cov(X_2, X_1) & Var(X_2) \end{bmatrix}$

• PDF for d-dimensional point **x**, specified by mean **µ** and covariance matrix :

$$p_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \Sigma^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

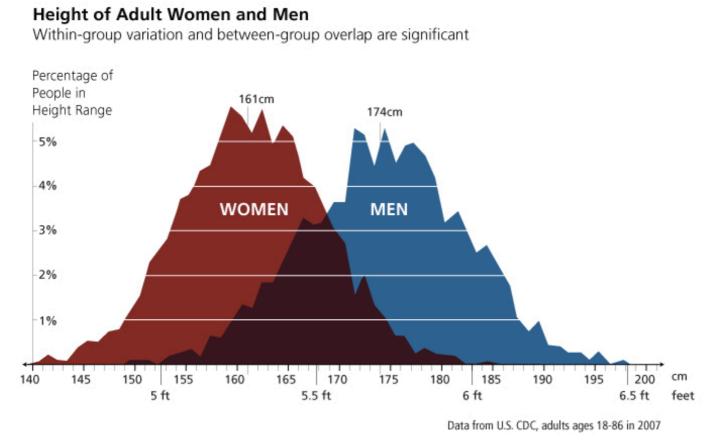


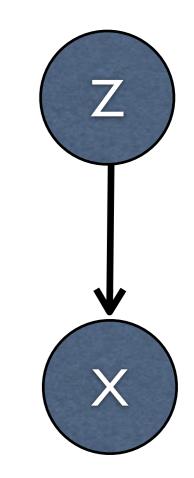




Remember This Way of Specifying Causal Mechanisms?

• Let *X* be sex and *Y* be height



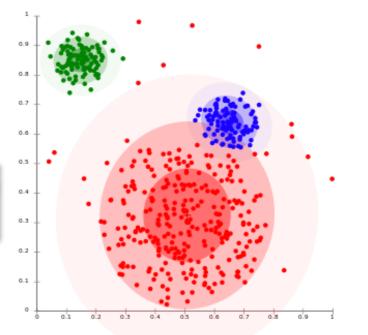


- How can you specify the causal mechanism?
- How about using a conditional Gaussian model?

GMM for Clustering

Gaussian mixture model clustering example

- *Z*: which cluster the observation is from. $P(Z=k)=\pi_k$
- $p(X=\mathbf{x}|Z=k) = N(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \frac{1}{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}_k|}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_k)^{\mathsf{T}}\boldsymbol{\Sigma}_k^{-1}(\mathbf{x}-\boldsymbol{\mu}_k)}$
- What is the distribution of X?
 - Distinguish between Gaussian Mixture Model (GMM) and *the sum of Gaussian variables*
- Fit the GMM to the data, and then $P(Z=k|X=x_i)$, known as the posterior/membership prob. of Z, provides a *soft* way of clustering the *i*th data point
- How to estimated the parameters?



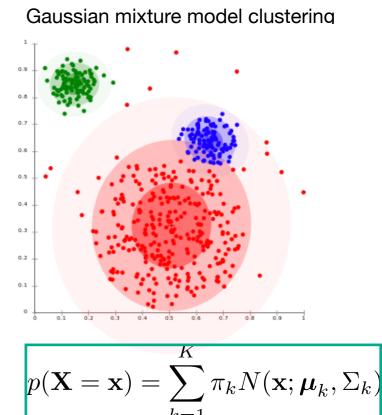
★ GMM for Clustering: Parameter Estimation

- *Z*: which cluster the observation is from. $P(Z=k)=\pi_k$
- $p(X=\mathbf{x}|Z=k) = N(\mathbf{x}; \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) = \overline{\sqrt{(2\pi)^d |\boldsymbol{\Sigma}_k|}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_k)^{\mathsf{T}}\boldsymbol{\Sigma}_k^{-1}(\mathbf{x}-\boldsymbol{\mu}_k)}$
- How to estimated the parameters Θ? Maximum likelihood estimation. Gradient-based?
- Expectation-Maximization (EM) algorithm: A general technique for finding maximum likelihood estimators with latent variables (Z)
 - E step: Estimate the latent variable Z with the posterior

$$h_{ki} := P(Z = k | \mathbf{X} = \mathbf{x}_i) = \frac{\pi_k N(\mathbf{x}_i; \mu_k, \Sigma_k)}{\sum_{l=1}^K \pi_l N(\mathbf{x}_i; \mu_l, \Sigma_l)}$$

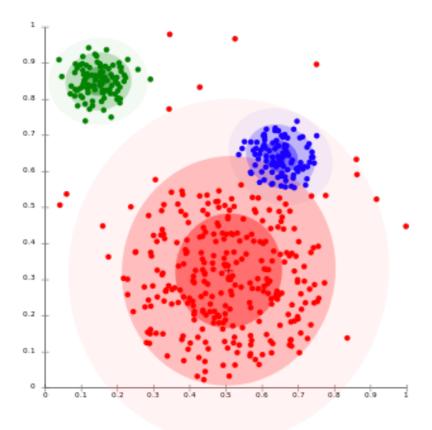
• M step: update parameters $\boldsymbol{\Theta}$

$$\pi_k = \frac{1}{n} \sum_{i=1}^n h_{ki}; \quad \boldsymbol{\mu}_k = \frac{\sum_{i=1}^n h_{ki} \mathbf{x}_i}{\sum_{i=1}^n h_{ki}}; \quad \Sigma_k = \frac{\sum_{i=1}^n h_{ki} (\mathbf{x}_i - \boldsymbol{\mu}_k) (\mathbf{x}_i - \boldsymbol{\mu}_k)^{\mathsf{T}}}{\sum_{i=1}^n h_{ki}}$$



GMM for Clustering: A Demo

- What does the decision boundary looks like?
- <u>Demo: https://lukapopijac.github.io/gaussian-mixture-model/</u>



Gaussian mixture model clustering example

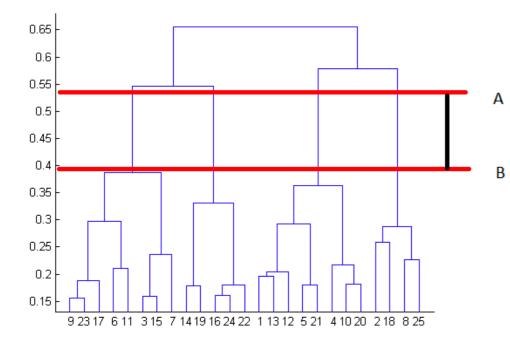
What If We Have Such Data...

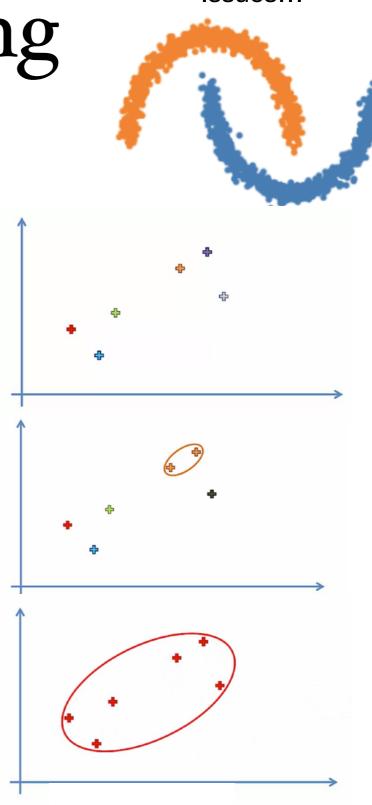
Issues...

Issues...

Agglomerative Clustering

- Bottom-up manner
- 1. Make each data point a cluster
- 2. Take the two closest clusters and make them one cluster
- 3. Repeat step 2 until there is only one cluster

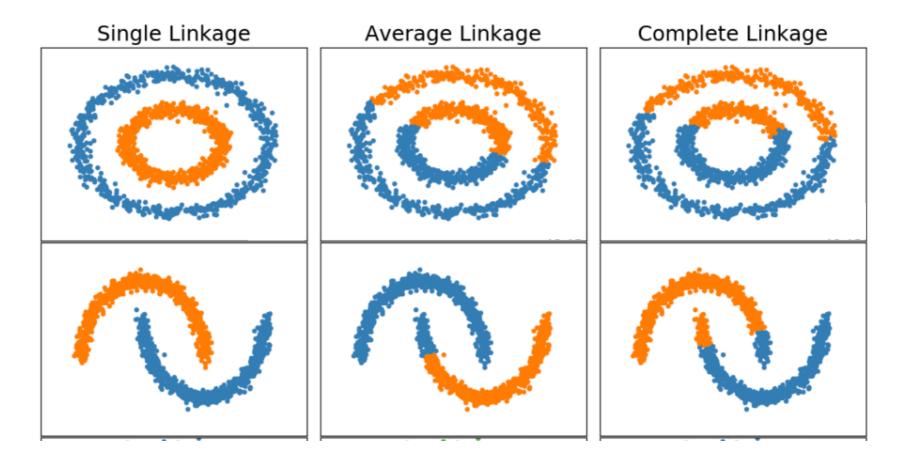




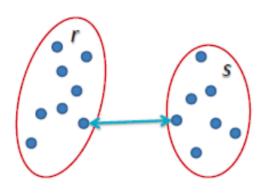
Did you see why it is a method of hierarchical clustering?

Agglomerative Clustering: Linkage Criteria

2. Take the two **closest clusters** and make them one cluster

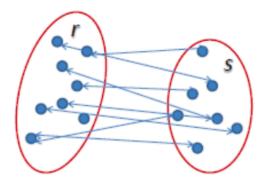


Single linkage



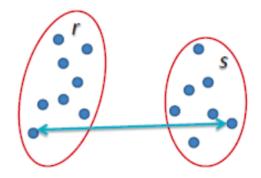
 $L(r,s) = \min(D(x_{ri}, x_{sj}))$

Average linkage



 $L(r,s) = \frac{1}{n_r n_s} \sum_{i=1}^{n_r} \sum_{j=1}^{n_s} D(x_{ri}, x_{sj})$

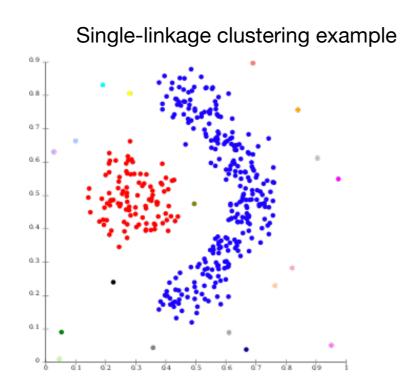
Complete linkage

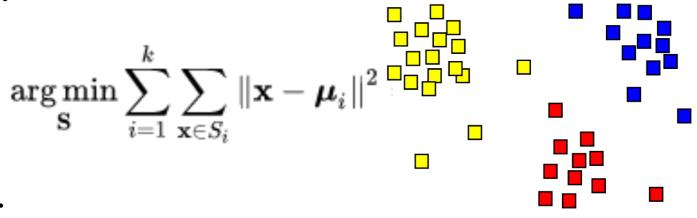


 $L(r,s) = \max(D(x_{ri}, x_{sj}))$

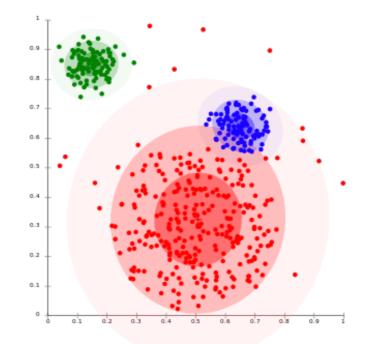
Unsupervised Learning 1: Summary

- Draw inferences from datasets consisting of input data without labeled responses
- Visualization, understanding...
- Clustering
 - Centroid-based clustering
 - Distribution-based clustering
 - Connectivity-based clustering...





Gaussian mixture model clustering example



Two Ways of Finding Simpler Data Representations

• Fewer "data points" vs. *fewer dimensions (#variables)*?

	A	В	C	D	E	F	G	Н	1	J	K		L	M	N	0	P	Q	R	S	Т	U
1	ld	Population	Sex	Cranial size	ranial size Diet or subsistence			Param		Paramast	ic Denta	Dental wear		Geographic location per populat		ation	Climate per	er population				
2			(Male, fem	(Centroid S	Gathering	Hunting	Fishing	Pastoralism	Agriculture	e Yes=1, no	= Avera	ge atl Al	ttrition pe	Distance to I	Longitude	Latitude	Tmean	Tmin	Tmax	Vpmean	Vpmin	Vpmax
3	AINU31_1	Ainu	Unknown	713.2942	2	3	4	0	1	1	0	1.5	2	16464	43.548548	142.639159		-11.19	17.01	7.43		16.83
4	AINU7_1	Ainu	Unknown	676.148	2	3	4	0	1	1	0	1.5	1	16464	43.548548	142.639159	2.86	-11.19	17.01	7.43	2.27	16.83
5	AINU7_2	Ainu	Unknown	675.4924	2	3	4	0	1		0	1.5	1	16464	43.548548	142.639159	2.86	-11.19	17.01	7.43	2.27	16.83
6	AINU_1016	Ainu	Male	684.3304	2	3	4	0	1	1	0	1.5	2.5	16464	43.548548	142.639159	2.86	-11.19	17.01	7.43	2.27	16.83
7	AINU_1016	Ainu	Female	686.285	2	3	4	0	1		0	1.5	4	16464	43.548548	142.639159	2.86	-11.19	17.01	7.43	2.27	16.83
8	AUSM245	Australia	Male	673.8749	6	4	0	0	0)	1	2.5	1	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
9	AUSM246	Australia	Male	647.4586	6	4	0	0	0)	1	2.5	4	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
10	AUSM8217	Australia	Male	658.6616	6	4	0	0	0		1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
11	AUSM8177	Australia	Male	667.5444	6	4	0	0	0)	1	2.5	4	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
12	AUSM8173	Australia	Male	629.7138	6	4	0	0	0)	1	2.5	3.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
13	AUSM8173	Australia	Male	648.7064	6	4	0	0	0)	1	2.5	3.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
14	AUSM8171	Australia	Male	643.0378	6	4	0	0	0		1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
15	AUSM8165	Australia	Male	616.55	6	4	0	0	0)	1	2.5	3.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
16	AUSM8154	Australia	Male	635.0605	6	4	0	0	0)	1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
17	AUSM8153	Australia	Male	650.6959	6	4	0	0	0)	1	2.5	3	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
18	AUSF1412	Australia	Female	618.4781	6	4	0	0	0)	1	2.5	1	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
19	AUSF8179	Australia	Female	634.3122	6	4	0	0	0)	1	2.5	3.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
20	AUSF8175	Australia	Female	605.1759	6	4	0	0	0)	1	2.5	1.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
21	AUSF8172	Australia	Female	613.8324	6	4	0	0	0)	1	2.5	3	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
22	AUSF8169	Australia	Female	619.1206	6	4	0	0	0)	1	2.5	2.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
23	AUSF8157	Australia	Female	628.2819	6	4	0	0	0)	1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
24	AUSF8155	Australia	Female	628.4609	6	4	0	0	0)	1	2.5	3.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
25	AUSF1578	Australia	Female	640.6311	6	4	0	0	0)	1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
26	AUSF243	Australia	Female	606.164	6	4	0	0	0)	1	2.5	2.5	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
27	AUSF8158	Australia	Female	631.6258	6	4	0	0	0)	1	2.5	2	20164	-24.287027	135.615234	22.46	13.33	30.27	11.10	7.55	15.96
28	DENM1432	Denmark	Male	663.6198	0	0	1	3	6	5	0	2.1	2	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
29	DENM1011	Denmark	Male	651.4847	0	0	1	3	6	5	0	2.1	3	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
30	DENM1205	Denmark	Male	636.9831	0	0	1	3	6	5	0	2.1	1.5	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
31	DENM116	Denmark	Male	642.9192	0	0	1	3	6	5	0	2.1	3	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
32	DENM116	Denmark	Male	646.6609	0	0	1	3	6	5	0	2.1	2.5	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
33	DENM116_	Denmark	Male	674.9799	0	0	1	3	6	5	0	2.1	2	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
34	DENM7_77	Denmark	Male	666.53	0	0	1	3	6	5	0	2.1	2.5	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
35	DENM1_58	Denmark	Male	627.4583	0	0	1	3	6	5	0	2.1	1.5	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
36	DENM903	Denmark	Male	662.5953	0	0	1	3	6	5	0	2.1	2	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
37	DENM901	Denmark	Male	672.8408	0	0	1	3	6	5	0	2.1 N	aN	10440	55.717055	11.711426	8.01	-0.02	16.66	9.67	5.59	15.27
38		Denmark		FOA ARFA	n		1	BrocCoord	Exclo	Re Bach	n	21	n s	10440	55 717055	11 711426	8.01	-0.02	16.66	9.67	5 59	15 27
	00		INFO	/ snape_	rawcoordina	ates 1 S	nape_symm	ProcCoord.	Facto	IS A BACK	ground	1 660	oistance_	extra +								

Next: multivariate analysis & its connection to causal analysis