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Question to Answer
• Will the sun rise tomorrow? 

• Matters of  fact, which are the second objects of  human reason, are not 
ascertained in the same manner; nor is our evidence of  their truth, however 
great, of  a like nature with the foregoing. The contrary of  every matter of  fact is still 
possible, because it can never imply a contradiction, and is conceived by the mind with the 
same facility and distinctness, as if  ever so conformable to reality. That the sun will not rise 
tomorrow is no less intelligible a proposition, and implies no more contradiction, than the 
affirmation, that it will rise. We should in vain, therefore, attempt to demonstrate its falsehood. 
Were it demonstratively false, it would imply a contradiction, and could never 
be distinctly conceived by the mind. —An Enquiry Concerning Human Understanding 
(1772). Hackett Publ Co. 1993; Chapter on Cause and Effect. 

• Do you agree? What can we do?



Making Use of Data: 
Statistics…

• Connection between probability 
theory & statistics

        

Probability 
theory

Statistics
Using sample statistics to estimate population parameters.
Statistical inference is the process of drawing conclusions about an underlying population based on a sample or subset of the data.



Why Probability?

• Probability is a tool to understand 

• what is randomness 

• Random experiment: an experiment whose outcome is not 
known to us



To Define Probability

• Assume all possible outcomes of  the random experiment are 
known 

• Consider the following examples…



Why Probabilistic Thinking: 
A Story

1
Plausible reasoning

The actual science of logic is conversant at present only with things either
certain, impossible, or entirely doubtful, none of which (fortunately) we
have to reason on. Therefore the true logic for this world is the calculus
of Probabilities, which takes account of the magnitude of the probability
which is, or ought to be, in a reasonable man’s mind.

James Clerk Maxwell (1850)

Suppose some dark night a policeman walks down a street, apparently deserted. Suddenly he
hears a burglar alarm, looks across the street, and sees a jewelry store with a broken window.
Then a gentleman wearing a mask comes crawling out through the broken window, carrying
a bag which turns out to be full of expensive jewelry. The policeman doesn’t hesitate at all
in deciding that this gentleman is dishonest. But by what reasoning process does he arrive
at this conclusion? Let us first take a leisurely look at the general nature of such problems.

1.1 Deductive and plausible reasoning

A moment’s thought makes it clear that our policeman’s conclusion was not a logical
deduction from the evidence; for there may have been a perfectly innocent explanation
for everything. It might be, for example, that this gentleman was the owner of the jewelry
store and he was coming home from a masquerade party, and didn’t have the key with him.
However, just as he walked by his store, a passing truck threw a stone through the window,
and he was only protecting his own property.

Now, while the policeman’s reasoning process was not logical deduction, we will grant
that it had a certain degree of validity. The evidence did not make the gentleman’s dishonesty
certain, but it did make it extremely plausible. This is an example of a kind of reasoning
in which we have all become more or less proficient, necessarily, long before studying
mathematical theories. We are hardly able to get through one waking hour without facing
some situation (e.g. will it rain or won’t it?) where we do not have enough information to
permit deductive reasoning; but still we must decide immediately what to do.

In spite of its familiarity, the formation of plausible conclusions is a very subtle process.
Although history records discussions of it extending over 24 centuries, probably nobody has
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Events
• Event: A set of outcomes of an experiment, as a subset of the 

sample space Ω

• E.g.,  get 6 from rolling a die

• Incompatible events, e.g., get 6 and get 2

• Complementary events: Events A and [not A]

• Possible events form a field of sets (event space) F

• {{1}, {2}, {3}, {4}, {5}, {6}, {1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}… } 

• A field of sets over a nonempty set Ω is any collection of subsets of Ω  
that is closed under the intersection and union of pairs of sets and 
under complements of individual sets

Ω ={1, 2, 3, 4, 5, 6}



Probability: Axioms

• Probability measure on F  over Ω : a function P 
defined on all sets in F  and assigning each set 
(event) a real number satisfying:

• Nonnegativity:                                         F

• Normalization: P(Ω ) = 1 

• Additivity:  

P(A)∈ℜ,  P(A) ≥ 0,  ∀A∈

P(A∪ B) = P(A)+ P(B) for incompatible A and B

{{1}, {2}, {3}, {4}, {5}, {6}, {1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}… } 

 1/6   1/6   1/6   1/6   1/6   1/6    1/3     1/3      1/3      1/3      1/3      1/3
P



Conditional Probability
• P(A|B): probability of A given B has occurred 

• probability of getting 2 from the 2nd die given getting 6 from the 1st  

• Suppose P(B) ≠ 0; it is then defined to be P(A⋂B) / P(B)  

• Fix B with P(B) ≠ 0; then P(·|B) satisfies the probability 
axioms 

• A and B are independent iff P(A⋂B) = P(A) P(B)  

• I.e., P(A|B) = P(A)  

• Product and sum rules are fundamental:  :-) 

• P(A⋂B) = P(A|B) P(B)  

• P(A) = P(A⋂B) + P(A⋂~B)



Roughly Speaking, Random 
Variables and Their Realizations...

• A random variable is a variable whose possible values are 
numerical outcomes of  a random phenomenon. 

• E.g., the sum of what I got on the two dice, the height of a 
MBZUAI student, the daily return of a stock...



Discrete vs. Continuous 
Random Variables

• A random variable is discrete if its range (the set of 
values that it can take) is finite or at most countably 
infinite

• E.g., the sum of what I got on the two dice

• P(X=k) = P({ɷ: X(ɷ) = k}); tabular representation for the 
probability mass function (PMF)

• A random variable is continuous (not discrete) if its 
range (the set of values that it can take) is uncountably 
infinite

• E.g., the height of a CMU student

• P(a ≤ X ≤ b) = P({ɷ: a ≤ X(ɷ) ≤ b})



How to Specify Prob. Measures 
of Random Variables

• PMFs for discrete variables

• Cumulative distribution function (CDF): 
A function FX : R→[0,1] which specifies a 
probability measure as

• Probability density function (PDF): 
derivative of the CDF for continuous 
variables whose CDFs are differentiable 
everywhere

FX (x) ≜P(X ≤ x)

pX(x) , dFX(x)

dx



Probability Measure: Examples
- Discrete variables: 

- Bernoulli(p):  
the discrete probability distribution of a random variable which takes the 
value 1 with probability p and the value 0 with probability q=1-p. 

                           P(X=1) = p. 
- Binomial(n,p): 
the discrete probability distribution of the number of successes in a 
sequence of n independent experiments, each with its own boolean-
valued outcome: success (with probability p) or failure (with probability 
q=1−p).

P(X=k)



Probability Measure: Examples

Figure 2: PDF and CDF of a couple of random variables.

The shape of the PDFs and CDFs of some of these random variables are shown in Figure ??.

The following table is the summary of some of the properties of these distributions.

Distribution PDF or PMF Mean Variance

Bernoulli(p)

⇢
p, if x = 1
1� p, if x = 0. p p(1� p)

Binomial(n, p)
�n
k

�
p
k(1� p)n�k for 0  k  n np npq

Geometric(p) p(1� p)k�1 for k = 1, 2, . . . 1
p

1�p
p2

Poisson(�) e
��

�
x
/x! for k = 1, 2, . . . � �

Uniform(a, b) 1
b�a 8x 2 (a, b) a+b

2
(b�a)2

12

Gaussian(µ,�2) 1
�
p
2⇡

e
� (x�µ)2

2�2 µ �
2

Exponential(�) �e
��x

x � 0,� > 0 1
�

1
�2

3 Two random variables

Thus far, we have considered single random variables. In many situations, however,
there may be more than one quantity that we are interested in knowing during a ran-
dom experiment. For instance, in an experiment where we flip a coin ten times, we
may care about both X(!) = the number of heads that come up as well as Y (!) =
the length of the longest run of consecutive heads. In this section, we consider the setting of two
random variables.

3.1 Joint and marginal distributions

Suppose that we have two random variables X and Y . One way to work with these two random
variables is to consider each of them separately. If we do that we will only need FX(x) and FY (y).
But if we want to know about the values that X and Y assume simultaneously during outcomes
of a random experiment, we require a more complicated structure known as the joint cumulative

distribution function of X and Y , defined by

FXY (x, y) = P (X  x, Y  y)

It can be shown that by knowing the joint cumulative distribution function, the probability of any
event involving X and Y can be calculated.
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PDF
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- Continuous variables:



Some Distributions
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Conditional Distributions
• Joint/marginal PMFs, CDFs, and PDFs: 

straightforward

• What is the probability distribution over X, when 
we know Y must take a certain value y?

• Discrete case: Provided PY (y)≠0, conditional PMF 
of X given Y is

• Continuous case: Provided pY (y)≠0, conditional 
PDF of X given Y is

PX|Y =
PXY (x, y)

PY (y)

pX|Y =
pXY (x, y)

pY (y)



A Question...

• With 5 coins which are not necessarily fair, how 
many parameters to represent the joint 
probability distribution P(O1,O2,...,O5)?

• In practice we often need fewer parameters...

• Divide-and-conquer



Statistical Independence

• Two variables X and Y are independent if FXY (x,y) 
= FX (x) FY (y) for all values of x and y. Equivalently,

• For discrete variables, PXY (x,y) = PX (x)PY (y), or 
PX|Y (x|y) = PX (x) whenever PY (y)≠0

• For continuous variables: p instead of P



Pairwise Independence vs. 
Mutual Independence

• Pairwise independent: every pair of random 
variables is independent

• Mutually independent: FX1X2...Xn (x,y) = FX1 (x1) FX2 

(x2)... FXn (xn) 

• Three-coin example:  A  || B; C is determined by A and 
B but C || B and C || A 

• Pairwise independence? Mutual independence?



Ways to Produce Dependence

• Common cause underlying them

• causal relations between them

• Selection (conditioning on the effect)!



Another Example

• What if Xi’s are not mutually independent 
but we know they were generated the 
following way?

X1 ! X2 ! ... ! Xn

rain

slippery ground

falling down



Conditional Independence

• Two variables X and Y are conditionally independent 
given Z if FXY|Z (x,y|z) = FX|Z (x|z) FY|Z (y|z) for all values 
of x, y and z. Equivalently,

• For discrete variables, PXY|Z (x,y|z) = PX|Z (x|z)PY|Z (y|z), 
or PX|Y,Z (x|y,z) = PX|Z (x|z) whenever PYZ (y,z)≠0

• For continuous variables...

• X  || Y | Z: If Z is known, Y is not useful when modeling/
predicting X 



Some Properties of 
(Conditional) Independence

• Symmetry

• Decomposition

• Weak union

• Contraction

Relationship between independence & conditional independence?

(       )

(       )

(       )



Some Properties of 
(Conditional) Independence

• Symmetry

• Decomposition

• Weak union

• Contraction

Relationship between independence & conditional independence?

(       )

(       )

(       )

    P(A,B|X) = P(A,B)  
⇒P(A|X) = P(A)  (by marginalizing B out)



Some Properties of 
(Conditional) Independence

• Symmetry

• Decomposition

• Weak union

• Contraction

Relationship between independence & conditional independence?

(       )

(       )

(       )

    P(X|A,B) = P(X);  
    P(X|A) = P(X). 
⇒P(X|A,B) = P(X|A), i.e., X _||_B|A



Relation between Independence 
and Conditional Independence

• If X || Y, are they conditionally independent given 
Z ? 

• If X || Y|Z, are they independent ?

26



Expectation, Variance, and 
Standard Deviation

• Expectation:

• Mean of X: E[X] 

• Variance: 

• Standard deviation: 

E[g(X)] ,
X

x

g(x)PX(x) (for discrete varaibles) or

E[g(X)] ,
Z +1

�1
g(x)pX(x)dx (for continuous varaibles)

V ar[X] , E{[X � E(X)]2}

Std[X] ,
p

V ar[X]

⭒ ⭒



Strong/Weak Relations?

?



Covariance and Correlation

• Covariance:

• Uncorrelated if   Cov[X,Y] = 0 

• Correlation: 

Cov[X,Y ] , E[(X � E[X])(Y � E[Y ])]

Corr[X,Y ] , Cov[X,Y ]p
V ar[X]V ar[Y ]



Some Properties of 
Expectation and Variance

•     

•    

•   

•  

E
h kX

i=1

aiXi

i
=

kX

i=1

E[aiXi]

if all variables are independent!

Var[aX + b] = a2Var[X]

Var
h kX

i=1

aiXi

i
=

kX

i=1

a2iVar[Xi] if all variables are uncorrelated!

E
h kY

i=1

Xi

i
=

kY

i=1

E[Xi]



Are They Uncorrelated?
Y

X
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Be careful with correlation (covariance)…



Independence and 
Uncorrelatedness

• Independence ⇒ uncorrelatedness

• How about the reverse direction?

Multivariate normal distribution !



Normal 
Distribution

pX(x |µ,�) = 1p
2�2⇡

e�
(x�µ)2

2�2



Normal Distribution

• Very common distribution (sometimes also informally 
known as bell curve)

• PDF specified by mean μ and standard deviation σ (or 
variance σ2):

pX(x |µ,�) = 1p
2�2⇡

e�
(x�µ)2

2�2

Often denoted by N(µ, σ2)



Multivariate Normal 
Distribution

• PDF for point x = (x1,..., xk), specified by mean μ and 
covariance matrix :

Sample & marginal
pdf

⌃ =


V ar(X1) Cov(X1, X2)

Cov(X2, X1) V ar(X2)

�Covariance matrix

pX(x) =
1p

(2⇡)k|⌃|
exp

⇣
� 1

2
(x� µ)|⌃�1(x� µ)

⌘



Some Distributions
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Some Properties of Normal 
Distributions

• “Simplicity” of the form; completely characterized by mean and 
covariance; marginal and conditionals are also Gaussian

• Uncorrelatedness implies independence 

• Has maximum entropy, given values of the mean and the 
covariance matrix 

• Approximately holds in many cases because of central limit 
theorem (CLT; see demonstrations)

Interested students may refer to Chapter 7 of 
“Probability theory: The logic of science”



Central Limit Theorem: An 
Illustration

• CLT: Under some conditions,                     converges to a 
normal distribution for independent Xi with finite mean 
and variance

• Are they really normal? Cramer’s decomposition theorem!
E. T. Jaynes. Probability Theory: The Logic of Science. 1994. Chapter 7.
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Xi



*

Interested students may 
refer to Chapter 7 of 

“Probability theory: The 
logic of science”



Three Ways to Derive 
Gaussian PDFs

• Found by de Moivre (1733), without realizing its importance 

• Independence + isotropy (Herschel 1785) 

•  Maximum likelihood estimate = arithmetic mean (Gauss, 
1809) 

• Stability in its form under small perturbation (Landon, 1941)

Interested students may refer to Chapter 7 of 
“Probability theory: The logic of science”

*



Distance Between Distributions: 
Are Two Distributions the Same?

• Kullback-Leibler divergence: 

• Non-negative; asymmetric; zero iff identical

DKL(PkQ) =
X

i

P (i) log
P (i)

Q(i)
.

DKL(p(x)kq(x)) =
Z 1

�1
p(x) log

p(x)

q(x)
dx.
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Domain Adaptation As a Problem of Inference on Graphical Models

not all changing distribution modules need to adapt to the
target domain. We exploit the graph structure to simplify the
above expression. Let V = CH(Y ) [ {Y }, where CH(Y )
denotes the set of children of Y relative to the considered
augmented Bayesian network. Also denote by PA(Vi) the
parent set of Vi. The conditional distribution of Vi given its
parents is P (Vi |PA(Vi), ✓Vi), where ✓Vi is the empty set if
this conditional distribution does not change across domains.
Let Cik := P (v⌧ik |PA(v⌧ik), ✓Vk) be shorthand for the con-
ditional distribution of Vi taking value v⌧ik conditioning on
its parents taking the kth value in the test domain and the
value of ✓Vi . According to the chain rule, the conditional
distribution P (x⌧

k, y
⌧
k |✓) can be factorized as

P (x⌧
k, y

⌧
k |✓)

=
h Y

Vi2V

Cik
i
·
h Y

Wj /2V

P (w⌧
jk |PA(w⌧

jk), ✓Wj )
i

| {z }
:=Nk, which does not dependent on y⌧

k

.

Substituting the above expression into Eq. 2, one can see
that Nk will not appear in the final expression, which is

P (y⌧
k |x⌧ ) (3)

=

R Q
Vi2V Cik ·

Q
k0 6=k

⇥P
y⌧
k0

Q
Vi2V Cik0

⇤Q
Vi2V P (✓Vi)d✓Vi

R Q
k

⇥P
y⌧
k

Q
Vi2V Cik

⇤Q
Vi2V P (✓Vi)d✓Vi

.

It is natural to see from the above final expression of
P (y⌧k |x⌧ ) that 1) only the distribution modules for Y or
its children needed to be adapted (their corresponding ✓
variables are involved in the expression) and that 2) among
all features, only those that are in the Markov Blanket of Y
are involved in the expression. Practical implementations of
the estimation method will be discussed in Section 3.5.

2.3.1. BENEFIT FROM A BAYESIAN TREATMENT

Many traditional procedures for unsupervised domain adap-
tation are concerned with the identifiability of the joint dis-
tribution in the target domain, where only feature values are
given (Pearl & Bareinboim, 2011; Zhang et al., 2013; Gong
et al., 2016). If the joint distribution is identifiable, a classi-
fier can be learned by minimizing the loss with respect to the
target-domain joint distribution. For instance, the so-called
location-scale transformation is assumed for the features
given the label Y by (Zhang et al., 2013), rendering the
target-domain joint distribution identifiable. Otherwise, suc-
cessful domain adaptation is not guaranteed without further
constraints.

Even in the situation where the target-domain joint distri-
bution is not identifiable, the Bayesian treatment, by in-
corporating the prior distribution of ✓ and inferring the
posterior of Y in the target domains, may provide very in-
formative prediction–the prior distribution of ✓ constrains
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Figure 3. An illustration of the benefit of using priors on changes
in the distribution modules, corresponding to the ✓ variables.

the changeability of the distribution modules, and such con-
straints may enable “soft” identifiability. We use an ex-
ample to illustrate it. For clarity purposes, we use simple
parametric models and a single feature X for the condi-
tional distributions: Y ⇠ N (0, ✓Y ), X = Y + E, where
E ⇠ N (0, ✓X), i.e., X|Y ⇠ N (Y, ✓2). So ✓Y controls the
distribution of Y , and ✓X controls the conditional distribu-
tion of X given Y . The marginal distribution of X is then
X ⇠ N (0, ✓Y + ✓X), which is what we can observe in the
target domain. Clearly from P (X) in the target domains,
P (Y ) or P (X|Y ) is not identifiable because P (X) gives
only ✓Y + ✓X . Now suppose we have prior distributions
for ✓Y and ✓X : ✓Y ⇠ �(3, 1) and ✓X ⇠ �(1.5, 1), where
the two arguments are the shape and scale parameters of the
gamma distribution, respectively. Figure 3(a) shows their
prior distributions, and (b) gives the corresponding posterior
distribution of ✓Y given the variance of X , whose empirical
version is observed in the target domain. One can see that
although ✓Y as well as ✓X is not theoretically identifiable,
P (✓Y |Var(X)) gives is informative as to the value that ✓Y
may take. Especially when Var(X) is relatively small, the
posterior distribution is narrow. The information we have
about ✓Y and X then allows non-trivial prediction of the
target-domain joint distribution and the Y values from the
values of X .

(this might be easier to describe after the GAN algorithm is
introduced)
For each independently changing module i, the correspond-
ing d-dimensional changing parameters across domains,
given by ✓i, lie on a d-dimensional manifold. When learn-
ing the parameters in the target domain, the goal is to ensure
that:
1. The target domain changing parameters lie on the d-
dimensional manifold.
2. The changing parameters of the target domain are further
constrained (regularized) to lie close to the changing param-
eters of the source domains on the d-dimensional manifold.
A Bayesian approach infers P (Yt|Xt) using two main com-
ponents. The first one is the likelihood:

QD
i=1 P (Vi|Pai, ✓i)



Are Two Variables Independent?

• Natural measure of statistical dependence: 
mutual information

• Non-negative; is zero iff X and Y are 
independent

I(X;Y ) =
X

y

X

x

P (x, y) log

✓
P (x, y)

P (x)P (y)

◆
,

I(X;Y ) =

Z Z
p(x, y) log

✓
p(x, y)

p(x) p(y)

◆
dx dy,



Summary: Probability Theory

• How to understand probability?

• Typical distributions

• Independence & conditional independence 

• Basic statistics: expectation, variance…

• Independence vs. zero correlation

• Gaussian distribution 

• Distance “between” two distributions & measure of 
dependence



Making Use of Data: 
Statistics…

• Relationship between probability 
theory & statistics

        

Probability 
theory

Statistics

Using sample statistics to estimate population parameters.



Terms
• Population

• Random variable

• Parameter (A parameter is a number describing a whole 
population (e.g., population mean), while a statistic is a 
number describing a sample)

• Sample

• Statistic

• Likelihood function

• Null hypothesis, null distribution, p value



Law of Large 
Numbers

• Law of large numbers (LLN) is a theorem that describes the 
result of performing the same experiment a large number of 
times: the average of the results obtained from a large number of 
trials should be close to the expected value, and will tend to 
become closer as more trials are performed.



Let’s Come Closer to Reality...
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2.5• Find knowledge from data, 
which has randomness. E.g.,

• Bayesian inference

• Parameter estimation and 
hypothesis test

• Learning

• Supervised learning

• Unsupervised learning…

• Causal discovery



We’ll See More Detail: Bayesian vs. 
Frequentist Inference

*



Related Question:  What is 
Probability?

• Frequentist view: treats “probability” in equivalent terms 
to “frequency”

• Frank Ramsey: Probability is a rational degree of belief

• The measure of degrees of belief must satisfy the 
axioms for probability measures. 

• As new evidence is acquired, the measure of degrees of 
belief in a system of events must change to their 
conditional probabilities on the evidence.



How to Update Our Belief? 



Bayes’ Rule

• Use evidence (B) to update probabilities (info 
about A)

• How to find P(B)?

•

P (A |B) =
P (B |A)P (A)

P (B)

P (Ai |B) =
P (B|Ai)P (Ai)

P (B)
=

P (B|Ai)P (Ai)Pm
k=1 P (B|Ak)P (Ak)



Bayes’ Rule: Example

• Suppose a drug test is 99% sensitive and 99% specific. 
That is, the test will produce 99% true positive results 
for drug users and 99% true negative results for non-
drug users.  

• Suppose that 0.1% of people are users of the drug.  

• If a randomly selected individual tests positive, what is 
the probability he or she is a user?             

• P(User | +) ≈ ?   A. 0.1,    B. 0.4,     C. 0.9 

P (Ai |B) =
P (B|Ai)P (Ai)

P (B)
=

P (B|Ai)P (Ai)Pm
k=1 P (B|Ak)P (Ak)

P (User|+)

P (⇠ User|+)
=

P (+|User)P (User)/P (+)

P (+| ⇠ User)P (⇠ User)/P (+)
=

P (+|User)P (User)

P (+| ⇠ User)P (⇠ User)

=
0.99 · 0.001

(1� 0.99) · (1� 0.001)
=

99

999



Bayesian Inference: An Example

An Example: 

A. You measured my height 4 times, with n observations 1.78m, 1.80m, 1.79m, 1.81m. They 
are assumed to be generated from N(θ, 0.032). 

B. The prior distribution of my height is θ ~ N(1.75, 0.12). 

C. The posterior distribution of my height θ ?

xi

α={µ0, 𝜎02}

𝜎2

*



Bayesian Inference: An Example
• x, a data point in general. 
• θ, the parameter of the data point's distribution, i.e., X ∼ pX(x∣θ). 
• α, the hyperparameter of the parameter distribution, i.e., θ ∼ p(θ∣α) 
• X is the sample, a set of n observed data points, i.e., x1, …, xn. 
• , a new data point whose distribution is to be predicted.x̃
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Posterior distribution of the 
parameter: 

Bayesian prediction (posterior 
predictive distribution):
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Can You See Whether They 
Are Independent?

• pXY(x,y) has the same shape for different values of y…

• Further consider two examples with different sample sizes… 
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A Simple Testing 
Problem

• I claim I am 1.80m tall. You measured my height n times, with n 
observations 1.78m, 1.79m,…, 1.81m 

• Null hypothesis H0: µ = 1.80m; alternative hypothesis H1: µ ≠ 1.80m 

• Let’s use the one-sample t-test… 

• Calculate the sample mean:  

• Calculate the sample standard deviation: 

• Calculate the test statistic 

• Find the p value by comparing t to a t-distribution with (n − 1) 
degrees of freedom  

• Draw conclusion by comparing the p value with ⍺

The one-sample t-test is used 
to determine whether a 
sample of observations could 
have been generated by a 
process with a specific mean.

x̄ =
x1 + x2 + ...+ xn

n

�̂ =

r
(x1 � x̄)2 + (x2 � x̄)2 + ...+ (xn � x̄)2

n

t =
x̄� µ

�̂/
p
n

p = 2 ⋅ P(T > |t|) 
    (two-tailed)



Independence Test: 
Discrete Case

• Set hypotheses:

• Formulate a plan:

• Significance level: 0.01, 0.05...

• Test method: Here we use chi-square test for ⫫

• Analyze the sample

• Statistic:                                           (Eij: expected freq.)

• Null dstr of Q; degrees of freedom: DF = (r-1)*(c-1)

• p-value: probability of observing a sample statistic as 
extreme as the test statistic

H0: Variables are independent. 
Ha: Variables are not independent.

r c

Q =
rX

i=1

cX

j=1

[(Oij � Eij)
2
/Eij ]



A Simple Testing 
Problem

• I claim I am 1.80m tall. You measured my height n times, with n 
observations 1.78m, 1.79m,…, 1.81m 

• Null hypothesis H0: µ = 1.80m; alternative hypothesis Ha: µ ≠ 1.80m 

• Let’s use the one-sample t-test… 

• Calculate the sample mean:  

• Calculate the sample standard deviation: 

• Calculate the test statistic 

• Find the p value by comparing t to a t-distribution with (n − 1) 
degrees of freedom  

• Draw conclusion by comparing the p value with ⍺

The one-sample t-test is used 
to determine whether a 
sample of observations could 
have been generated by a 
process with a specific mean.

x̄ =
x1 + x2 + ...+ xn

n

�̂ =

r
(x1 � x̄)2 + (x2 � x̄)2 + ...+ (xn � x̄)2

n

t =
x̄� µ

�̂/
p
n

p = 2 ⋅ P(T > |t|) 
    (two-tailed)

power



Remember the Example?

An Example: 

A. You measured my height 4 times, with n observations 1.78m, 1.80m, 1.79m, 1.81m. They 
are assumed to be generated from N(θ, 0.032). 

B. The prior distribution of my height is θ ~ N(1.75, 0.12). 

C. The posterior distribution of my height θ ? α={µ0, 𝜎02}

What is the best estimate of 𝜽?



Maximum Likelihood 
Estimation

• Estimate characteristics of the model distribution from 
the sample

• so that the distribution underlying the sample is 
close to the model distribution

• Suppose we have functional form of the pdf/pmf f(x;θ) 
with unknown parameters θ∈ϴ

• Aim to find a point estimator of θ, i.e., a member of 
{f(x;θ) | θ∈ϴ} as the most likely pmf/pdf
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How to Find the 
Best Parameter

• f(x;θ) should be as close as possible to 

• How?  Kullback-Leiber divergence...

• Maximum likelihood estimator:

• Crucial assumption: I.I.D.

• Closed-form solution or numerical optimization 
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pD(x) =
NX

i=1

1

N
�(x� xi)

pD(
x) =

NX

i=1

1

N
�(x

� xi)

✓̂ML = argmax
✓

f(x1; ✓)f(x2; ✓)...f(xN ; ✓) = argmax
✓

NX

i=1

log f(xi; ✓)

Likelihood function L(θ;x1,x2,...,xN) Log likelihood

*

Equivalent to minimizing the Kullback-Leiber 
divergence KL(pD(x) || f(x;𝛳))



Maximum Likelihood 
Estimation: Example

• Let X1, X2, ..., Xn be a random sample from N(θ1,θ2). 
Find the maximum likelihood estimate of θ1 and θ2 

• Sample mean, sample variance, sample covariance

x̄ = 1
n

Pn
i=1 xi; s2 = 1

n�1

Pn
i=1(xi � x̄)2

A. You measured my height n times, with n observations 1.78m, 1.80m, 1.79m, 
181cm. They are assumed to be generated from N(θ, 0.032). 

B. What is the point estimate of  θ?  is the average of xi.x̄

✓̂1 =
1

n

nX

i=1

xi; ✓̂2 =
1

n

nX

i=1

(xi � ✓̂1)
2



Identifiability of Parameters in 
Statistical Models

• Identifiability, in simple words, means that different values of a 
parameter must produce different probability distributions. 

• Mathematically, a parameter θ is said to be identifiable if and 
only  

• Is the mean of a Gaussian distribution identifiable?

θ ≠ θ′ ⇒ Pθ ≠ Pθ′ ,  or equivalently  Pθ = Pθ′ ⇒ θ = θ′ 



Unbiased and Consistent Estimator
• If 

• If the estimate      converges in prob. to the true value of 
the parameter, then it is a consistent estimate

• Are the MLEs of θ1 and θ2 we just derived unbiased? 
consistent?

E[✓̂] = ✓, then ✓̂ is called an unbiased estimate of ✓

✓̂n

Interested students may refer to https://stats.stackexchange.com/questions/31036/what-is-the-
difference-between-a-consistent-estimator-and-an-unbiased-estimator .

https://stats.stackexchange.com/questions/31036/what-is-the-difference-between-a-consistent-estimator-and-an-unbiased-estimator
https://stats.stackexchange.com/questions/31036/what-is-the-difference-between-a-consistent-estimator-and-an-unbiased-estimator
https://stats.stackexchange.com/questions/31036/what-is-the-difference-between-a-consistent-estimator-and-an-unbiased-estimator


Let’s Check Their Properties…

•

•

Sample mean X̄ =
1
n

n

∑
i=1

Xi . 𝔼[X̄] = ? 𝕍ar[X̄] = ?

Sample variance S2 =
1

n − 1

n

∑
i=1

(Xi − X̄)2 . 𝔼[S2] = ?

[See page 214 of “Statistical Inference”]

*
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MLE: What If We Use a Different 
Distribution?

• Let X1, X2, ..., Xn be a random sample from the following 
Laplace distribution. Find the maximum likelihood 
estimate of μ 

• Median: separating the higher half from the lower

Mean vs. medianP (X  m) � 1/2, and P (X � m) � 1/2

pX(x ; µ, b) =
1

2b
exp

✓
� |x� µ|

b

◆

*



Summary: From Probability Theory 
to Statistics

• From probability theory to statistics  

• Ways of  making use of  data 

• Bayesian inference, parameter 
estimation, and hypothesis test 

• Intuition behind maximum 
likelihood estimation 

• From linear regression to ML
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