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• Domain adaptation / transfer learning: What and Why? 

• Traditional approaches to domain adaptation 

• Adaptive methods for domain adaptation 

• Related problems: image translation, multi-domain generation 

• Future of  domain adaptation

Outline
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Possible Situations for Domain 
Adaptation: When X→Y

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc
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� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

covariate shift
(Shimodaira00; Sugiyama etal.08; Huang 

etal.07, Gretton etal.08...)
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Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.
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y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

➘

➘

no clue as to find P te
Y |X

☹ (with one source domain)



Causality may Matter in Prediction: An 
Illustration

Understanding connections between different scenarios 
& modeling differences

5



What Features/Components to Transfer?
  

• Invariant cause distribution (Zhang et al., ICML’13) 

• Invariant/transferrable causal mechanism (Zhang et al., ICML’13; 
AAAI’14; Gong et al, ICML’16): invariance of P(Xct | Y) 

• Nonparametric transfer learning (Stojanov et al. AISTATS’19; Gong et 
al; ICML’18; Zhang et al., NeurIPS’20) 

• Detect, model, utilize changes 

• Even if one aims to find invariant representation, the transformation is 
domain-specific (Stojanov et al., NeurIPS’21)



Possible Situations for Domain 
Adaptation: When Y→X (Zhang et al., 2013)

• Y is usually the cause of X 
(especially for classification)

P te
X

helps
find
P te
Y |X

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Target shift (TarS)

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS

−2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

x1

x
2

 

 
class 1 (training)

class 2 (training)

class 1 (test)

class 2(test)

boundary (train. data) 

boundary by GeTarS

Ptr(class 1)=0.6

Pte(class 1)=0.3 0

5

10

15

20

25

30

35

40

45

Unweighted
CovS EM Tar

S

LS−
GeTa

rS

With oracle beta

Oracle test data

C
la

ss
ifi

ca
tio

n 
er

ro
r (

%
)

(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Conditional shift (ConS)

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Generalized target shift (GeTarS)

involved parameters estimated by matching PX

Zhang et al., ICML 2013; Schölkopf et al., 2012; Zhang et al., AAAI 2015;  Gong et al., ICML 
2016; Stojanov et al.,  AISTATS 2018;  Zhao et al., ICML 2019;  Fu et al., CVPR 2019…



Target shift

•   

• richness:

• invertibility:

• Find the learning machine on test domain by importance 
reweighting

• ratio β*(y) can be estimated by min.                                    : difficult !

Let �(y) be the ratio of the Pnew
Y to P tr

Y , i.e., Pnew
Y = �(y)·P tr

Y . To make Pnew
X identical to

P te
X , we can adjust �(y) to minimize D(P te

X , Pnew
X ), where D measures the di⇤erence between

two distributions; it can be the mean square error or the Kullback-Leibler distance. That
is, we minimize

D
⇤
P te
X ,

⌃
P tr
Y �(y)P tr

X|Y dy
⌅
.

To solve this problem, we have to estimate P tr
X|Y and P tr

X from the training set, and moreover,
the integral makes the optimization procedure more di⇧cult.

4.2 A kernel mean matching approach

Instead, we solve this problem by making use of the kernel mean embedding of the marginal
and conditional distributions; see Table 1 for the notation we are going to use. The
kernel mean embedding of PX in the RKHS (Smola et al., 2007; Gretton et al., 2007)
is a point in the RKHS given by µ[PX ] = EX⇥PX [⌅(X)], and its empirical estimate is
µ̂[PX ] = 1

m

⇧m
i=1 ⌅(xi). The embedding of the conditional distribution has been studied

in (Song et al., 2009, 2010). The embedding of PX|Y can be considered as an operator

mapping from G to F , defined as U [PX|Y ] = CXY C
�1
Y Y , where CXY and CY Y denote the (un-

centered) cross-covariance and covariance operators, respectively (Fukumizu et al., 2004).
Furthermore, we have

µ[PX ] = U [PX|Y ]µ[PY ].

We make the following assumption on the kernels:

ATarS
4 . The product kernel kl on X ⇤ Y is characteristic.

For characteristic kernels, the kernel mean map µ from the space of the distribution to the
RKHS is injective, meaning that all information of the distribution is preserved (Fukumizu
et al., 2008; Sriperumbudur et al., 2011). In this paper we use the Gaussian kernel, i.e.,

k(xi, xj) = exp
�
� ||xi�xj ||2

2l2

⇥
, where l is the kernel width. Note that under assumptions

ATarS
3 and ATarS

4 , for the embedding U [P tr
X|Y ], which is a mapping from G to F , the preimage

of µ[P te
X ] is unique.

Table 1: Notation used in this paper.

random variable X Y
domain X Y
observation x y
data matrix x y
kernel k(x, x⇤) l(y, y⇤)
kernel matrix on training set K L
feature map ⌅(x) ⇤(y)
feature matrix on training set ⇥ �
RKHS F G

The embedding of Pnew
Y is

µ[Pnew
Y ] = EY⇥Pnew

Y
[⇤(Y )] = EY⇥P tr

Y
[�(y)⇤(Y )].

9

bR =
1

m

mX

i=1

�⇤(ytri )⇥⇤(xtr
i , ytri )l(xtr

i , ytri ; ⇤) =
1

m

mX

i=1

�⇤(ytri ) · l(xtr
i , ytri ; ⇤)

R[P te, �, l(x, y, �)] = E(X,Y )�P te [l(x, y, �)] =

Z
P tr
XY · P

te
XY

P tr
XY

· l(x, y, �)dxdy

= E(X,Y )�P tr · P te
Y

P tr
Y|{z}

,�⇤(y)

·
P te
X|Y

P tr
X|Y| {z }

,⇥⇤(x,y)

·l(x, y, �)dxdy,

≡ 1 !

the support of P tr
Y is richer

P te
Y

P tr
Y

P te
Y 6= P tr

Y , but P te
X|Y = P tr

X|Y , and furthermore

only one PY
P tr

X|Y
����! P te

X

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

x1

x
2

 

 
class 1 (training)

class 2 (training)

class 1 (test)

class 2(test)

boundary (train. data) 

boundary by TarS

Ptr(class 1)=0.6

Pte(class 1)=0.2

2

4

6

8

10

12

14

16

18

20

C
la

ss
ifi

ca
tio

n 
er

ro
r (

%
)

Unweighted
CovS EM

Tar
S

LS−
GeTa

rS

With oracle beta

Oracle test data

(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.



Correcting TarS by Reweighting Target to 
Match Covariate with KMM

•  i.e., minimizing 

• QP problem: unique solution to β! 

• reparameterization such that β is a function of & smooth in y: still a 
QP problem

����µ̂[Pnew
X ]� µ̂[P te

X ]
����2 =

���
���ÛX|Y · 1

m

mX

i=1

�i⇤(y
tr
i )� 1

n

nX

i=1

⌅(xte
i )

���
���
2

=
1

m2
�| L(L+ ⇥mI)�1K(L+ ⇥mI)�1L| {z }

,A

� � 2

mn
1|
nK

c(L+ ⇥mI)�1L| {z }
,M

� + const

�(y) can be estimated by
matching Pnew

X with P te
X : �)≈

Pnew
Y = �(y)P tr

Y P te
Y

P tr
X|Y

Pnew
X P te

X

how to find
�⇤(y) = P te

Y

P tr
Y
?



Correction for TarS: An illustration

−5 0 5 10

−3

−2

−1

0

1

2

3

4

5

6

7

X

Y

 

 

Training data

Test dat

y predicted by target shift

y by unweighted KRR

y fitted on test data (oracle)

(a)

−6 −4 −2 0 2 4 6 8
0

0.5

1

1.5

2

Y

β

 

 

Ptr(Y)

Pte(Y)

Theoretical β
Estimated β

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
S
E
 
o
n
 
t
e
s
t
 
d
a
t
a

Unweighted

Covariate shift

Target shift

With oracle beta

Oracle test data

(b) (c)

Figure 7: Simulation results with a nonlinear relationship between X and Y (the third
scenario). (a) The simulated data sets and fitted functions in one run; note
that y-values of the test data were not given in the training phase, and they
are plotted for illustrative purposes. (b) The theoretical and estimated � values,
together with the theoretical P tr

Y and P te
Y . (c) Boxplot of the performances of five

approaches for 100 runs.
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Figure 7: Simulation results with a nonlinear relationship between X and Y (the third
scenario). (a) The simulated data sets and fitted functions in one run; note
that y-values of the test data were not given in the training phase, and they
are plotted for illustrative purposes. (b) The theoretical and estimated � values,
together with the theoretical P tr

Y and P te
Y . (c) Boxplot of the performances of five

approaches for 100 runs.
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Conditional shift

•   

• In general, not possible: marginal       do not contain enough 
information to determine  

• Change in PX |Y must be constrained

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

If P te
X|Y 6= P tr

X|Y , possible to determine P te
Y |X?

P te
X|Y (or P te

Y |X)

P te
X



Traditional Methods Assume How 
Distribution Changes…

Domain Adaptation under Target and Conditional Shift
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Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n
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 (xtei )
���
���
2

=
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�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2
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1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.
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y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Target shift

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Conditional shift

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Generalized target shift

(Shimodaira 2000; Sugiyama et al. 2008; Huang et al. 2007, Zhang et al., 2013;  Zhang et al., 
2015;  Gong et al., 2016; Stojanov et al., 2018…)

Domain Adaptation under Target and Conditional Shift

Kun Zhang, Bernhard Schölkopf, Krikamol Muandet, Zhikun Wang

Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Tübingen, Germany

Summary: Why and how to correct for target/conditional shift?

•Problem: predicting Y from X , under P tr
Y |X 6= P te

Y |X and P tr
(X) 6= P te

(X), but it is

plausible to assume

?Target shift (TarS): P tr
X|Y = P te

X|Y and P tr
Y 6= P te

Y ,

?Conditional shift (ConS): P tr
X|Y 6= P te

X|Y and P tr
Y = P te

Y , and

?Generalized target shift (GeTarS): P tr
X|Y 6= P te

X|Y and P tr
Y 6= P te

Y .

•Causal interpretations
•E�cient methods to correct for ConS and GeTarS with kernel mean matching

Possible situations for domain adaptation

domain X Y

Figure 1: Covariate shift

domain X Y

Figure 2: Both PX and PY |X change: What to do?

domain Y X

Figure 3: Target shift (or prior probability shift)

domain Y X

Figure 4: GeTarS (Both PX and PY |X change)

domain Y X

Figure 5: GeTarS (Both PX and PY |X change)

domain X Y

Figure 6: GeTarS (Both PX and PY |X change)

- Pte
X helps predict Y %

Distribution shift correction by data transformation/reweighting

•Problem: Given training data D
tr

= {xi, yi}mi=1, find the regressor (e.g., KRR) or classifier (e.g., SVM)

f (x) that works well on test data D
te
= {xi}ni=1.

• Importance reweighting: Minimize the expected loss on test data:

R[Pte, ✓, l(x, y, ✓)] = E
(X,Y )⇠P te

XY
[l(x, y, ✓)] = E

(X,Y )⇠P tr
XY

· Pte
Y /P tr

Y| {z }
,�⇤(y)

· Pte
X|Y /P

tr
X|Y| {z }

,�⇤(y)⌘1 for TarS

· l(x, y, ✓)dxdy.

? assumes the support of Pte
XY is contained by that of Ptr

XY
? factorize PXY as PY PX|Y instead of PXPY |X .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )�⇤(xtri , y

tr
i )l(xtri , y

tr
i , ✓).

• Sample transformation and reweighting: find transformation T such that the conditional distribution

of Xnew
= T (Xtr, Y tr

) satisfies Pnew
X|Y = Pte

X|Y ; the expected loss on the test domain is

R[Pte, ✓, l(x, y; ✓)] = EP te
XY

[l(x, y; ✓)] =

Z
Ptr
Y ·�⇤(y)·Pte

X|Y ·l(x, y; ✓)dxdy = E
(X,Y )⇠P tr

Y Pnew
X|Y

[�⇤(y) · l(x, y; ✓)] .

? empirical version: bR[Pte, ✓, l(x, y; ✓)] = 1

m
Pm

i=1 �
⇤
(ytri )l(xnewi , ytri ; ✓).

? consider (xnew,ytr) as new training data and learn under TarS.

•How to find �⇤(y) and/or T ?

Correction for target shift (Fig. 3)

•Aim to find �⇤(y) = Pte
Y /P tr

Y under TarS: Pte
X|Y = Ptr

X|Y but Pte
Y 6= Ptr

Y , and additional assumptions.

?Richness of traning data: the support of Ptr
(Y ) contains that of Pte

(Y ).

? Invertibility: only one distribution of Y , together with Ptr
X|Y , leads to Pte

X .

?Kernels k (for X) and l (for Y ) are characteristic.

• Traditionally di�cult, but very convenient with kernel mean matching.

? P (X) has a unique embedding

µ[P (X)] with characteristic kernels.

?Avoid explicit estimation of P (X).

? Conditional embedding is an operator

from F to G: U(Y |X) = CY XC�1

XX ;

CY X and CXX are uncentered cross-

and auto-covariance operators.

? µ[P (Y )] = UY |X · µ[P (X)].

? ÛY |X = �(K + �I)�1
 

|
.

P(X) µ[P(X)]

X

Feature map: ψ(xi) = k(xi,·)
Ψ = [ψ(x1), ...,ψ(xm)],
K = ΨTΨ.

Fµ[P(X)] = EP (X)[ψ(X)]

µ̂[P(X)] = 1
m

∑m
i=1 ψ(xi)

x1 x2 x

y
P (Y |x1)

P (Y |x2)
µY |x2

µY |x1

GµY |x = EY |X=x[φ(Y)]

Feature map: φ(yj) = l(yj ,·)
Φ = [φ(y1), ...,φ(yn )],
L= ΦTΦ.

• Let Pnew
Y = �(y)Ptr

Y . We find �⇤(y) by matching Pnew
X (corresponding to Pnew

Y and Ptr
X|Y ) with Pte

X :

�⇤ = argmin
�

���
���µ[Pnew

(X)]� µ[Pte
(X)]

���
��� =

���
���U [Ptr

(X|Y )]EY⇠P tr(Y )[�(y)�(y)]� µ[Pte
(X)]

���
���,

whose empirical version is (Kc
is the “cross” kernel matrix of X between D

tr
and D

te
):

���
���ÛX|Y · 1

m

mX

i=1

�i�(y
tr
i )� 1

n

nX

i=1

 (xtei )
���
���
2

=
1

m2
�|L(L + �mI)�1K(L + �mI)�1L| {z }

,J

� � 2

mn
1
|Kc

(L + �mI)�1L| {z }
,M

� + const.

•As in the covariate shift case [1], �⇤(ytr) can be estimated by solving a constrained QP problem:

min.
1

2
�|J� � m

n
M�, s.t. �i 2 [0, B] and

����
mX

i=1

�i �m

����  m✏; B and ✏ are parameters.

Location-scale generalized conditional shift (Fig. 4)

•Assumption: Both PY and PX|Y change, but PX|Y changes only

in the location and scale:

i.e., 9 w(Y tr
) = diag[w1(Y

tr
), ..., wd(Y

tr
)] and b(Y tr

) =

[b1(Y
tr
), ..., bd(Y

tr
)]
|
such that Xnew , w(Y tr

)Xtr
+ b(Y tr

) sat-

isfies PXnew|Y tr = Pte
X|Y .

• Identifiability: Under certain conditions on Ptr
X|Y (x|yi), P

te
X|Y

and Pte
Y uniquely recovered by reweighting and transoforming

traning data to reproduce Pte
X , i.e., by minimizing

���
���µ[Pnew

X ]� µ[Pte
X ]

���
���,

where µ[Pnew
X ] = U [Pnew

X|Y ]µ[P
new
Y ], Pnew

Y = �Ptr
Y , and

Pnew
X|Y (x|yi) = P

(wi,bi)

X|Y (x|yi), the LS-transformed Ptr
X|Y .

•Objective function: its empirical version

J =

���
���µ̂[Pnew

X ]� µ̂[Pte
X ]

���
���
2

=
1

m2
�|⌦K̃� � 2

mn
1
|
nK̃

c�,

where ⌦ , L(L + �I)�1
, and K̃ is the kernel matrix of x

new
.

•Optimization: Alternate between QP w.r.t. � and SCG optimiza-

tion w.r.t. LS parameters {W,B}.

x2

x1

y = �1

y = 1

Figure 7: An illustration of LS-ConS

where Y is binary and X is two-

dimensional. Red and blue lines are

contours of PX|Y (x|y = �1) and

PX|Y (x|y = 1). Solid and dashed

lines represent the contours on the

training and test domains.

•Regularization on {W,B} for
stability.

Simulations

(a) Regression un-

der TarS, where X
depends on Y non-

linearly.
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(b) Classification

under TarS
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(c) Classification

under LS-GeTarS
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(d) Classification

under non-location-

scale GeTarS
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Real-world problems

•Regression under TarS:

? Cause-e↵ect pair 48 stud-

ied: nonstationary time se-

ries Y ! X , with a strong

dependence.

? Correction for TarS improves

prediction performance. ¨̂

?No improvement for predict-

ing X from Y .
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•Remote sensing image classifica-

tion:

Two data sets collected on two di↵erent

and spatially disjoint areas; the sample on

each area was partitioned into TR and TS.

Figure 8: A misclassification rate on remote sensing data set

with di↵erent distribution shift correction schemes.

Problem Unweight CovS TarS LS-GeTarS

TR1 ! TS2 20.73% 20.73% 20.41% 11.96%

TR2 ! TS1 26.36% 25.32% 26.28% 13.56%

Conclusions

• TarS and GeTarS: a convenient way to deal with the situation where both conditional and marginal distribu-

tions change across domains; why prefer PXY = PY PX|Y ?

• Background (causal) information helps learning: compact description of how distributions change. ¨̂

Refenrence: [1] J. Huang, A. Smola, A. Gretton, K. Borgwardt, and B. Schölkopf, Correcting sample selection bias by unlabeled

data. In NIPS 19, 2008.

• Covariate shift

How to discover and leverage the changeability of the distribution, especially 
in complex situations?

involved param
eters e

stim
ated by m

atch
ing PX



• Domain adaptation / transfer learning: What and Why? 

• Traditional approaches to domain adaptation 

• Adaptive methods for domain adaptation 

• Related problems: image translation, multi-domain generation 

• Future of  domain adaptation

Outline
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A General (😀 or 😟) Approach
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A General Approach: Method
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Domain Adaptation As a Problem of Inference on
Graphical Models
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email

Kun Zhang*, Mingming Gong*, Petar Stojanov, Biwei Huang, Qingsong Liu, Clark Glymour1

Abstract

This paper is concerned with data-driven unsupervised domain adaptation, where2

it is unknown in advance how the joint distribution changes across domains, i.e.,3

what factors or modules of the data distribution remain invariant or change across4

domains. To develop an automated way of domain adaptation with multiple source5

domains, we propose to use a graphical model as a compact way to encode the6

change property of the joint distribution, which can be learned from data, and7

then view domain adaptation as a problem of Bayesian inference on the graphical8

models. Such a graphical model distinguishes between constant and varied modules9

of the distribution and specifies the properties of the changes across domains, which10

serves as prior knowledge of the changing modules for the purpose of deriving the11

posterior of the target variable Y in the target domain. This provides an end-to-end12

framework of domain adaptation, in which additional knowledge about how the13

joint distribution changes, if available, can be directly incorporated to improve the14

graphical representation. We discuss how causality-based domain adaptation can15

be put under this umbrella. Experimental results on both synthetic and real data16

demonstrate the efficacy of the proposed framework for domain adaptation.17

1 Introduction18

Over the past decade, various approaches to unsupervised domain adaptation (DA) have been pursued19

to leverage the source-domain data to make prediction in the new, target domain. In particular, we20

consider the situation with n source domains in which both the d-dimensional feature vector X , whose21

jth dimension is denoted by Xj , and label Y are given, i.e., we are given (x(i),y(i)) = (x(i)
k , y(i)k )mi

k=1,22

where i = 1, ..., n, and mi is the sample size of the ith source domain. We denote by x(i)
jk the value of23

the jth feature of the kth data point (example) in the ith domain. Our goal is to find the classifier for24

the target domain, in which only the features x⌧ = (x⌧
k)

m
k=1 are available. Because the distribution25

may change across domains, clearly the optimal way of adaptation or transfer depends on what26

information is shared across domains and how to do the transfer.27

In the covariate shift scenario, the distribution of the features, P (X), changes, while the conditional28

distribution P (Y |X) remains fixed. A common strategy is to reweight examples from the source29

domain to match the feature distribution in the target domain–an approach extensively studied in30

machine learning; see e.g., [1, 2, 3, 4, 5, 6]. A common prerequisite for such an approach is that31

the support for the source domain include the target domain, but of course this is often not the case.32

Another collection of methods learns a domain-invariant feature representation that has identical33

distributions across the target and source domains [7, 8, 9, 10, 11].34

Submitted to 34th Conference on Neural Information Processing Systems (NeurIPS 2020). Do not distribute.
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Nonstationary/Heterogeneous Data and 
Causal Modeling

• Ubiquity of nonstationary/heterogeneous data

• Nonstationary time series (brain signals, 
climate data...)

• Multiple data sets under different 
observational or experimental conditions

• Causal modeling & distribution shift heavily 
coupled

• P(cause) and P(effect | cause) change 
independently

Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, Schölkopf, "Causal Discovery from Heterogeneous/
Nonstationary Data," JMLR, 2020 
Zhang, Huang, et al., Discovery and visualization of nonstationary causal models, arxiv 2015
Ghassami, et al., Multi-Domain Causal Structure Learning in Linear Systems, NIPS 2018



Causal Discovery from Nonstationary/
Heterogeneous Data

• Determine changing causal modules & 
estimate skeleton 

• Causal orientation determination benefits 
from independent changes in P(cause) and 
P(effect | cause), including invariant 
mechanism/ cause as special cases 

• Visualization of  changing modules over time/ 
across data sets?
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Causal Discovery from Nonstationary Data

to reveal the correct causal structure when the data distri-
bution shifts. If the changes in some variables are related,
one can imagine that there exists some unobservable quan-
tity which influences all those variables and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Similarly, suppose a
variable Vi was generated from its direct causes with a cer-
tain functional causal model (e.g., the linear, non-Gaussian
model (Shimizu et al., 2006)) whose parameters change at
some point. Then if one fits a fixed functional causal model
from the directed causes to Vi, the noise term is usually not
independent from the causes any more, and accordingly it
fails to distinguish the correct causal structure from other
candidates. There exist some methods aiming to detect
the changes (Talih & Hengartner, 2005; Adams & Mackay,
2007; Kummerfeld & Danks, 2013) or directly model time-
varying causal relations (see, e.g., (Huang et al., 2015)) in a
dynamic manner. They usually focus on the linear case, in-
volve high computational load, and cannot quickly locate
changing causal relations. This motivated the following
questions, which are to be answered in this paper.

a) The conditional independence relationships in the data
between the given variables may be changed by shifted
causal models. However, can we find the correct skeleton
of the true causal model efficiently?

b) Can we efficiently identify the variables whose generat-
ing processes (i.e., causal models) change?

c) Compared to the situation with data from a fixed distri-
bution, can the distribution shift phenomenon provide some
benefit in causal discovery, especially in causal direction
determination?

This paper is organized as follows. In Section 2 we give
the problem definition and review related work. Section 3
proposes an enhanced constraint-based approach to robust
and specific causal skeleton discovery, which is able to re-
cover the skeleton of the causal structure underlying the
observed variables and identify those variables whose gen-
erating processes are nonstationary. The remaining prob-
lem is how to determine the direction of the causal con-
nections, which is addressed in Section 4: we show that
the nonstionarity of the distribution usually provides addi-
tional benefit in causal direction determination. Section 5
reports simulations results to test the performance of the
proposed causal discovery approach when the ground truth
is known. Finally, we apply the proposed approach to do
causal discovery from fMRI data and to find the causal re-
lations among a set of stocks from their daily returns in 2.

2. Problem Definition and Related Work

We aim at recovering the causal structure from data when
the causal influences associated with some causal relations

change over time or across domains. In this paper we
assume that the underlying causal structure is a directed
acyclic graph (DAG) and that the causal structure is fixed,
with changing causal models.
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Figure 1. An illustration on how ignoring changes in the causal
model may lead to spurious connections by the constraint-based
method. (a) The true causal graph (including confounder g(C)).
(b) The estimated conditional independence graph on the ob-
served data in the asymptotic case.

Let us decompose the joint probability distribution of the
given variable set V = {Vi}ni=1 according to the DAG as

P (V) =
nY

i=1

P (Vi |PAi), (1)

where PAi denotes the set of parents (or direct causes)
of variable Vi in the causal DAG. Here we call each
P (Vi |PAi) a causal module. Clearly, in the presence of
distribution shifts, there must be changes in certain causal
modules P (Vk |PAk), k 2 N , to generate the change of
the data distribution. We call those causal modules non-
stationary causal modules. Their changes may be caused
by the change of the involved functional models, causal
strengths, noise levels, etc. We assume that the changes
in those quantities can be written as functions of the time
or domain index, and denote by C such an index.

If the changes in some modules are related, one can
imagine that there exist some unobservable quantity (con-
founder) which influences those modules and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Therefore, the original
constraint-based approach, like PC (Spirtes et al., 2001;
Pearl, 2000), may not be able to reveal the true causal struc-
ture. This is especially the case for the causal network in
the brain: the causal influences in different causal modules
in the brain may change with stimuli, tasks, states, the at-
tention of the subject, etc. As an illustration, suppose that
the observed data were generated according to Fig. 1(a),
where g(C), a function of C, is involved in the generating
processes in both V2 and V4; the conditional independence
graph on the observed data then contains spurious connec-
tions V1 � V4 and V2 � V4, because there is only one con-
ditional independence relationship, V3 ?? V1 |V2, as shown
in 1(b). Moreover, when one fits a fixed functional causal
model (e.g., the linear, non-Gaussian model (Shimizu et al.,
2006)) on the data with changing causal influences, the
estimated noise may not be independent from the cause
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Causal Discovery from Nonstationary Data

to reveal the correct causal structure when the data distri-
bution shifts. If the changes in some variables are related,
one can imagine that there exists some unobservable quan-
tity which influences all those variables and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Similarly, suppose a
variable Vi was generated from its direct causes with a cer-
tain functional causal model (e.g., the linear, non-Gaussian
model (Shimizu et al., 2006)) whose parameters change at
some point. Then if one fits a fixed functional causal model
from the directed causes to Vi, the noise term is usually not
independent from the causes any more, and accordingly it
fails to distinguish the correct causal structure from other
candidates. There exist some methods aiming to detect
the changes (Talih & Hengartner, 2005; Adams & Mackay,
2007; Kummerfeld & Danks, 2013) or directly model time-
varying causal relations (see, e.g., (Huang et al., 2015)) in a
dynamic manner. They usually focus on the linear case, in-
volve high computational load, and cannot quickly locate
changing causal relations. This motivated the following
questions, which are to be answered in this paper.

a) The conditional independence relationships in the data
between the given variables may be changed by shifted
causal models. However, can we find the correct skeleton
of the true causal model efficiently?

b) Can we efficiently identify the variables whose generat-
ing processes (i.e., causal models) change?

c) Compared to the situation with data from a fixed distri-
bution, can the distribution shift phenomenon provide some
benefit in causal discovery, especially in causal direction
determination?

This paper is organized as follows. In Section 2 we give
the problem definition and review related work. Section 3
proposes an enhanced constraint-based approach to robust
and specific causal skeleton discovery, which is able to re-
cover the skeleton of the causal structure underlying the
observed variables and identify those variables whose gen-
erating processes are nonstationary. The remaining prob-
lem is how to determine the direction of the causal con-
nections, which is addressed in Section 4: we show that
the nonstionarity of the distribution usually provides addi-
tional benefit in causal direction determination. Section 5
reports simulations results to test the performance of the
proposed causal discovery approach when the ground truth
is known. Finally, we apply the proposed approach to do
causal discovery from fMRI data and to find the causal re-
lations among a set of stocks from their daily returns in 2.

2. Problem Definition and Related Work

We aim at recovering the causal structure from data when
the causal influences associated with some causal relations

change over time or across domains. In this paper we
assume that the underlying causal structure is a directed
acyclic graph (DAG) and that the causal structure is fixed,
with changing causal models.
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Figure 1. An illustration on how ignoring changes in the causal
model may lead to spurious connections by the constraint-based
method. (a) The true causal graph (including confounder g(C)).
(b) The estimated conditional independence graph on the ob-
served data in the asymptotic case.

Let us decompose the joint probability distribution of the
given variable set V = {Vi}ni=1 according to the DAG as

P (V) =
nY

i=1

P (Vi |PAi), (1)

where PAi denotes the set of parents (or direct causes)
of variable Vi in the causal DAG. Here we call each
P (Vi |PAi) a causal module. Clearly, in the presence of
distribution shifts, there must be changes in certain causal
modules P (Vk |PAk), k 2 N , to generate the change of
the data distribution. We call those causal modules non-
stationary causal modules. Their changes may be caused
by the change of the involved functional models, causal
strengths, noise levels, etc. We assume that the changes
in those quantities can be written as functions of the time
or domain index, and denote by C such an index.

If the changes in some modules are related, one can
imagine that there exist some unobservable quantity (con-
founder) which influences those modules and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Therefore, the original
constraint-based approach, like PC (Spirtes et al., 2001;
Pearl, 2000), may not be able to reveal the true causal struc-
ture. This is especially the case for the causal network in
the brain: the causal influences in different causal modules
in the brain may change with stimuli, tasks, states, the at-
tention of the subject, etc. As an illustration, suppose that
the observed data were generated according to Fig. 1(a),
where g(C), a function of C, is involved in the generating
processes in both V2 and V4; the conditional independence
graph on the observed data then contains spurious connec-
tions V1 � V4 and V2 � V4, because there is only one con-
ditional independence relationship, V3 ?? V1 |V2, as shown
in 1(b). Moreover, when one fits a fixed functional causal
model (e.g., the linear, non-Gaussian model (Shimizu et al.,
2006)) on the data with changing causal influences, the
estimated noise may not be independent from the cause

With our proposed approach:
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Finding Causal Skeleton and 
Changing Modules

• Incorporate C into the variable set as a 
surrogate + apply constraint-based 
causal discovery

• Detecting changing causal modules

• “Robust” causal skeleton discovery

• We can find the correct causal skeleton 
asymptotically correctly, as if the 
confounders were known
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Figure 1: An illustration on how ignoring changes in the causal model may lead
to spurious connections by the constraint-based method. (a) The true causal
graph (including confounder g(C)). (b) The estimated conditional independence
graph on the observed data in the asymptotic case.

If the changes in some modules are related, one can treat the situation as
if there exists some unobserved quantity (confounder) which influences those
modules and, as a consequence, the conditional independence relationships in
the distribution-shifted data will be di↵erent from those implied by the true
causal structure. Therefore, standard constraint-based algorithms such as PC [2,
3] may not be able to reveal the true causal structure. As an illustration,
suppose that the observed data were generated according to Fig. 1(a), where
g(C), a function of C, is involved in the generating processes for both V2 and
V4; the conditional independence graph for the observed data then contains
spurious connections V1 �V4 and V2 �V4, because there is only one conditional
independence relationship, V3 ?? V1 |V2, as shown in Fig. 1(b).
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Figure 2: Illustration on the failure of using the approach based on functional
causal models for causal direction determination when the causal model changes.
(a) Scatter plot of V1 and V2 on data set 1. (b) That on data set 2. (c) That
on merged data (both data sets). (d) The scatter plot of V1 and the estimated
regression residual on merged data.

Moreover, when one fits a fixed functional causal model (e.g., a linear, non-
Gaussian model [6]) to distribution-shifted data, the estimated noise may not
be independent from the cause any more. Consequently, the approach based
on restricted functional causal models in general cannot infer the correct causal
structure either. Fig. 2 gives an illustration on this. Suppose we have two data
sets for variables V1 and V2: V2 is generated from V1 according to V2 = 0.3V1+E
in the first and according to V2 = 0.7V1+E in the second, and in both data sets
V1 and E are mutually independent and follow a uniform distribution. Fig. 2(a
- c) show the scatter plots of V1 and V2 on data set 1, on data set 2, and on
merged data, respectively. (d) then shows the scatter plot of V1, the cause, and
the estimated regression residual on both data sets; they are not independent
any more, although on either data set the regression residual is independent
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Figure 1: An illustration on how ignoring changes in the causal model may lead
to spurious connections by the constraint-based method. (a) The true causal
graph (including confounder g(C)). (b) The estimated conditional independence
graph on the observed data in the asymptotic case.

If the changes in some modules are related, one can treat the situation as if
there exists some unobserved quantity (confounder) which influences those mod-
ules and, as a consequence, the conditional independence relationships in the
distribution-shifted data will be di↵erent from those implied by the true causal
structure. Therefore, standard constraint-based algorithms such as PC [?, ?]
may not be able to reveal the true causal structure. As an illustration, suppose
that the observed data were generated according to Fig. ??(a), where g(C),
a function of C, is involved in the generating processes for both V2 and V4;
the conditional independence graph for the observed data then contains spu-
rious connections V1 � V4 and V2 � V4, because there is only one conditional
independence relationship, V3 ?? V1 |V2, as shown in Fig. ??(b).
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Figure 2: Illustration on the failure of using the approach based on functional
causal models for causal direction determination when the causal model changes.
(a) Scatter plot of V1 and V2 on data set 1. (b) That on data set 2. (c) That
on merged data (both data sets). (d) The scatter plot of V1 and the estimated
regression residual on merged data.

Moreover, when one fits a fixed functional causal model (e.g., a linear, non-
Gaussian model [?]) to distribution-shifted data, the estimated noise may not
be independent from the cause any more. Consequently, the approach based
on restricted functional causal models in general cannot infer the correct causal
structure either. Fig. ?? gives an illustration on this. Suppose we have two data
sets for variables V1 and V2: V2 is generated from V1 according to V2 = 0.3V1+E
in the first and according to V2 = 0.7V1+E in the second, and in both data sets
V1 and E are mutually independent and follow a uniform distribution. Fig. ??(a
- c) show the scatter plots of V1 and V2 on data set 1, on data set 2, and on
merged data, respectively. (d) then shows the scatter plot of V1, the cause, and
the estimated regression residual on both data sets; they are not independent
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Crucial to use nonparametric 
conditional independence test !

Algorithm 1 Detection of Changing Modules and Recovery of Causal Skeleton

1. Build a complete undirected graph UC on the variable set V [ {C}.

2. (Detection of changing modules) For every i, test for the marginal and
conditional independence between Vi and C. If they are independent
given a subset of {Vk | k 6= i}, remove the edge between Vi and C in UC .

3. (Reovery of causal skeleton) For every i 6= j, test for the marginal and
conditional independence between Vi and Vj . If they are independent
given a subset of {Vk | k 6= i, k 6= j} [ {C}, remove the edge between Vi

and Vj in UC .

Step 3 aims to discover the skeleton of the causal structure over V. Its
(asympototic) correctness is justified by the following theorem (a proof of which
is given in the Supplementary Material):

Theorem 1. Given the previous assumptions, for every Vi, Vj 2 V, Vi and Vj

are not adjacent in the original causal DAG G if and only if they are independent
conditional on some subset of {Vk | k 6= i, k 6= j} [ {C}.

Proof. Before getting to the main argument, let us establish some implications
of the SEMs Eq. 2 and the assumptions in Section 3.1. Since the structure is
assumed to be acyclic or recursive, according to Eq. 2, all variables Vi can be
written as a function of {gl(C)}Ll=1 [ {✓m(C)}nm=1 and {✏m}

n
m=1. As a conse-

quence, the probability distribution of V at each value of C is determined by
the distribution of ✏1, ..., ✏n, and the values of {gl(C)}Ll=1 [ {✓m(C)}nm=1. In
other words, p(V|C) is determined by

Qn
i=1 p(✏i) (for ✏1, ..., ✏n are mutually in-

dependent), and {gl(C)}Ll=1 [ {✓m(C)}nm=1, where p(·) denotes the probability
density or mass function. For any Vi, Vj , and Vij

✓ {Vk | k 6= i, k 6= j}, because
p(Vi, Vj |Vij , C) is determined by p(V|C), it is also determined by

Qn
i=1 p(✏i)

and {gl(C)}Ll=1 [ {✓m(C)}nm=1. Since
Qn

i=1 p(✏i) does not change with C, we
have

p(Vi, Vj |V
ij
[ {gl(C)}Ll=1 [ {✓m(C)}nm=1 [ {C})

=p(Vi, Vj |V
ij
[ {gl(C)}Ll=1 [ {✓m(C)}nm=1). (3)

That is,
C ?? (Vi, Vj) |V

ij
[ {gl(C)}Ll=1 [ {✓m(C)}nm=1. (4)

By the weak union property of conditional independence, it follows that

C ?? Vj | {Vi} [Vij
[ {gl(C)}Ll=1 [ {✓m(C)}nm=1. (5)

We are now ready to prove the theorem. Let Vi, Vj be any two variables
in V. First, suppose that Vi and Vj are not adjacent in G. Then they are
not adjacent in Gaug, which recall is the graph that incorporates {gl(C)}Ll=1 [

7



Nonstationarity Helps 
Determine Causal Direction

• Independent changes in P(cause) and P(effect | cause): 
generalization of invariance; generally violated for wrong directions 

• Special cases: if                   , since             , we known 

•                      , if C ⫫ Vl  given a variable set excluding Vk

•                      , if C ⫫ Vl  given a variable set including Vk
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Figure 1: An illustration on how ignoring changes in the causal model may lead
to spurious connections by the constraint-based method. (a) The true causal
graph (including confounder g(C)). (b) The estimated conditional independence
graph on the observed data in the asymptotic case.

If the changes in some modules are related, one can treat the situation as
if there exists some unobserved quantity (confounder) which influences those
modules and, as a consequence, the conditional independence relationships in
the distribution-shifted data will be di↵erent from those implied by the true
causal structure. Therefore, standard constraint-based algorithms such as PC [2,
3] may not be able to reveal the true causal structure. As an illustration,
suppose that the observed data were generated according to Fig. 1(a), where
g(C), a function of C, is involved in the generating processes for both V2 and
V4; the conditional independence graph for the observed data then contains
spurious connections V1 �V4 and V2 �V4, because there is only one conditional
independence relationship, V3 ?? V1 |V2, as shown in Fig. 1(b).
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Figure 2: Illustration on the failure of using the approach based on functional
causal models for causal direction determination when the causal model changes.
(a) Scatter plot of V1 and V2 on data set 1. (b) That on data set 2. (c) That
on merged data (both data sets). (d) The scatter plot of V1 and the estimated
regression residual on merged data.

Moreover, when one fits a fixed functional causal model (e.g., a linear, non-
Gaussian model [6]) to distribution-shifted data, the estimated noise may not
be independent from the cause any more. Consequently, the approach based
on restricted functional causal models in general cannot infer the correct causal
structure either. Fig. 2 gives an illustration on this. Suppose we have two data
sets for variables V1 and V2: V2 is generated from V1 according to V2 = 0.3V1+E
in the first and according to V2 = 0.7V1+E in the second, and in both data sets
V1 and E are mutually independent and follow a uniform distribution. Fig. 2(a
- c) show the scatter plots of V1 and V2 on data set 1, on data set 2, and on
merged data, respectively. (d) then shows the scatter plot of V1, the cause, and
the estimated regression residual on both data sets; they are not independent
any more, although on either data set the regression residual is independent
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Figure 1: An illustration on how ignoring changes in the causal model may lead
to spurious connections by the constraint-based method. (a) The true causal
graph (including confounder g(C)). (b) The estimated conditional independence
graph on the observed data in the asymptotic case.

If the changes in some modules are related, one can treat the situation as if
there exists some unobserved quantity (confounder) which influences those mod-
ules and, as a consequence, the conditional independence relationships in the
distribution-shifted data will be di↵erent from those implied by the true causal
structure. Therefore, standard constraint-based algorithms such as PC [?, ?]
may not be able to reveal the true causal structure. As an illustration, suppose
that the observed data were generated according to Fig. ??(a), where g(C),
a function of C, is involved in the generating processes for both V2 and V4;
the conditional independence graph for the observed data then contains spu-
rious connections V1 � V4 and V2 � V4, because there is only one conditional
independence relationship, V3 ?? V1 |V2, as shown in Fig. ??(b).
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Figure 2: Illustration on the failure of using the approach based on functional
causal models for causal direction determination when the causal model changes.
(a) Scatter plot of V1 and V2 on data set 1. (b) That on data set 2. (c) That
on merged data (both data sets). (d) The scatter plot of V1 and the estimated
regression residual on merged data.

Moreover, when one fits a fixed functional causal model (e.g., a linear, non-
Gaussian model [?]) to distribution-shifted data, the estimated noise may not
be independent from the cause any more. Consequently, the approach based
on restricted functional causal models in general cannot infer the correct causal
structure either. Fig. ?? gives an illustration on this. Suppose we have two data
sets for variables V1 and V2: V2 is generated from V1 according to V2 = 0.3V1+E
in the first and according to V2 = 0.7V1+E in the second, and in both data sets
V1 and E are mutually independent and follow a uniform distribution. Fig. ??(a
- c) show the scatter plots of V1 and V2 on data set 1, on data set 2, and on
merged data, respectively. (d) then shows the scatter plot of V1, the cause, and
the estimated regression residual on both data sets; they are not independent
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4.1 Inference of the Causal Direction between Variables
with Changing Modules

V1 V2

✓1(C) ✓2(C)

V1 V2

✓1(C) ✓2(C)

g1(C)

(a) (b)

Figure 3: Two possible situations where V1 ! V2 are adjacent to each other
and both of them are adjacent to C. (a) ✓1(C) ?? ✓2(C). (b) In addition to the
changing parameters, there is a confounder g1(C) underlying V1 and V2.

We now develop a heuristic method to deal with Case 2 above. For simplicity,
let us start with the two variable case: suppose V1 and V2 are adjacent and
are both adjacent to C (and not adjacent to any other variable). We aim
to identify the causal direction between them, which we suppose to be V1 !

V2. Note that although both of V1 and V2 are adjacent to C, there does not
necessarily exist a confounder. Fig. 3(a) shows the case where the involved
changing parameters, ✓1(C) and ✓2(C) are independent, i.e., P (V 1; ✓1) and
P (V 2 |V1; ✓2) change independently. (We dropped the argument C in ✓1 and ✓2
to simplify notations.)

For the reverse direction, one can decompose the joint distribution of (V1, V2)
according to

P (V1, V2; ✓
0
1, ✓

0
2) = P (V2; ✓

0
2)P (V1 |V2; ✓

0
1), (12)

where ✓01 and ✓02 are su�cient for the corresponding distribution terms. Gen-
erally speaking, ✓01 and ✓02 are not independent, because they are determined
jointly by both ✓1 and ✓2. We assume that this is the case, and identify the
direction between V1 and V2 based on this assumption.

Now we face two problems. First, how can we compare the dependence
between ✓1 and ✓2 and that between between ✓01 and ✓02? Second, in practice we
do not have such parameters, and how can we compare the dependence based
on the given data? We shall make use of the independent contributions from ✓1
and ✓2 and (usually) dependent contributions from ✓01 and ✓02.

The total contribution (or causal e↵ect; see [?]) from ✓01 and ✓02 to (V1, V2)
can be measured with mutual information:

S(✓0
1,✓

0
2)!(V1,V2) = I

�
(✓01, ✓

0
2); (V1, V2)

�

=I(✓02;V2) + I(✓01;V1 |V2) + I(✓02;V1 | ✓
0
1, V2)

=I(✓02;V2) + I(✓01;V1 |V2), (13)

where the second equality holds because of the chain rule, and the last one
because the su�ciency of ✓01 for P (V1 |V2; ✓01) implies ✓02 ?? V1 | ✓01, V2. Eq. 13
involves the regular mutual information and conditional mutual information.
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Therefore, Vi are Vj are not adjacent in G if and only if they are conditionally
independent given some subset of {Vk | k 6= i, k 6= j} [ {C}.

In the above procedure, it is crucial to use a general, nonparametric condi-
tional independence test, for how variables depend on C is unkown and usually
very nonlinear. In this work, we use the kernel-based conditional independence
test (KCI-test [?]) to capture the dependence on C in a nonparametric way.
By contrast, if we use, for example, tests of vanishing partial correlations, as is
widely used in the neuroscience community, the proposed method will not work
well.

4 An Advantage of Nonstationarity in Determi-
nation of Causal Direction

We now show that using the additional variable C as a surrogate not only
allows us to infer the skeleton of the causal structure, but also facilitates the
determination of some causal directions. Let us call those variables that are
adjacent to C in the output of Algorithm 1 “C-specific variables”, which are
actually the e↵ects of nonstationary causal modules. For each C-specific variable
Vk, it is possible to determine the direction of every edge incident to Vk, or in
other words, it is possible to infer PAk. Let Vl be any variable adjacent to Vk
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Vk, then the triple is a V-structure, and we have Vk  Vl. Otherwise, if
Vl and C are independent given a set of variables including Vk, then the
triple is not a V-structure, and we have Vk ! Vl.

2. Vl is also adjacent to C. This case is more complex than Case 1, but it is
still possible to identify the causal direction between Vk and Vl, based on
the principle that P (cause) and P (effect | cause) change independently;
a heuristic method is given in Section 4.1.

The procedure in Case 1 contains the methods proposed in [?, ?] for causal
discovery from changes as special cases, which may also be interpreted as special
cases of the principle underlying the method for Case 2: if one of P (cause) and
P (effect | cause) changes while the other remains invariant, they are clearly
independent.

9

Therefore, Vi are Vj are not adjacent in G if and only if they are conditionally
independent given some subset of {Vk | k 6= i, k 6= j} [ {C}.

In the above procedure, it is crucial to use a general, nonparametric condi-
tional independence test, for how variables depend on C is unkown and usually
very nonlinear. In this work, we use the kernel-based conditional independence
test (KCI-test [?]) to capture the dependence on C in a nonparametric way.
By contrast, if we use, for example, tests of vanishing partial correlations, as is
widely used in the neuroscience community, the proposed method will not work
well.

4 An Advantage of Nonstationarity in Determi-
nation of Causal Direction

We now show that using the additional variable C as a surrogate not only
allows us to infer the skeleton of the causal structure, but also facilitates the
determination of some causal directions. Let us call those variables that are
adjacent to C in the output of Algorithm 1 “C-specific variables”, which are
actually the e↵ects of nonstationary causal modules. For each C-specific variable
Vk, it is possible to determine the direction of every edge incident to Vk, or in
other words, it is possible to infer PAk. Let Vl be any variable adjacent to Vk

in the output of Algorithm 1. There are two possible cases to consider:

1. Vl is not adjacent to C. Then C � Vk � Vl C ! Vk  Vl C ! Vk ! Vl

forms an unshielded triple in the skeleton. For practical purposes, we can
take the direction between C and Vk as C ! Vk (though we do not claim
C to be a cause in any substantial sense). Then we can use the standard
orientation rules for unshielded triples to orient the edge between Vk and
Vl [?, ?]: if Vl and C are independent given a set of variables excluding
Vk, then the triple is a V-structure, and we have Vk  Vl. Otherwise, if
Vl and C are independent given a set of variables including Vk, then the
triple is not a V-structure, and we have Vk ! Vl.

2. Vl is also adjacent to C. This case is more complex than Case 1, but it is
still possible to identify the causal direction between Vk and Vl, based on
the principle that P (cause) and P (effect | cause) change independently;
a heuristic method is given in Section 4.1.

The procedure in Case 1 contains the methods proposed in [?, ?] for causal
discovery from changes as special cases, which may also be interpreted as special
cases of the principle underlying the method for Case 2: if one of P (cause) and
P (effect | cause) changes while the other remains invariant, they are clearly
independent.

9

Therefore, Vi are Vj are not adjacent in G if and only if they are conditionally
independent given some subset of {Vk | k 6= i, k 6= j} [ {C}.

In the above procedure, it is crucial to use a general, nonparametric condi-
tional independence test, for how variables depend on C is unkown and usually
very nonlinear. In this work, we use the kernel-based conditional independence
test (KCI-test [?]) to capture the dependence on C in a nonparametric way.
By contrast, if we use, for example, tests of vanishing partial correlations, as is
widely used in the neuroscience community, the proposed method will not work
well.

4 An Advantage of Nonstationarity in Determi-
nation of Causal Direction

We now show that using the additional variable C as a surrogate not only
allows us to infer the skeleton of the causal structure, but also facilitates the
determination of some causal directions. Let us call those variables that are
adjacent to C in the output of Algorithm 1 “C-specific variables”, which are
actually the e↵ects of nonstationary causal modules. For each C-specific variable
Vk, it is possible to determine the direction of every edge incident to Vk, or in
other words, it is possible to infer PAk. Let Vl be any variable adjacent to Vk

in the output of Algorithm 1. There are two possible cases to consider:

1. Vl is not adjacent to C. Then C � Vk � Vl C ! Vk  Vl C ! Vk ! Vl

forms an unshielded triple in the skeleton. For practical purposes, we can
take the direction between C and Vk as C ! Vk (though we do not claim
C to be a cause in any substantial sense). Then we can use the standard
orientation rules for unshielded triples to orient the edge between Vk and
Vl [?, ?]: if Vl and C are independent given a set of variables excluding
Vk, then the triple is a V-structure, and we have Vk  Vl. Otherwise, if
Vl and C are independent given a set of variables including Vk, then the
triple is not a V-structure, and we have Vk ! Vl.

2. Vl is also adjacent to C. This case is more complex than Case 1, but it is
still possible to identify the causal direction between Vk and Vl, based on
the principle that P (cause) and P (effect | cause) change independently;
a heuristic method is given in Section 4.1.

The procedure in Case 1 contains the methods proposed in [?, ?] for causal
discovery from changes as special cases, which may also be interpreted as special
cases of the principle underlying the method for Case 2: if one of P (cause) and
P (effect | cause) changes while the other remains invariant, they are clearly
independent.

9

Therefore, Vi are Vj are not adjacent in G if and only if they are conditionally
independent given some subset of {Vk | k 6= i, k 6= j} [ {C}.

In the above procedure, it is crucial to use a general, nonparametric condi-
tional independence test, for how variables depend on C is unkown and usually
very nonlinear. In this work, we use the kernel-based conditional independence
test (KCI-test [?]) to capture the dependence on C in a nonparametric way.
By contrast, if we use, for example, tests of vanishing partial correlations, as is
widely used in the neuroscience community, the proposed method will not work
well.

4 An Advantage of Nonstationarity in Determi-
nation of Causal Direction

We now show that using the additional variable C as a surrogate not only
allows us to infer the skeleton of the causal structure, but also facilitates the
determination of some causal directions. Let us call those variables that are
adjacent to C in the output of Algorithm 1 “C-specific variables”, which are
actually the e↵ects of nonstationary causal modules. For each C-specific variable
Vk, it is possible to determine the direction of every edge incident to Vk, or in
other words, it is possible to infer PAk. Let Vl be any variable adjacent to Vk

in the output of Algorithm 1. There are two possible cases to consider:

1. Vl is not adjacent to C. Then C � Vk � Vl C ! Vk  Vl C ! Vk ! Vl

forms an unshielded triple in the skeleton. For practical purposes, we can
take the direction between C and Vk as C ! Vk (though we do not claim
C to be a cause in any substantial sense). Then we can use the standard
orientation rules for unshielded triples to orient the edge between Vk and
Vl [?, ?]: if Vl and C are independent given a set of variables excluding
Vk, then the triple is a V-structure, and we have Vk  Vl. Otherwise, if
Vl and C are independent given a set of variables including Vk, then the
triple is not a V-structure, and we have Vk ! Vl.

2. Vl is also adjacent to C. This case is more complex than Case 1, but it is
still possible to identify the causal direction between Vk and Vl, based on
the principle that P (cause) and P (effect | cause) change independently;
a heuristic method is given in Section 4.1.

The procedure in Case 1 contains the methods proposed in [?, ?] for causal
discovery from changes as special cases, which may also be interpreted as special
cases of the principle underlying the method for Case 2: if one of P (cause) and
P (effect | cause) changes while the other remains invariant, they are clearly
independent.

9

Invar
iant ca

use

Invar
iant 

mechanism

Hoover. The logic of causal inference. Economics and Philosophy, 6:207–234, 1990.

23



An Approach to Data-Driven Domain 
Adaptation

• Only relevant features needed to predict Y 

• Augmented graph learned by CD-NOD 

• Independently changing modules 𝜃i 

• Special case: invariant modules 

• Domain adaption: inference on this graphical model 

• Infer the posterior of  Y in target domain 

• Nonparametric methods to model conditional distributions

Data set 1
Data set 2

Data set n

...

edges, such a “supernode" can be considered as a chain component of the chain graph [34], and the145

joint distribution can be factorized as a “DAG of chain components".) For instance, for the digit146

recognition problem, one can view the pixels of the digit image as such a “supernode" in the graph.147

Finally, as discussed above, for the purpose of predicting Y , we only need to exploit the conditional148

distributions of Y and its children. Hence, in practice one may not need to find the whole graph over149

all features and Y . This observation may accelerate the procedure of learning the augmented graph,150

which will be discussed in Section 3.1.151

2.1.1 Relation to Causal Graphs152

X4X2 X6YX1

X3 X7X5

✓1 ✓Y ✓2✓3 ✓6

mi

Figure 1: An augmented DAG over Y and Xi. For any vari-
able V with a ✓ variable/vector as its parent, the conditional
distribution P (V |PA(V )) may change across domains. The
✓ variables take the same value within each domain.

If the causal graph underlying the ob-153

served data is known, there is no con-154

founder (hidden direct common cause155

of two variables), and the observed156

data are perfect random samples from157

the populations implied by the causal158

model, then one can directly benefit159

from using the causal model for trans-160

fer learning, if it is known, as shown161

in [35, 14, 36]. If fact, in this case our162

graphical representation will encode163

the same set of conditional indepen-164

dence relations as the original causal model.165

It is worth noting that the causal model, on its own, might not be sufficient to explain the properties of166

the data, for instance, because of selection bias [37], which is often present in the sample. Furthermore,167

it is notoriously difficult to find causal relations based on observational data; to achieve it, one often168

has to make rather strong assumptions on the causal model (such as faithfulness [38]) and sampling169

process. On the other hand, it is rather easy to find the graphical model purely as a description of170

conditional independence relationships in the variables as well as the properties of changes in the171

distribution modules. The underlying causal structure may be very different from the augmented DAG172

we adopt. For instance, let Y be disease and X the corresponding symptoms. It is natural to have Y173

as a cause of X . Suppose we have data collected in difference clinics (domains) and that subjects are174

assigned to different clinics in a probabilistic way according to how severe the symptoms (X) are.175

Then one can see that across domains we have changing P (X) but a fixed P (Y |X) and, accordingly,176

in the augmented DAG has a directed link from X to Y , contrary to the causal direction. For detailed177

examples as well as the involved causal graphs and augmented DAGs, please see Appendix.178

2.2 Inference on Augmented Graphical Models for DA179

We now aim to predict the value (or the distribution) of Y given the observed features x⌧ in the target180

domain, which is about P (Y⌧
|x⌧ ), where Yt is the concatenation of Y across all data points in181

the target domain. To achieve so, we have several issues to address. First, which features should182

be included in the prediction/inference procedure? Second, as illustrated in Figure 1, a number of183

distribution factors change across domains, indicated by the links from the ✓ variables, and it is not184

necessary to consider all of them for the purpose of DA–which changing factors should be adapted to185

the target-domain data? Third, for all data in the same domain the ✓ variables take the same value.186

It is then necessary to properly take into account this “parameter sharing" property in the inference187

procedure.188

Let us first show the general results on calculation of P (Y⌧
|x⌧ ), based on which prediction in189

the target domain is made. We then discuss how to simplify the estimator, thanks to the specific190

augmented graphical structure over X and Y . As the data are I.I.D. given the values of ✓, we know191

P (x,y |✓) =
Q

k P (xk, yk |✓) and P (x |✓) =
Q

k P (xk |✓). Also bearing in mind that the value192

of ✓ is shared within the same domain, we have193

P (Y⌧ = y⌧
|x⌧ ) =

P (y⌧
,x⌧ )

P (x⌧ )
=

R
P (y⌧

|x⌧
,✓)P (x⌧

,✓)d✓R Q
k P (x⌧
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Z Y
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⌧
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To Model Changing Conditional 
Distributions

• Assume Y →X

• Why & how does the 
distribution change across 
domains?

• Generative network + (minimal) 
(latent) parameters θ to model 
changes in the causal process

• Understanding & generating 
new domains

5.4 Prediction

5.5 A More General Framework Suitable for Large Data

If one ignores its specific structure and consider it as a network, Fig. 2 actually
takes Y,E1, E2,✓1,✓2 as input and outputs (X1, X2). This can be seen as a
particular type of GAN for domain adaptation, in which the parameters are
used to capture the variability across domains... Generally speaking, however,
this requires a larger sample size to estimate the network and the values of the
parameters ✓1,✓2 for di↵erent domains...

f (rep-
resented
by NN)

Y

E1...
Em

✓1
...

✓p

X̂1

...

X̂n

Figure 4: General adaptation network.

6 Related Work

domain adaptation...
multi-task learning...
causal discovery...

7 Simulation

8 Experiments on Real Data
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Results on Simulated & Real Data
Table 1: Accuracy on simulated datasets for the baselines and proposed method. The values presented
are averages over 10 replicates for each experiment. Standard deviation is in parentheses.

DICA weigh simple_adapt comb_classif LMP poolSVM Infer
9 sources 80.04(15.5) 72.1(14.5) 70.0(14.3) 72.34(16.24) 78.90(13.81) 71.8(11.43) 83.90(9.02)

4 sources 74.16(13.2) 67.88(13.7) 65.22(16.00) 69.64(15.8) 79.06(13.93) 70.08(12.25) 85.38(11.31)

2 sources 86.56(13.63) 75.04(18.8) 69.42(17.87) 74.28(18.2) 84.52(13.72) 83.84(13.7) 93.10(7.17).

4 Experiments

4.1 Simulations

We simulate binary classification data from the graph on Figure 1, where we vary the number of
source domains between 2, 4 and 9. We model each module in the graph with 1-hidden-layer MLPs
with 32 nodes. In each replication, we randomly sample the MLP parameters and domain-specific
✓ values from N(0, I). We sampled 500 points in each source domain and the target domain. We
compare our approach, denoted by Infer against alternatives. We include a hypothesis combination
method, denoted simple_adapt [27], linear mixture of source conditionals [16] denoted by weigh
and comb_classif respectively. We also compare to the pooling SVM (denoted poolSVM), which
merges all source data to train the SVM, as well as domain-invariant component analysis (DICA) [44],
and Learning marginal predictors (LMP) [45]. The results are presented in Table 1. From the results,
it can be seen that the proposed method outperforms the baselines by a large margin. Regarding
significance of the results, we compared our method with the two other most powerful methods
(DICA and LMP) using Wilcoxon signed rank test. The the p-values are 0.074, 0.009, 0.203 (against
DICA) and 0.067, 0.074, 0.074 (against LMP), for 2, 4, and 9 source domains, respectively.

4.2 Wi-Fi Localization Dataset

We then perform evaluations on the cross-domain indoor WiFi location dataset [46]. The WiFi data
were collected from a building hallway area, which was discretized into a space of grids. At each grid
point, the strength of WiFi signals received from D access points was collected. We aim to predict
the location of the device from the D-dimensional WiFi signals.

For the multiple-source setting, we cast it as a classification problem, where each location is assigned
with a discrete label. We consider the task of transfer between different time periods, because the
distribution of signal strength changes with time while the underlying graphical model is rather
stable, which satisfies our assumption. The WiFi data were collected by the same device during three
different time periods t1, t2, and t3 in the same hallway. Three sub-tasks including t2, t3 ! t1,
t1, t3 ! t2, and t1, t2 ! t3 are taken for performance evaluation. We thus obtained 19 possible
labels, and in each domain we sampled 700 points in 10 replicates. We learn the graphical model
and changing modules from the two source domains, and perform learning and Bayesian inference
in all the domains. The graph learned from the Wifi t1 and t2 data is given in the Appendix A6.
We implement our LV-CGAN by using Multi-Layer Perceptions (MLPs) with one hidden layer (32
nodes) to model the function of each module and set the dimension of input noise E and ✓ involved
in each module to 1. The reported result is classification accuracy of location labels. We use the
same baselines as in the simulated dataset, excluding simple_adapt and comb_classif, and add a
stronger baseline poolNN which replaces SVM in poolSVM with NN. We also compare with a recent
adversarial learning method Soft-Max [47]. We present the results in Table 2. The results show that
our method outperforms all baselines by a large margin.

4.3 Flow Cytometry Dataset

We also evaluate our method on the Graft vs. Host Disease Flow Cytommetry dataset (GvHD) [48].
The dataset consists of blood cells from patients, and the task is to classify each cell whether it is
a lymphocite based on cell surface biomarkers. It is reasonable to assume that each patient has a
different distribution of cells, and being able to predict the cell type in a new unlabeled patient given
existing labeled patient data is an important task. There are 29 patients with 7 cell surface biomarkers,
and we performed 29 experiments for each patient, where we treat it as a target domain subsample
rest of the patients as source domains. We use the same baseline methods as in the Wifi dataset. We
present classification accuracy results for 3 and 5 source domains in Table 2. The results show that

7

Table 2: Accuracy on the Wi-Fi & Flow data. Standard deviation is in parentheses.
DICA weigh LMP poolSVM Soft-Max poolNN Infer

t2, t3 ! t1 29.32(2.5) 43.71(3.02) 46.80(1.4) 40.25(1.6) 44.86(5.1) 42.88(1.6) 70.8(2.7)

t1, t3 ! t2 24.5(3.6) 38.19(1.9) 39.11(2.1) 48.70(1.8) 44.95(4.4) 47.41(2.1) 84.5(2.9)

t1, t2 ! t3 21.7(3.9) 36.03(1.85) 39.28(2.05) 40.46(1.4) 43.63(4.1) 41.00(1.8) 83.0(7.3)

Flow 3 sources 79.2(11.0) 84.2(9.3) 91.6 (8.4) 92.1(7.5) 89.0(9.7) 95.7(5.2) 96.8(3.5)

Flow 5 sources 83.1(12.0) 92.9(7.0) 92.3 (6.4) 94.7(6.1) 89.7(8.0) 96.0(5.1) 97.1(3.5)

MNIST SVHN SynthDigits MNIST-M

Figure 3: The generated images in each domain in the T+S+D/M task. Each row of an image
corresponds to a fixed Y value, ranging from 0 to 9. MNIST-M is the unlabeled target domain while
the rest are source domains.

our method is much better than most of the methods and performs slightly better than poolNN, which
is a very strong baseline on this dataset.

4.4 Digits Datasets

Following the experimental setting in [47], we build a multi-source domain dataset by combing four
digits datasets, including MNIST, MNIST-M, SVHN, and SynthDigits. We take MNIST, MNIST-M,
and SVHN in turn as the target domain and use the rest domains as source domains, which leads to
three domain adaptation tasks. We randomly sample 20,000 labeled images for training in the source
domain, and test on 9,000 examples in the target domain. We use Y ! X (as in previous work such
as [36]), where X is the image, as the graph for adaptation. We leverage a recently proposed twin
auxiliary classifier GAN framework [49] to match conditional distributions of generated and real data.
More implementation details can be found in the Appendix A7.

We compare our method with recent deep multi-source adaptation method MDAN [47], with two
variants Hard-Max and Soft-Max, and several baseline methods evaluated in [47], including poolNN
and denoted weight described above and poolDANN) that considers the combined source domains
as a single source domain and perform the DANN method [12]. Because our classifier network is
different from that used in [47], we also report the poolNN method with our network architecture,
denoted as poolNN_Ours.

The quantitative results are shown in Table 3. It can be seen that our method achieves much better
performance than alternatives on the two hard tasks. This is very impressive because our baseline
classifier (poolNN_Ours) performs worse poolNN in [47]. Figure 3 shows the generated images in
each domain in the T+S+D/M task. Each row of an image corresponds to a fixed Y value, ranging
from 0 to 9. It can be seen that our method generates correct images for the corresponding labels,
indicating that our method successfully transfer label knowledge from source domains and recovers
the conditional distribution PX|Y (also PY |X ) in the unlabeled target domain. The generated images
for the other two tasks are given in the Appendix A8.

Table 3: Accuracy on the digits data. T: MNIST; M: MNIST-M; S: SVHN; D: SynthDigits.

weigh poolNN poolDANN Hard-Max Soft-Max poolNN_Ours Infer
S +M +D/T 75.5 93.8 92.5 97.6 97.9 94.9 96.64
T + S +D/M 56.3 56.1 65.1 66.3 68.7 59.6 89.89

M + T +D/S 60.4 77.1 77.6 80.2 81.6 67.8 89.34
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Transfer Learning on WIFI Data

• Input X: WiFi signal strengths from 
multiple routers; Y : location 

• Transfer from two time periods to 
another (e..g, t1, t2 → t3)

where?

t1 t2 t3



Causality & Transferability

• Causality helps

• But hard to find (rather strong 
assumptions)

• And perhaps not necessary to 
achieve transferability

• Think about classical 
conditioning

28

• “If a particular stimulus in the 
dog's surroundings was present 
when the dog was given food 
then that stimulus could 
become associated with food 
and cause salivation on its 
own.”



Augmented 
Graph

• To represent independent changes in the joint distribution 

• Causal graph                vs.          augmented DAG

edges, such a “supernode" can be considered as a chain component of the chain graph [34], and the145

joint distribution can be factorized as a “DAG of chain components".) For instance, for the digit146

recognition problem, one can view the pixels of the digit image as such a “supernode" in the graph.147

Finally, as discussed above, for the purpose of predicting Y , we only need to exploit the conditional148

distributions of Y and its children. Hence, in practice one may not need to find the whole graph over149

all features and Y . This observation may accelerate the procedure of learning the augmented graph,150

which will be discussed in Section 3.1.151

2.1.1 Relation to Causal Graphs152

X4X2 X6YX1

X3 X7X5

✓1 ✓Y ✓2✓3 ✓6

mi

Figure 1: An augmented DAG over Y and Xi. For any vari-
able V with a ✓ variable/vector as its parent, the conditional
distribution P (V |PA(V )) may change across domains. The
✓ variables take the same value within each domain.

If the causal graph underlying the ob-153

served data is known, there is no con-154

founder (hidden direct common cause155

of two variables), and the observed156

data are perfect random samples from157

the populations implied by the causal158

model, then one can directly benefit159

from using the causal model for trans-160

fer learning, if it is known, as shown161

in [35, 14, 36]. If fact, in this case our162

graphical representation will encode163

the same set of conditional indepen-164

dence relations as the original causal model.165

It is worth noting that the causal model, on its own, might not be sufficient to explain the properties of166

the data, for instance, because of selection bias [37], which is often present in the sample. Furthermore,167

it is notoriously difficult to find causal relations based on observational data; to achieve it, one often168

has to make rather strong assumptions on the causal model (such as faithfulness [38]) and sampling169

process. On the other hand, it is rather easy to find the graphical model purely as a description of170

conditional independence relationships in the variables as well as the properties of changes in the171

distribution modules. The underlying causal structure may be very different from the augmented DAG172

we adopt. For instance, let Y be disease and X the corresponding symptoms. It is natural to have Y173

as a cause of X . Suppose we have data collected in difference clinics (domains) and that subjects are174

assigned to different clinics in a probabilistic way according to how severe the symptoms (X) are.175

Then one can see that across domains we have changing P (X) but a fixed P (Y |X) and, accordingly,176

in the augmented DAG has a directed link from X to Y , contrary to the causal direction. For detailed177

examples as well as the involved causal graphs and augmented DAGs, please see Appendix.178

2.2 Inference on Augmented Graphical Models for DA179

We now aim to predict the value (or the distribution) of Y given the observed features x⌧ in the target180

domain, which is about P (Y⌧
|x⌧ ), where Yt is the concatenation of Y across all data points in181

the target domain. To achieve so, we have several issues to address. First, which features should182

be included in the prediction/inference procedure? Second, as illustrated in Figure 1, a number of183

distribution factors change across domains, indicated by the links from the ✓ variables, and it is not184

necessary to consider all of them for the purpose of DA–which changing factors should be adapted to185

the target-domain data? Third, for all data in the same domain the ✓ variables take the same value.186

It is then necessary to properly take into account this “parameter sharing" property in the inference187

procedure.188

Let us first show the general results on calculation of P (Y⌧
|x⌧ ), based on which prediction in189

the target domain is made. We then discuss how to simplify the estimator, thanks to the specific190

augmented graphical structure over X and Y . As the data are I.I.D. given the values of ✓, we know191

P (x,y |✓) =
Q

k P (xk, yk |✓) and P (x |✓) =
Q

k P (xk |✓). Also bearing in mind that the value192

of ✓ is shared within the same domain, we have193

P (Y⌧ = y⌧
|x⌧ ) =

P (y⌧
,x⌧ )

P (x⌧ )
=

R
P (y⌧

|x⌧
,✓)P (x⌧

,✓)d✓R Q
k P (x⌧
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=

Z Y

k

P (y⌧k |x
⌧
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⇤
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4

B Examples to Illustrate the Difference between Causal Graph and Our566

Augmented DAG567

Y X S

⌘S

(a) The underlying data generating process of Example
1. Y generates (causes) X , and S denotes the selection
variable (a data point is included if and only if S = 1).

Y X

✓X

mi

(b) The augmented DAG representation for
Example 1 to explain how the data distribu-
tion changes across domains.

Y X

L
⌘X

(c) The generating process of Example 2. L is a con-
founder; the mechanism of X changes across domains,
as indicated by ⌘X .

Y X

✓X

mi

(d) The augmented DAG representation for
Example 2 to explain how the data distribu-
tion changes across domains.

Figure 5: Two examples to illustrate the difference between the underlying causal graph and
the augmented DAG used to represent the property of distribution changes across domains.
(a) and (c) are the causal graphs of the two examples, and (b) and (d) the corresponding
augmented DAGs.

Here568

we give569

two570

simple571

exam-572
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trate575

the pos-576

sible577

differ-578

ence579

be-580

tween581

the582

under-583

lying584

causal585

struc-586

ture587

and the588

graph we use for domain adaption. In Example 1, let Y be disease and X the corresponding589

symptoms. It is natural to have Y as a cause of X . Suppose we have data collected in difference590

clinics, each of which corresponds to a domain. Further assume that subjects are assigned to different591

clinics in a probabilistic way according to how severe the symptoms are. Figure 5(a) gives the causal592

structure together with the sampling process to generate the data in each domain. S is a selection593

variable, and a data point is selected if and only S takes value 1. P (S = 1|X) depends on ⌘S , which594

may take different values across domains, reflecting different sampling mechanisms (e.g., subjects go595

to different clinics according to their symptoms). In this case, according to data in different domains,596

P (X) changes. But P (Y |X) will stay the same because according to the process given in (a), Y597

and S are conditionally independent given X and, as a consequence, P (Y |X,S) = P (Y |X). The598

graphical model for describing the distribution change across domains is given in 5(b)–they are599

apparently inconsistent, and the direction between Y and X is reversed; however, for the purpose of600

DA, the graph in (b) suffices and, furthermore, as shown later, it can be directly learned from data601

from multiple domains. Example 2 follows the causal structure given in Figure 5(c), where X and602

Y are not directly causally related but have a hidden direct common cause (confounder) L and the603

generating process of X also depends on ⌘X , which value may vary across domains. We care only604

about how the distribution changes–since in this example P (Y ) remains the same across domains,605

we can factorize the joint distribution as P (Y,X) = P (Y )P (X|Y ), in which only P (X|Y ) changes606

across domains, and the corresponding augmented DAG is shown in (d).607

C Illustration of Benefits from a Bayesian Treatment608

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

p(θ
Y

)

p(θ
X

)

(a) Prior distributions of ✓

Var(X) = θ
Y

 + θ
X

0 1 2 3 4 5 6 7 8

θ
Y

0

1

2

3

4

5

6

7

8

Shape of posterior of θ
1
 given Var(X)

p(θ
Y
 | Var(X) = 0.8)

p(θ
Y
 | Var(X) = 2)

p(θ
Y
 | Var(X) = 3)

p(θ
Y
 | Var(X) = 4)

p(θ
Y
 | Var(X) = 5)

p(θ
Y
 | Var(X) = 6)

p(θ
Y
 | Var(X) = 7)

(b) Posterior of ✓Y given
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Figure 6: An illustration of the benefit of Bayesian treat-
ment of the changeability of distribution modules ( repre-
sented by the ✓ variables).

Many traditional procedures for unsu-609

pervised DA are concerned with the610

identifiability of the joint distribution611

in the target domain, where only fea-612

ture values are given [35, 14, 39]. If the613

joint distribution is identifiable, a clas-614

sifier can be learned by minimizing the615

loss with respect to the target-domain616

joint distribution. For instance, the so-617

called location-scale transformation is618

assumed for the features given the la-619

bel Y [14], rendering the target-domain620

13

because  p(Y|X) is 
invariant across domains

because  p(Y) is 
invariant across domains



What Changes Lead to Distribution 
Shift?

  

• Distributions of measured features or their relationships in 
between 

• Due to changes in hidden variables (illumination conditions, 
temperature…)?
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Finding Changing Hidden Variables for 
Transfer Learning

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

• Underlying components  may change across domains 

• Changing components  are identifiable; invariant part  are identifiable up to 
its subspace 

• Using invariant part  and transformed changing part  for prediction

ZS

ZS ZC

ZC Z̃S

- Kong, Xie, Yao, Zheng, Chen, Stojanov, Akinwande, Zhang, Partial disentanglement for domain adaptation, ICML 2022
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Methods ! Art ! Cartoon ! Photo ! Sketch Avg
Source Only (He et al., 2016) 74.9 ± 0.88 72.1±0.75 94.5±0.58 64.7±1.53 76.6
DANN (Ganin et al., 2016) 81.9±1.13 77.5±1.26 91.8±1.21 74.6±1.03 81.5
MDAN (Zhao et al., 2018) 79.1±0.36 76.0±0.73 91.4±0.85 72.0±0.80 79.6

WBN (Mancini et al., 2018) 89.9±0.28 89.7±0.56 97.4±0.84 58.0±1.51 83.8
MCD (Saito et al., 2018) 88.7±1.01 88.9±1.53 96.4±0.42 73.9±3.94 87.0

M3SDA (Peng et al., 2019) 89.3±0.42 89.9±1.00 97.3±0.31 76.7±2.86 88.3
CMSS (Yang et al., 2020) 88.6 ±0.36 90.4± 0.80 96.9±0.27 82.0±0.59 89.5

LtC-MSDA (Wang et al., 2020) 90.19 90.47 97.23 81.53 89.8
T-SVDNet (Li et al., 2021) 90.43 90.61 98.50 85.49 91.25

iMSDA (Ours) 93.44±0.20 91.79±1.52 98.28±0.03 88.95±0.64 93.12

Table 1. Classification results on PACS. Backbone:Resnet-18. Most baseline results are taken from (Yang et al., 2020).

Models ! Art ! Clipart ! Product ! Realworld Avg
Source Only (He et al., 2016) 64.58±0.68 52.32±0.63 77.63±0.23 80.70±0.81 68.81
DANN (Ganin et al., 2016) 64.26±0.59 58.01±1.55 76.44±0.47 78.80±0.49 69.38

DANN+BSP (Chen et al., 2019) 66.10±0.27 61.03±0.39 78.13±0.31 79.92±0.13 71.29
DAN (Long et al., 2015) 68.28±0.45 57.92±0.65 78.45±0.05 81.93±0.35 71.64
MCD (Saito et al., 2018) 67.84±0.38 59.91±0.55 79.21±0.61 80.93±0.18 71.97

M3SDA (Peng et al., 2019) 66.22±0.52 58.55±0.62 79.45±0.52 81.35±0.19 71.39
DCTN (Xu et al., 2018) 66.92±0.60 61.82±0.46 79.20±0.58 77.78±0.59 71.43

MIAN (Park & Lee, 2021) 69.39±0.50 63.05±0.61 79.62±0.16 80.44±0.24 73.12
MIAN-� (Park & Lee, 2021) 69.88±0.35 64.20±0.68 80.87±0.37 81.49±0.24 74.11

iMSDA (Ours) 75.77±0.21 60.83±0.73 84.13±0.09 84.83±0.12 76.39

Table 2. Classification results on Office-Home. Backbone: Resnet-50. Baseline results are taken from (Park & Lee, 2021).

7.2. Results and Discussion

PACS The results for PACS are presented in Table 1. We
can observe that for the majority of the transfer directions,
iMSDA outperforms the most competitive baseline by a con-
siderable margin of 1.2% - 3%. For the ! Phone direction
where it does not, the performance is within margin of error
compared to the strongest algorithm T-SVDNet. Notably,
when compared with T-SVDNet (Li et al., 2021), which is
recently proposed, our method achieves a significant perfor-
mance gain on the challenging task ! Sketch. In addition,
we visualize the learned features by our method in Figure S1
(Appendix S4) and find that features learned by iMSDA are
more clustered and discriminative.

Office-Home Compared to the PACS dataset, Office-
Home dataset contains 64 categories and thus is more chal-
lenging. The results in Table 2 show that iMSDA is still
superior to other algorithms in most of the transfer tasks.
In particular, we achieve the accuracy of 75.77 on the !
Art task while the strongest baseline MIAN and its variant
MIAN-� can only achieve an accuracy of 69.39 and 69.88
respectively.

8. Conclusion
It is not uncommon to assume observations of the real-world
are generated from high-level latent variables and thus the
ill-posedness in the problem of UDA can be reduced to
obtaining meaningful reconstructions of the those latent
variables and mapping distinct domains to a shared space
for classification.

In this work, we show that under reasonable assumptions
on the data generating process, as well as leveraging the
principle of minimality, we can obtain partial identifiability
of the changing and invariant parts of the generating pro-
cess. In particular, by introducing an high-level invariant
latent variable that influences the changing variable and the
corresponding label across domains, we show identifiabil-
ity of the joint distribution px,y|uT for the target domain
uT with a classifier trained on source domain labels. Our
proposed VAE combined with a flow model architecture
learns disentangled representations that allows us perform
multi-source UDA with state-of-the-art results across vari-
ous benchmarks.
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Implementation of Partial 
Disentanglement for Domain Adaptation
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Figure 1. The generating process: The gray shade of nodes indi-
cates that the variable is observable.

invariant between views, in a block-wise manner. However,
this line of work assumes availability of paired instances in
two domains. In the context of out-of-distribution general-
ization, Lu et al. (Lu et al., 2020) extend the identifiability
result of iVAE (Khemakhem et al., 2020) to a general expo-
nential family that is not necessarily factorized. However,
this study does not take advantage of the fact that the la-
tent representations should contain invariant information
that can be disentangled from the part that corresponds to
changes across domains. Most importantly, this study re-
sorts to finding a conditionally invariant sub-part of z, even
though there may be parts of z that are not conditionally
invariant, and yet still relevant for predicting y.

In this paper, we make use of realistic assumptions regard-
ing the data-generating process in order to provably identify
the changing and the invariant aspects of the latent repre-
sentation in both the source and target domains. In doing
so, we drop any parametric assumptions about z and we
allow both the changing and invariant parts to have predic-
tive information about y. We show that the identifiability of
px,y|uT follows naturally, and we present an autoencoder
algorithm to solve the problem in practice.

3. High-level Invariance for Domain
Adaptation

In this section, we introduce our data generating process
(Figure 1 and Equation 1) and discuss how we could exploit
this latent variable model to handle UDA. It is presented as
follows:

zc ⇠ pzc , z̃s ⇠ pz̃s , zs = fu(z̃s), x = g(zc, zs). (1)

In the generating process, we assume that data x 2 X (e.g.
images) are generated by latent variables z 2 Z ✓ Rn

through an invertible and smooth mixing function g : Z !
X . We denote by u 2 U the domain embedding, which is a
constant vector with a specific domain. We partition latent
variables z into two parts: the invariant part zc 2 Zc ✓ Rnc

(i.e. content) of which the distribution stays constant over

domain u’s, and the changing part zs ✓ Rns (i.e. style)
with varying distribution over domains. We parameterize
the influence of domain u on zs as simple transformation
of some generic form of the changing part, given by z̃s.
Namely, given a component-wise monotonic function fu,
we let zs = fu(z̃s). For example, in image datasets zs can
correspond to various kinds of background from the images
(sand, trees, sky, etc.), and in this case z̃s corresponds to a
generic background pattern that can easily be transformed
into a domain-specific image background, depending on
which function fu is used.

Further, we assume that y is generated by invariant latent
variables zc and z̃s. Thus, this generating process addresses
the conditional-shift setting, in which px|y,u changes across
domains, and py stays the same.

We note below that the distinguishing features of our gener-
ating process, and illustrate how these features are essential
to tackling UDA.

Partitioned latent space As discussed in Section 1, the
bulk of prior work (Ganin & Lempitsky, 2014; Ben-David
et al., 2010; Zhao et al., 2018) focuses on learning an in-
variant representation over domains so that one classifier
can be applied to novel domains in the latent space. Unlike
these approaches, we will demonstrate that our parameter-
ization of zs allows us to preserve the information of the
changing part zs for prediction instead of discarding this
part altogether by imposing invariance. Similarly, recent
work (Lu et al., 2020) allows for the possibility that all latent
variables could be influenced by domain changes in their
framework to address domain shift, but discards a subset of
them which may be relevant for predicting y. In contrast,
our goal is to disentangle the changing and invariant parts
zs and zc, capture the relationship between zs and y across
domains by learning fu, and use this information to perform
prediction in the target domain. In addition, we do not make
any parametric assumptions about the distributions of zs
and zc.

Our parameterization also allows us to implement the min-
imal change principle by constraining the changing com-
ponents to be as few as possible. Otherwise, unnecessarily
large domain influences (e.g. all components being chang-
ing) may lead to loss of semantic information in the invariant
(zc, z̃s) space, e.g., a mapping between rotated 1 and 9.

High-level Invariance z̃s We note that presence of z̃s
is significant, as it allows us to provably learn an optimal
classifier over domains without requiring that pz|u to be
invariant over domains as in previous work (Ganin & Lem-
pitsky, 2014; Ben-David et al., 2010; Zhao et al., 2018).
With the component-wise monotonic function fu, we are
able to identify z̃s through zs which is critical to our abil-

Figure 1. The generating process: The gray shade 
of nodes indicates that the variable is observable.
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Remember? Causal Representation Learning from 
Multiple Distributions: A General Setting

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

• Goal: Uncovering hidden variables  with 
changing causal relations from X in 
nonparametric settings 

• What is identifiable? 

• Markov network of   

• Each estimated variable  is a function of  
 and it intimate neighbors 

• In this example, each  (i≠4) can be recovered 
up to component-wise transformation

Zi

Zi

Z̃i
Zi

Zi

- Zhang, Xie, Ng, Zheng, “Causal Representation Learning from Multiple Distributions: A General Setting,” ICML 2024

Causal Disentanglement with Minimal Changes from Multiple
Distributions

You

June 28, 2023

Abstract

In many problems, the measured variables (e.g., image pixels) are just mathematical functions
of the underline hidden causal variables (e.g., the underlying concepts or objects). For the purpose
of making prediction the changing environment or making proper changes to the system, it is
helpful to recover the underlying hidden causal variables Zi, their causal relations represented
by graph GZ , and how their causal influences change, which can be explained by suitable latent
factors ✓i governing changes in the causal mechanisms. This paper is concerned with the problem of
estimating the underlying hidden causal variables and the latent factors from multiple distributions
(arising from heterogeneous data or nonstationary time series) in nonparametric settings. We first
show that under the sparsity constraint on the recovered graph over the latent variables and
suitable su�cient change conditions on the causal influences, one can recover the equivalence
class of the original graph, and we further show the recovered latent variables are related to
the underlying hidden causal variables in a specific way. Moreover, we show that orthogonally,
under the independent change condition on the causal modules (without the sparsity constraint
on the graph), the underlying latent factors ✓i can be recovered up to component-wise invertible
transformations. Putting them together, one is able to recover the underlying hidden variables and
their causal relations up to minor indeterminacies. Next, we consider the scenario where only a
subset of the causal relations in causal graph GZ change and show up to what extent the underlying
causal variables can be recovered. Finally, we propose a learning procedure called change encoding
network to accomplish the considered task.

1 New Title

Revealing Hidden Causal Variables and Latent Factors from Multiple Distributions

2 New Introduction

1. causal discovery... hidden variables... 2. review. 3. problem setting. (define ✓i as the latent
(changing) factor and Zi as hidden causal variables... hard interventions will make things easier...)
4. interestingly... Undirected graph (and v-structures?)... 5. benefit from independent changes... 5.
contribution...

(special cases...)

Z4Z2

Z3

Z5Z1

✓1 ✓3✓2 ✓4 ✓5

g

X

Figure 1: The generating process for each Zi changes, governed by ✓i, and X = g(Z).

1

36

We exploit the changes in causal 
mechanisms along with domain!
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• Domain adaptation / transfer learning: What and Why? 

• Traditional approaches to domain adaptation 

• Adaptive methods for domain adaptation 

• Related problems: image translation, multi-domain generation 

• Future of  domain adaptation

Outline



Unsupervised Image-to-Image Translation

39

Images from the summer season domain.

Images from the winter season domain.

Content
 

                                   Image

Style

Minimize the influence of  ‘Style’ on ‘Image’ 
during translation.

How?  A minimal number of changing 
components?
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Sample Images Generated by 
Generative Adversarial Networks (GANs)

41

Images generated by a GAN created by NVIDIA.

https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf


GANs

42

Image credit: Thalles Silva

Minimax game which G wants to minimize V while D wants to 
maximize it:

𝜖

https://medium.freecodecamp.org/an-intuitive-introduction-to-generative-adversarial-networks-gans-7a2264a81394


GAN-Based 
Implementations

43

- Match the data distribution across domains, while the dimensionality of  
is as small as possible (minimal changes across domains controlled by ƛ; no 
penalty when ƛ=0)

- Correspondence relations among domains are identifiable

ϵ(u)
S

ϵ(u)
S

ϵC

𝜖

model the data distribution in 
u-th domain



Multi-domain Image Generation & 
Translation with Identifiability Guarantees

• Idea: Matching the distributions across domains with a minimal 
number of  changing components 

• Correspondence info (joint distribution) identifiable under mild 
assumptions 

• Example: Generating female & males images with the same “content”

Under review as a conference paper at ICLR 2023

It means that the mapping function F is trained to preserve the correspondence between images of
the generated tuples. Since we are able to recover the true joint distribution, Ltuple encourage the
mapping function to produce the true conditional distribution, i.e., P✓(x(u1)|x(u0)).

Our full objective for unpaired image translation is Ltranslation = Lstargan + �tupleLtuple, where �tuple is
the hyper-parameter to control the influence of our propose tuple regularization.

4 EXPERIMENTS

In this section, we first present results and analysis on multi-domain image generation task. Then we
provide the results on unpaired image translation.

4.1 MULTI-DOMAIN IMAGE GENERATION

4.1.1 EXPERIMENT SETUP

Implementation We build our method based on the official pytorch implementation of StyleGAN2-
ADA (Karras et al., 2020a) and the hyper-parameters are selected automatically by the code. We
choose the deep sigmoid flow (DSF) (Huang et al., 2018a) to implement the domain transformation
fu (Huang et al., 2018a) because DSF is designed to be component-wise strictly increasing. We use
the embedding of domain label to generate pseudo-parameters for the flow. We only introduce one
hyper-parameter: � to control the sparsity of the mask. We set � = 0.1 for all experiments.

StyleGAN2-ADA TGAN Ours (� = 0) Ours (� = 0.1)

Figure 4: Samples of multi-domain image generation on the CELEBA-HQ, AFHQ, ArtPhoto,
CelebA5 and MNIST7. We provide more samples and methods in appendix F.2. Each row of the
method shares the same input noise ✏. We observe that there are unnecessary changes between the
images (e.g., the added sun-glasses in the first row, the different poses of animals of StyleGAN2-ADA
in second row) without regularization.

Datasets We use five datasets to evaluate our method: CELEBA-HQ (Choi et al., 2020) contains
female and male faces domains; AFHQ (Choi et al., 2020) contains 3 domains: cat, dog and wild
life; ArtPhoto contains 4 domains: Cezanne, Monet, Photo and Ukiyoe; CelebA5 contains 5 domains:
Black Hair, Blonde Hair, Eyeglasses, Mustache and Pale Skin; MNIST7 contains 7 domains: blue,
cyan, green, purple, red, white and yellow MNIST digits. More information are in the appendix F.1.

Evaluation Metrics. We evaluate our method using the Frechet inception distance (FID), which is a
widely used metric for distribution divergence between the generated images and the real images.
lower FID is better. As for the first four datasets, there is no pair data. So, we use the domain-
invariant perceptual distance (DIPD) to measure the semantic correspondence (Liu et al., 2019).
DIPD computes the distance between two instance-normalized Conv5 features of VGG network. As

7

Under review as a conference paper at ICLR 2023

It means that the mapping function F is trained to preserve the correspondence between images of
the generated tuples. Since we are able to recover the true joint distribution, Ltuple encourage the
mapping function to produce the true conditional distribution, i.e., P✓(x(u1)|x(u0)).

Our full objective for unpaired image translation is Ltranslation = Lstargan + �tupleLtuple, where �tuple is
the hyper-parameter to control the influence of our propose tuple regularization.

4 EXPERIMENTS

In this section, we first present results and analysis on multi-domain image generation task. Then we
provide the results on unpaired image translation.

4.1 MULTI-DOMAIN IMAGE GENERATION

4.1.1 EXPERIMENT SETUP

Implementation We build our method based on the official pytorch implementation of StyleGAN2-
ADA (Karras et al., 2020a) and the hyper-parameters are selected automatically by the code. We
choose the deep sigmoid flow (DSF) (Huang et al., 2018a) to implement the domain transformation
fu (Huang et al., 2018a) because DSF is designed to be component-wise strictly increasing. We use
the embedding of domain label to generate pseudo-parameters for the flow. We only introduce one
hyper-parameter: � to control the sparsity of the mask. We set � = 0.1 for all experiments.

StyleGAN2-ADA TGAN Ours (� = 0) Ours (� = 0.1)

Figure 4: Samples of multi-domain image generation on the CELEBA-HQ, AFHQ, ArtPhoto,
CelebA5 and MNIST7. We provide more samples and methods in appendix F.2. Each row of the
method shares the same input noise ✏. We observe that there are unnecessary changes between the
images (e.g., the added sun-glasses in the first row, the different poses of animals of StyleGAN2-ADA
in second row) without regularization.

Datasets We use five datasets to evaluate our method: CELEBA-HQ (Choi et al., 2020) contains
female and male faces domains; AFHQ (Choi et al., 2020) contains 3 domains: cat, dog and wild
life; ArtPhoto contains 4 domains: Cezanne, Monet, Photo and Ukiyoe; CelebA5 contains 5 domains:
Black Hair, Blonde Hair, Eyeglasses, Mustache and Pale Skin; MNIST7 contains 7 domains: blue,
cyan, green, purple, red, white and yellow MNIST digits. More information are in the appendix F.1.

Evaluation Metrics. We evaluate our method using the Frechet inception distance (FID), which is a
widely used metric for distribution divergence between the generated images and the real images.
lower FID is better. As for the first four datasets, there is no pair data. So, we use the domain-
invariant perceptual distance (DIPD) to measure the semantic correspondence (Liu et al., 2019).
DIPD computes the distance between two instance-normalized Conv5 features of VGG network. As

7

Under review as a conference paper at ICLR 2023

It means that the mapping function F is trained to preserve the correspondence between images of
the generated tuples. Since we are able to recover the true joint distribution, Ltuple encourage the
mapping function to produce the true conditional distribution, i.e., P✓(x(u1)|x(u0)).

Our full objective for unpaired image translation is Ltranslation = Lstargan + �tupleLtuple, where �tuple is
the hyper-parameter to control the influence of our propose tuple regularization.

4 EXPERIMENTS

In this section, we first present results and analysis on multi-domain image generation task. Then we
provide the results on unpaired image translation.

4.1 MULTI-DOMAIN IMAGE GENERATION

4.1.1 EXPERIMENT SETUP

Implementation We build our method based on the official pytorch implementation of StyleGAN2-
ADA (Karras et al., 2020a) and the hyper-parameters are selected automatically by the code. We
choose the deep sigmoid flow (DSF) (Huang et al., 2018a) to implement the domain transformation
fu (Huang et al., 2018a) because DSF is designed to be component-wise strictly increasing. We use
the embedding of domain label to generate pseudo-parameters for the flow. We only introduce one
hyper-parameter: � to control the sparsity of the mask. We set � = 0.1 for all experiments.

StyleGAN2-ADA TGAN Ours (� = 0) Ours (� = 0.1)

Figure 4: Samples of multi-domain image generation on the CELEBA-HQ, AFHQ, ArtPhoto,
CelebA5 and MNIST7. We provide more samples and methods in appendix F.2. Each row of the
method shares the same input noise ✏. We observe that there are unnecessary changes between the
images (e.g., the added sun-glasses in the first row, the different poses of animals of StyleGAN2-ADA
in second row) without regularization.

Datasets We use five datasets to evaluate our method: CELEBA-HQ (Choi et al., 2020) contains
female and male faces domains; AFHQ (Choi et al., 2020) contains 3 domains: cat, dog and wild
life; ArtPhoto contains 4 domains: Cezanne, Monet, Photo and Ukiyoe; CelebA5 contains 5 domains:
Black Hair, Blonde Hair, Eyeglasses, Mustache and Pale Skin; MNIST7 contains 7 domains: blue,
cyan, green, purple, red, white and yellow MNIST digits. More information are in the appendix F.1.

Evaluation Metrics. We evaluate our method using the Frechet inception distance (FID), which is a
widely used metric for distribution divergence between the generated images and the real images.
lower FID is better. As for the first four datasets, there is no pair data. So, we use the domain-
invariant perceptual distance (DIPD) to measure the semantic correspondence (Liu et al., 2019).
DIPD computes the distance between two instance-normalized Conv5 features of VGG network. As

7

Ours (ƛ=0.1) TGANStyleGAN2-ADA

- Xie, Kong, Gong, Zhang, “Multi-domain image generation and translation with identifiability guarantees”, ICLR 2023



• Domain adaptation / transfer learning: What and Why? 

• Traditional approaches to domain adaptation 

• Adaptive methods for domain adaptation 

• Related problems: image translation, multi-domain generation 

• Future of  domain adaptation

Outline



Transfer learning with large language models 
(LLMs)

• Involves leveraging pre-trained LLMs, trained on vast datasets, to 
improve performance on specific tasks by fine-tuning them on smaller, 
task-specific datasets, instead of  training from scratch. 

• Procedure: Pre-training, followed by fine-tuning 

• Benefits: 

• Reduced Training Time and Resources (for fine-tuning) 

• Improved Performance 

• Generalization 

• Applications: language translation, sentiment analysis, question 
answering…



Transfer learning & large models: My Opinion

• Inference in (hierarchical) large models 

• Examples given before…



Summary: Domain Adaptation / Transfer 
Learning

• Why domain adaptation / transfer learning? 

• What if  you have only a small number of  domain? 

• What if  you have access to many domains? 

• Future?


