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We Mainly Focused on the IID Case: Recent 
Advances in Causal Representation Learning

i.i.d. data? Parametric 
constraints?

Latent 
confounders? What can we get?

Yes

No
No

(Different types of) 
equivalence classYes

Yes
No Unique identifiability 

(under structural 
conditions)Yes

Non-I, but I.D. No/Yes
No (Extended) regression

Yes Latent temporal causal 
processes identifiable!

I., but non-I.D.

No
No

More informative than 
MEC (CD-NOD)

Yes May have unique 
identifiability

No
Yes

Changing subspace 
identifiable

Yes Variables in changing 
relations identifiable

- PC, FCI, etc.

- LiNGAM
- Rank-based, 
GIN…

?
- CRL from multiple 
distributions
- Causal GenAI

- CD-NOD

- TDRL
- TDRL with instantaneous 
relations…



• Discovering causal relations among the measured time series 

• Granger causality (but be aware of  temporal resolution) 

• Temporally disentangled representation learning 

• With invertible or non-invertible mixing functions 

• With instantaneous relations

CRL with Temporal Constraints

Non-I, but I.D. No/Yes
No (Extended) regression

Yes Latent temporal causal 
processes identifiable!



Granger Causality: Original Definition & 
Practical Constraints

• Two principles (Granger, ‘80)

• Future cannot cause past

• No redundant info: Cause contains unique information about effect

• X causes Y if  
• Completely nonparametric; Yt+1 ⫫ Xt given all the remaining 

information until time t

• In practice: causality in mean; linear Granger causality

- C.W.J. Granger, Testing for causality: A personal viewpoint. Journal of Economic Dynamics & 
Control 2: 329–352, 1980
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Conditional Independence-Based Method 
for Causal Discovery from Time Series

• Two principles (Granger, ‘80)

• Future cannot cause past 

• No redundant info: Cause contains unique information about effect

• X causes Y if  
• Completely nonparametric; Yt+1 ⫫ Xt given all the remaining 

information until time t

• In practice: causality in mean; linear Granger causality
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- The PC algorithm still applies; additional temporal 
constraints!



Two Schemes of Temporal Aggregation

• Subsampling (systematic 
sampling) 

• Taking local averages (aggregation)

x1, x2,..., xk, xk+1, xk+2,...,x2k, x2k+1,...

x1, x2,..., xk, xk+1, xk+2,...,x2k, x2k+1,...
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Causal info tends to disappear 
as k→∞

Causal info tends to be 
instantaneous as k→∞ :

Assume Xt = AXt�1 +Et

X̃t ⇡ AX̃t + Ẽt

Can we recover the causal 

influence matrix A? 

- Examples: temperature 

data, stock daily returns, 

GDP, fMRI...



• Discovering causal relations among the measured time series 

• Granger causality (but be aware of  temporal resolution) 

• Temporally disentangled representation learning 

• With invertible or non-invertible mixing functions 

• With instantaneous relations

CRL with Temporal Constraints

Non-I, but I.D. No/Yes
No (Extended) regression

Yes Latent temporal causal 
processes identifiable!



Learning Latent Causal Dynamics

- Yao, Chen, Zhang, “Causal Disentanglement for Time Series,”  NeurIPS 2022
- Yao, Sun, Ho, Sun, Zhang, “Learning Temporally causal latent processes from general temporal data,” ICLR 2022
- Chen et al.,  “CaRiNG: Learning Temporal Causal Representation under Non-Invertible Generation Process,” ICML 2024

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

LEAP: Latent tEmporally cAusal Processes Estimation 

10

Time-series Inputs !! !"#$

Figure 1: Represent latent causal mechanisms from temporal data. By assuming the noise are spatially-temporally independent, we embed 
the conditional independence condition within functional causal model (FCM) in latent space,. Non-stationarity in noise distribution and 
functional or distributional form assumptions are exploited to identify latent causal graphs from temporal observation data.

Inference Module Learnable Causal Prior

Exploiting Nonstationarity OR Functional Form
• Nonparametric + Nonstationary condition

z%& = f'( PA%& , E&% )
• Linear + Laplacian Noise

z%& = A PA%& + E&%
• PNL + Gaussian Noise

z%& = f((f'( PA%& + E&%))

Temporal VAE with Causal Prior

Causal 
Skeleton 
Recovery

Unsupervised 
Representation 

Learning

xt = g(zt)
Latent processes

Recovered latent 
processes

Temporal VAE with causal prior

Latent temporal causal processes 
zit follow 

- completely nonparametric 
model; or furthermore, 

- non-stationary noise or 
causal influence, or  

- Parametric constraints 

LEAP: Latent tEmporally cAusal Processes Estimation 
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“Time-delayed” influence (no 
instantaneous dependence) renders latent 

processes & their relations identifiable
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Remember the Multi-Domain Case?

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

• Underlying components  may change across domains 

• Changing components  are identifiable; invariant part  is 
identifiable up to its subspace 

• Using  and transformed changing part  for transfer learning

ZS

ZS ZC

ZC Z̃S

g
ZS

ZC
X

10

We exploit the conditional independence 
among ZSi given the surrogate (domain info)!
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Why?  Let’s Derive it…

12

𝜃1  Z1

𝜃2  Z2

X1

X2
g

• Multi-domain case: • Temporal case:
Z1,t-1

Z2,t-1

Z1,t

Z2,t

Z1,t+1

Z2,t+1

...

... ...

...
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Comparison of  the Identifiability Result
• Multi-domain case: • Temporal case:



Results on Simple Video Data 

• For easy interpretation, consider a simple video data set

Published as a conference paper at ICLR 2022

(Violation) Low-rank State Transition For this dataset, the transition matrix B⌧ in Eq. 4 is low-
rank instead of full-rank. The datasets are created following the steps in the VAR dataset, but we
restrict the rank of state transition matrix B⌧ to 4 and time lag L = 1. The full matrix rank is 8.

(Violation) Gaussian Noise Distribution For this dataset, the noise terms ✏it in Eq. 4 follow the
Gaussian distribution (↵i = 2) instead of Generalized Laplacian distribution (↵i < 2). In particular,
the noise terms ✏it are sampled from i.i.d. Gaussian distribution (� = 0.1).

(Violation) Regime-Variant Causal Relations For regime-variant causal relations, we generate
240,000 data points according to Eq. 55:

xt = g(zt), zt =
LX

⌧=1

Bu
⌧ zt�⌧ + ✏t with ✏it ⇠ p✏i . (55)

The noises ✏it are sampled from i.i.d. Laplace distribution (� = 0.1). In each regime u, the entries
of state transition matrices Bu

⌧ are uniformly distributed between [�0.5, 0.5].

(Violation) Instantaneous Causal Relations For instantaneous causal relations, we generate
45,000 data points according to Eq. 56:

xt = g(zt), zt = Azt +
LX

⌧=1

B⌧zt�⌧ + ✏t with ✏it ⇠ p✏i , (56)

where matrix A is a random Directed Acyclic Graph (DAG) which contains the coefficients of the
linear instantaneous relations. The noises ✏it are sampled from i.i.d. Laplacian distribution with
� = 0.1. The entries of state transition matrices B⌧ are uniformly distributed between [�0.5, 0.5].

B.2 REAL-WORLD DATASET

Three public datasets, including KiTTiMask, Mass-Spring System, and CMU MoCap database, are
used. The observations together with the true temporally causal latent processes are showcased in
Fig. B.1. For CMU MoCap, the true latent causal variables and time-delayed relations are unknown.

(a) (b) (c)
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Figure B.1: Real-world datasets: (a) KiTTiMask is a video dataset of binary pedestrian masks, (b)
Mass-Spring system is a video dataset with ball movement rendered in color and invisible springs,
and (c) CMU MoCap is a 3D point cloud dataset of skeleton-based signals.

KiTTiMask The KiTTiMask dataset consists of pedestrian segmentation masks sampled from the
autonomous driving vision benchmark KiTTi-MOTS. For each given frame, the position (vertical
and horizontal) and the scale of the pedestrian masks are set using measured values. The difference
in the sample time (e.g., �t = 0.15s) generates the sparse Laplacian innovations between frames.

Mass-Spring System The Mass-Spring system is a classical physical system that several objects
are connected by some visible/invisible spring, which follows Hooke’s law. In this work, we consid-
ered the system with five degrees of freedom and made linearization on the state without calculating
the Euclidian distance between objects. Thus, there are ten causal relations, six of which were
set connected, and the other four were disconnected. The rest length of the spring was uniformly
distributed between [1, 10], and the stiffness of the spring relation was set as 20. The action was
at = 300et, where et followed the Laplacian distribution with mean µ = 0 and variance � = 1.
We assumed there was no damping in the system and randomly assigned the objects in different
positions at the beginning of each episode.

24

• Mass-spring system: a video dataset with ball movement and 
invisible springs

Mass-spring 
Video

Learned  
latent processes Interpretation

(x- & y- coordinates
 of the 5 balls)



• Potential issues in deep RL algorithms
• Lack interpretability
• Not generalize well
• Data hungry

• Mitigate such issues through causal representations 
and graph structures

A Causal Perspective on Reinforcement 
Learning



• Potential issues in deep RL algorithms
• Lack interpretability
• Not generalize well
• Data hungry

• Mitigate such issues through causal representations 
and graph structures

A Causal Perspective on Reinforcement 
Learning



•        : controllable and reward-
relevant state variables

•        : reward-relevant state variables 
that are beyond our control

•        : controllable but reward-
irrelevant factors

•        : uncontrollable and reward-
irrelevant latent variables

Four Categories of State Representations in 
RL

Liu*,  Huang*, Zhu, Tian, Gong, Yu,  Zhang. Learning world models with identifiable factorization. Arxiv, 2023.



Four Categories of State 
Representations in RL

- Liu*,  Huang*, Zhu, Tian, Gong, Yu, Zhang. Learning world models with identifiable factorization. NeurIPS 2023

• Each category is identifiable!



Modified Cartpole 
with two distractors

Experimental Results on Latent States 
Recovery 



We can go further: mixing function g can be 
nonparametric and noisy



• Discovering causal relations among the measured time series 

• Granger causality (but be aware of  temporal resolution) 

• Temporally disentangled representation learning 

• With invertible or non-invertible mixing functions 

• With instantaneous relations

CRL with Temporal Constraints

Non-I, but I.D. No/Yes
No (Extended) regression

Yes Latent temporal causal 
processes identifiable!





Comparison



Empirical Results



Sounds New. But You can See the Connection
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𝜃1  Z1

𝜃2  Z2

X1

X2
g

• Multi-domain case: • Temporal case:
Z1,t-1

Z2,t-1

Z1,t

Z2,t

Z1,t+1

Z2,t+1

...

... ...

...



Remember? Causal Representation Learning from 
Multiple Distributions: A General Setting

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

• Goal: Uncovering hidden variables  with 
changing causal relations from X in 
nonparametric settings 

• What is identifiable? 

• Markov network of   

• Each estimated variable  is a function of  
 and it intimate neighbors 

• In this example, each  (i≠4) can be recovered 
up to component-wise transformation

Zi

Zi

Z̃i
Zi

Zi

- Zhang, Xie, Ng, Zheng, “Causal Representation Learning from Multiple Distributions: A General Setting,” ICML 2024

Causal Disentanglement with Minimal Changes from Multiple
Distributions

You

June 28, 2023

Abstract

In many problems, the measured variables (e.g., image pixels) are just mathematical functions
of the underline hidden causal variables (e.g., the underlying concepts or objects). For the purpose
of making prediction the changing environment or making proper changes to the system, it is
helpful to recover the underlying hidden causal variables Zi, their causal relations represented
by graph GZ , and how their causal influences change, which can be explained by suitable latent
factors ✓i governing changes in the causal mechanisms. This paper is concerned with the problem of
estimating the underlying hidden causal variables and the latent factors from multiple distributions
(arising from heterogeneous data or nonstationary time series) in nonparametric settings. We first
show that under the sparsity constraint on the recovered graph over the latent variables and
suitable su�cient change conditions on the causal influences, one can recover the equivalence
class of the original graph, and we further show the recovered latent variables are related to
the underlying hidden causal variables in a specific way. Moreover, we show that orthogonally,
under the independent change condition on the causal modules (without the sparsity constraint
on the graph), the underlying latent factors ✓i can be recovered up to component-wise invertible
transformations. Putting them together, one is able to recover the underlying hidden variables and
their causal relations up to minor indeterminacies. Next, we consider the scenario where only a
subset of the causal relations in causal graph GZ change and show up to what extent the underlying
causal variables can be recovered. Finally, we propose a learning procedure called change encoding
network to accomplish the considered task.

1 New Title

Revealing Hidden Causal Variables and Latent Factors from Multiple Distributions

2 New Introduction

1. causal discovery... hidden variables... 2. review. 3. problem setting. (define ✓i as the latent
(changing) factor and Zi as hidden causal variables... hard interventions will make things easier...)
4. interestingly... Undirected graph (and v-structures?)... 5. benefit from independent changes... 5.
contribution...

(special cases...)

Z4Z2

Z3

Z5Z1

✓1 ✓3✓2 ✓4 ✓5

g

X

Figure 1: The generating process for each Zi changes, governed by ✓i, and X = g(Z).

1
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We exploit the changes in causal 
mechanisms along with domain!



• Discovering causal relations among the measured time series 

• Temporally disentangled representation learning 

• With instantaneous relations 

• Unification—connection with the multi-domain case!

Summary: CRL from Temporal Data
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