

Causality and Machine Learning (80-816/516)

Classes 19 (March 25, 2025)

Causal Representation Learning 2: Benefits from multiple distributions (from changes)

Instructor:

Kun Zhang (kunzl@cmu.edu)

Zoom link: <u>https://cmu.zoom.us/j/8214572323</u>)

Office Hours: W 3:00-4:00PM (on Zoom or in person); other times by appointment

We Mainly Focused on the IID Case: Recent Advances in Causal Representation Learning

i.i.d. data?	Parametric constraints?	Latent confounders?	What can we get?	
		No	(Different types of)	- PC FCL atc
	INO	Yes	equivalence class	
Yes		No	Unique identifiability	- Lingam
	Yes	Yes	(under structural conditions)	- Rank-based, GIN
		No	(Extended) gression	
NON-I, DUL I.D.	INO/YES	Yes	Latent temporal causal processes identifiable!	
	No	Nie	More informative than MEC (CD-NOD)	- CD-NOD
I., but non-I.D.	Yes	INO	May have unique identifiability	
	No	Vee	Changing subspace identifiable	 CRL from multiple distributions
	Yes	res	Variables in changing relations identifiable	- Causal GenAl

CRL from Changes: Outline

- CD-NOD (Causal Discovery from Nonstationary/Heterogenuous data)
- Nonlinear ICA with partial changes across domains
 - Partial disentanglement
 - Domain adaptation, image translation, and multi-domain data generation
 - Learning from text-image pairs
- A general setting
- Connection to the IID case: Synergy between minimal changes and sparsity

Nonstationary/Heterogeneous Data and Causal Modeling

- Ubiquity of nonstationary/heterogeneous data
 - Nonstationary time series (brain signals, climate data...)
 - Multiple data sets under different observational or experimental conditions
- Causal modeling & distribution shift heavily couple *P*(causal modeling & distribution shift heavily for the second s

Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, Schölkopf, "Causal Discovery from Heterogeneous/ Nonstationary Data," JMLR, 2020 Zhang, Huang, et al., Discovery and visualization of nonstationary causal models, arxiv 2015 Ghassami, et al., Multi-Domain Causal Structure Learning in Linear Systems, NIPS 2018

Causal Discovery from Nonstationary/ Heterogeneous Data

i.i.d. data?	Parametric constraints?	Latent confounders?
Yes	No	No
No	Yes	Yes

• Task:

- Determine changing causal modules & estimate skeleton
- Causal orientation determination benefits from independent changes in *P*(cause) and *P*(effect | cause), including invariant mechanism/ cause as special cases
- Visualization of changing modules over time/ across data sets?
- Huang et al., "Causal Discovery from Heterogeneous/Nonstationary Data," JMLR, 2020
- Tian, Pearl, "Causal discovery from changes," UAI 2001
- Hoover, "The logic of causal inference" Economics and Philosophy, 6:207–234, 1990.

Kernel nonstationary driving force estimation

Causal Analysis of M NYSE (07/05/2006

- Huang, Zhang, Zhang, Romero, Glymour, Schölkopf, Behind Distribution Shift: Mining Driving Forces of Changes and Causal Arrows," ICDM 2017 6

CRL from Changes: Outline

I., but non-I.D.	No	No	More informative than MEC (CD-NOD)
	Yes	INO	May have unique identifiability
	No	Vaa	Changing subspace identifiable
	Yes	Tes	Variables in changing relations identifiable

- CD-NOD (Causal Discovery from Nonstationary/Heterogenuous data)
- Nonlinear ICA with partial changes across domains
 - Partial disentanglement
 - Domain adaptation, image translation, and multi-domain data generation
 - Learning from text-image pairs
- A general setting
- Connection to the IID case: Synergy between minimal changes and sparsity

Nonlinear Cases Generally Non-Identifiable

i.i.d. data?	Parametric constraints?	Latent confounders?
Yes	No	No
No	Yes	Yes

• Nonlinear ICA:

- Generative model: $\mathbf{X} = f(\mathbf{S})$, where **S** has independent components
- De-mixing procedure: **Y** = g(**X**), where **Y** components are as independent as possible
- Solutions always exist and are highly non-unique: Why?

Aapo Hyvärinen, Petteri Pajunen, Nonlinear independent component analysis: Existence and uniqueness results, Neural Networks, 1999

Nonlinear ICA with Multiple Domains

i.i.d. data?	Parametric constraints?	Latent confounders?
Yes	No	No
No	Yes	Yes

- Nonlinear ICA: observed variables follow $\mathbf{X} = \mathbf{g}(\mathbf{Z})$, in which Z_i are mutually independent
 - Solutions to nonlinear ICA high non-unique
 - If $p(Z_i)$ change across multiple domains, generally their are identifiable (up to component-wise transformations)

- Hyvärinen, Pajunen, Nonlinear independent component analysis: Existence and uniqueness results. Neural networks, 1999.
- Hyvarinen, Sasaki, Turner, "Nonlinear ICA using auxiliary variables and generalized contrastive learning," In The 22nd International Conference on Artificial Intelligence and Sectistics, 2019.

Nonlinear ICA with Multiple Domains: Intuition

i.i.d. data?	Parametric constraints?	Latent confounders?
Yes	No	No
No	Yes	Yes

- General principle: Each new domain brings more constraints than additional degrees of freedom
- Shared by many problems, such as multi-domain linear Gaussian source separation ($\mathbf{X} = \mathbf{A} \cdot \mathbf{S}$, but S_i are Gaussian with changing variances)
- Let's see why...

Remember this Story?

- Consider puerperal fever in the mid-19th century
- Two clinics used almost the same techniques but had very different mortality rates
- Semmelweis: Why?
 - *Hypothesis*: Unknown "cadaverous material" caused puerperal fever
 - Proposed *intervention*: washing hands
 - *Conflicted* with the established scientific and medical opinions of the time
 - Rejected by the medical community until years after his death, when Louis Pasteur *confirmed* the germ theory

https://amol-kulkarni.com/project/semmelweis/

Ignaz Semmelweis

Semmelweis, aged 42 in 1860, photograph by Borsos and Doctor

Partial Identifiability for Domain Adaptation

Lingjing Kong¹ Shaoan Xie¹ Weiran Yao¹ Yujia Zheng¹ Guangyi Chen²¹ Petar Stojanov³ Victor Akinwande¹ Kun Zhang²¹

Abstract

Unsupervised domain adaptation is critical to many real-world applications where label information is unavailable in the target domain. In general, without further assumptions, the joint distribution of the features and the label is not identifiable in the target domain. To address this issue, we rely on a property of minimal changes of causal mechanisms across domains to minimize unnecessary influences of domain shift. To encode this property, we first formulate the data generating process using a latent variable model with two partitioned latent subspaces: invariant components whose distributions stay the same across domains, and sparse changing components that vary across domains. We further constrain the domain shift to have a restrictive influence on the changing components. Under mild conditions, we show that the latent variables are partially identifiable, from

domain indices u, the training (source domain) data follows multiple joint distributions $p_{\mathbf{x},\mathbf{y}|\mathbf{u}_1}$, $p_{\mathbf{x},\mathbf{y}|\mathbf{u}_2}$, ..., $p_{\mathbf{x},\mathbf{y}|\mathbf{u}_M}$,¹ and the test (target domain) data follows the joint distribution $p_{\mathbf{x},\mathbf{y}|\mathbf{u}^{T}}$, where $p_{\mathbf{x},\mathbf{y}|\mathbf{u}}$ may vary across \mathbf{u}_1 , \mathbf{u}_2 , ..., \mathbf{u}_M . During training, for each *i*-th source domain, we are given labeled observations $(\mathbf{x}_k^{(i)}, \mathbf{y}_k^{(i)})_{k=1}^{m_i}$ from $p_{\mathbf{x},\mathbf{y}|\mathbf{u}_i}$, and target domain unlabeled instances $(\mathbf{x}_k^T)_{k=1}^{m_T}$ from $p_{\mathbf{x},\mathbf{y}|\mathbf{u}^{T}}$. The main goal of domain adaptation is to make use of the available observed information, to construct a predictor that will have optimal performance in the target domain.

It is apparent that without further assumptions, this objective is ill-posed. Namely, since the only available observations in the target domain are from the marginal distribution $p_{\mathbf{x}|\mathbf{u}^{\mathcal{T}}}$, the data may correspond to infinitely many joint distributions $p_{\mathbf{x},\mathbf{y}|\mathbf{u}^{\mathcal{T}}}$. This mandates making additional assumptions on the relationship between the source and the target domain distributions, with the hope to be able to reconstruct (identify) the joint distribution in the target domain $p_{\mathbf{x},\mathbf{y}|\mathbf{u}^{\mathcal{T}}}$. Typically, these assumptions entail some measure of sim-

Finding Changing Hidden Variables for Transfer Learning

i.i.d. data?	Parametric constraints?	Latent confounders?
Yes	No	No
No	Yes	Yes

- Underlying components Z_S may change across domains
- Changing components Z_S are identifiable; invariant part Z_C is identifiable up to its subspace
- Using \mathbf{Z}_C and transformed changing part $\tilde{\mathbf{Z}}_S$ for transfer learning
- Kong, Xie, Yao, Zheng, Chen, Stojanov, Akinwande, Zhang, Partial disentanglement for domain adaptation, ICML 2022

Identifiability Theory

i.i.d. data?	Parametric constraints?	Latent confounders?
Yes	No	No
No	Yes	Yes

such that $\hat{z}_{s,j} = h_{s,i}(z_{s,i})$. For ease of exposition, we assume that the \mathbf{z}_c and \mathbf{z}_s correspond to components in \mathbf{z} with indices $\{1, \ldots, n_c\}$ and $\{n_c + 1, \ldots, n\}$ respectively, that is, $\mathbf{z}_c = (z_i)_{i=1}^{n_c}$ and $\mathbf{z}_s = (z_i)_{i=n_c+1}^{n_c}$.

Theorem 4.1. We follow the data generation process in Equation 1 and make the following assumptions:

- A1 (Smooth and Positive Density): The probability density function of latent variables is smooth and positive, i.e. $p_{\mathbf{z}|\mathbf{u}}$ is smooth and $p_{\mathbf{z}|\mathbf{u}} > 0$ over \mathcal{Z} and \mathcal{U} .
- A2 (Conditional independence): Conditioned on \mathbf{u} , each z_i is independent of any other z_j for $i, j \in [n]$, $i \neq j$, i.e. $\log p_{\mathbf{z}|\mathbf{u}}(\mathbf{z}|\mathbf{u}) = \sum_{i=1}^{n} q_i(z_i, \mathbf{u})$ where q_i is the log density of the conditional distribution, i.e., $q_i := \log p_{z_i|\mathbf{u}}$.
- A3 (Linear independence): For any $\mathbf{z}_s \in \mathcal{Z}_s \subseteq \mathbb{R}^{n_s}$, there exist $2n_s + 1$ values of \mathbf{u} , i.e., \mathbf{u}_j with $j = 0, 1, \ldots, 2n_s$, such that the $2n_s$ vectors $\mathbf{w}(\mathbf{z}_s, \mathbf{u}_j) - \mathbf{w}(\mathbf{z}_s, \mathbf{u}_0)$ with $j = 1, ..., 2n_s$, are linearly independent, where vector $\mathbf{w}(\mathbf{z}_s, \mathbf{u})$ is defined as follows:

$$\mathbf{w}(\mathbf{z}_{s},\mathbf{u}) = \left(\frac{\partial q_{n_{c}+1}\left(z_{n_{c}+1},\mathbf{u}\right)}{\partial z_{n_{c}+1}}, \dots, \frac{\partial q_{n}\left(z_{n},\mathbf{u}\right)}{\partial z_{n}}, \frac{\partial^{2} q_{n_{c}+1}\left(z_{n_{c}+1},\mathbf{u}\right)}{\partial z_{n_{c}+1}^{2}}, \dots, \frac{\partial^{2} q_{n}\left(z_{n},\mathbf{u}\right)}{\partial z_{n}^{2}}\right).$$
(3)

By learning $(\hat{g}, p_{\hat{\mathbf{z}}_c}, p_{\hat{\mathbf{z}}_s|\mathbf{u}})$ to achieve Equation 2, \mathbf{z}_s is component-wise identifiable.

Implementation with Modified VAE

 \mathbf{Z}_{c}

Figure 1. The generating process: The gray shade of nodes indicates that the variable is observable.

Autoencoder

Figure 2. Diagram of our proposed method, **iMSDA**. We first apply the VAE encoder (f_{μ}, f_{Σ}) to encode **x** into $(\hat{\mathbf{z}}_c, \hat{\mathbf{z}}_s)$, which is further fed into the decoder \hat{g} for reconstruction. In parallel, the changing part $\hat{\mathbf{z}}_s$ is passed through the flow model $f_{\mathbf{u}}$ to recover the high-level invariant variable $\hat{\mathbf{z}}_s$. We use $(\hat{\mathbf{z}}_c, \hat{\mathbf{z}}_s)$ for classification with the classifier f_{cls} and for matching $\mathcal{N}(\mathbf{0}, \mathbf{I})$ with a KL loss.

Partial Disentanglement for Domain

 \mathbf{Z}_{c}

u

X

 \mathbf{Z}_s

 $\widetilde{\mathbf{Z}_s}$

Adaptation

i.i.d. data?	Parametric constraints?	Latent confounders?
Yes	No	No
No	Yes	Yes

Models	$\rightarrow \operatorname{Art}$	\rightarrow Clipart	\rightarrow Product	\rightarrow Realworld	Avg
Source Only (He et al., 2016)	64.58 ± 0.68	52.32±0.63	77.63±0.23	$80.70 {\pm} 0.81$	68.81
DANN (Ganin et al., 2016)	$64.26 {\pm} 0.59$	58.01 ± 1.55	$76.44 {\pm} 0.47$	$78.80{\pm}0.49$	69.38
DANN+BSP (Chen et al., 2019)	66.10 ± 0.27	$61.03 {\pm} 0.39$	78.13 ± 0.31	$79.92{\pm}0.13$	71.29
DAN (Long et al., 2015)	$68.28 {\pm} 0.45$	$57.92 {\pm} 0.65$	$78.45 {\pm} 0.05$	$81.93 {\pm} 0.35$	71.64
MCD (Saito et al., 2018)	$67.84{\pm}0.38$	$59.91 {\pm} 0.55$	79.21±0.61	$80.93 {\pm} 0.18$	71.97
M3SDA (Peng et al., 2019)	66.22 ± 0.52	58.55±0.62	79.45±0.52	81.35±0.19	71.39
DCTN (Xu et al., 2018)	$66.92 {\pm} 0.60$	$61.82 {\pm} 0.46$	$79.20 {\pm} 0.58$	$77.78 {\pm} 0.59$	71.43
MIAN (Park & Lee, 2021)	$69.39 {\pm} 0.50$	$63.05 {\pm} 0.61$	$79.62 {\pm} 0.16$	$80.44 {\pm} 0.24$	73.12
MIAN- γ (Park & Lee, 2021)	$69.88 {\pm} 0.35$	$64.20{\pm}0.68$	$80.87 {\pm} 0.37$	$81.49 {\pm} 0.24$	74.11
iMSDA (Ours)	75.77±0.21	$60.83 {\pm} 0.73$	84.13±0.09	84.83±0.12	76.39

Table 2. Classification results on Office-Home. Backbone: Resnet-50. Baseline results are taken from (Park & Lee, 2021).

- Xie, Kong, Gong, Zhang, "Multi-domain image generation and Granslation with identifiability guarantees", ICLR 2023

A Weaker One: Subspace Identifiability for Domain Adaptation

i.i.d. data?	Parametric constraints?	Latent confounders?
Yes	No	No
No	Yes	Yes

Subspace Identification for Multi-Source Domain Adaptation

Zijian Li^{2,3}, Ruichu Cai², Guangyi Chen^{3,1}, Boyang Sun³, Zhifeng Hao⁴, Kun Zhang^{3,1*} ¹ Carnegie Mellon University ² School of Computer Science, Guangdong University of Technology ³ Mohamed bin Zayed University of Artificial Intelligence ⁴ Shantou University

Abstract

Multi-source domain adaptation (MSDA) methods aim to transfer knowledge from multiple labeled source domains to an unlabeled target domain. Although current methods achieve target joint distribution identifiability by enforcing minimal changes across domains, they often necessitate stringent conditions, such as an adequate number of domains, monotonic transformation of latent variables, and invariant label distributions. These requirements are challenging to satisfy in real-world applications. To mitigate the need for these strict assumptions, we

Subspace Identifiability: Theory

i.i.d. data?	Parametric constraints?	Latent confounders?
Yes	No	No
No	Yes	Yes

 $\hat{\mathbf{z}}_s$ and an invertible function $h_i : \mathbb{R}^n \to \mathbb{R}$, such that $z_{s,i} = h_i(\hat{\mathbf{z}}_s)$.

Theorem 1. (Subspace Identification of z_s .) We follow the data generation process in Figure 2 and make the following assumptions:

- A1 (Smooth and Positive Density): The probability density function of latent variables is smooth and positive, i.e., $p_{\mathbf{z}|\mathbf{u}} > 0$ over \mathcal{Z} and \mathcal{U} .
- A2 (Conditional independent): Conditioned on \mathbf{u} , each z_i is independent of any other z_j for $i, j \in \{1, \dots, n\}, i \neq j$, i.e. $\log p_{\mathbf{z}|\mathbf{u}}(\mathbf{z}|\mathbf{u}) = \sum_{i=1}^{n} q_i(z_i, \mathbf{u})$ where $q_i(z_i, \mathbf{u})$ is the log density of the conditional distribution, i.e., $q_i : \log p_{z_i|\mathbf{u}}$.
- A3 (Linear independence): For any $\mathbf{z}_s \in \mathcal{Z}_s \subseteq \mathbb{R}^{n_s}$, there exist $\underline{n_s + 1}$ values of \mathbf{u} , i.e., \mathbf{u}_j with $j = \overline{0, 1, \dots, n_s}$, such that these n_s vectors $\mathbf{w}(\mathbf{z}, \mathbf{u}_j) \mathbf{w}(\mathbf{z}, \mathbf{u}_0)$ with $j = 1, \dots, n_s$ are linearly independent, where vector $\mathbf{w}(\mathbf{z}, \mathbf{u}_j)$ is defined as follows:

$$\mathbf{w}(\mathbf{z},\mathbf{u}) = \left(\frac{\partial q_1(z_1,\mathbf{u})}{\partial z_1}, \cdots, \frac{\partial q_i(z_i,\mathbf{u})}{\partial z_i}, \cdots, \frac{\partial q_{n_s}(z_{n_s},\mathbf{u})}{\partial z_{n_s}}\right),\tag{2}$$

By modeling the aforementioned data generation process, \mathbf{z}_s is subspace identifiable.

Finding Changing Hidden Variables for Transfer Learning: *Minimal Change Principle*

i.i.d. data?	Parametric constraints?	Latent confounders?
Yes	No	No
No	Yes	Yes

- Changing components Z_S are identifiable; invariant part Z_C is identifiable up to its subspace
- Minimal Change Principle
 - What if we have **more** dimensions of Z_S than needed?
 - What if we have **fewer** dimensions of Z_S than needed?
 - Go with the right one!

Image Translation: How to Learn 'Style'?

Images from the winter season domain.

Minimal Changes Enables Identifiability

Images from the winter season domain.

MULTI-DOMAIN IMAGE GENERATION AND TRANSLA-TION WITH IDENTIFIABILITY GUARANTEES

Shaoan Xie¹, Lingjing Kong¹, Mingming Gong^{3,2}, and Kun Zhang^{1,2}

¹ Carnegie Mellon University ²Mohamed bin Zayed University of Artificial Intelligence ³The University of Melbourne shaoan@cmu.edu, lingjingkong@cmu.edu, mingming.gong@unimelb.edu.au, kunz1@cmu.edu

ABSTRACT

Multi-domain image generation and unpaired image-to-to-image translation are two important and related computer vision problems. The common technique for the two tasks is the learning of a joint distribution from multiple marginal distributions. However, it is well known that there can be infinitely many joint distributions that can derive the same marginals. Hence, it is necessary to formulate suitable constraints to address this highly ill-posed problem. Inspired by the recent advances in nonlinear Independent Component Analysis (ICA) theory, we propose a new method to learn the joint distribution from the marginals by enforcing a specific type of minimal change across domains. We report one of the first results connecting multi-domain generative models to identifiability and shows

Sample Images Generated by Generative Adversarial Networks (GANs)

Images generated by a **GAN created by NVIDIA**.

Minimax game which *G* wants to minimize *V* while *D* wants to maximize it: $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{data}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))].$

- Match the data distribution across domains, while the dimensionality of $\epsilon_S^{(u)}$ is as small as possible (minimal changes across domains **controlled by** λ ; no penalty when λ =0)
- Correspondence relations among domains are identifiable

Multi-domain Image Generation & Translation with Identifiability Guarantees

- Idea: Matching the distributions across domains with a minimal number of changing components
- Correspondence info (joint distribution) identifiable under mild assumptions
- Example: Generating female & males images with the same "content"

Ours ($\chi = 0.1$)

StyleGAN2-ADA

TGAN

– Xie, Kong, Gong, Zhang, "Multi-domain image generation an **26** ranslation with identifiability guarantees", ICLR 2023

More results...

Figure 10: CelebA-HQ. Without the sparsity regularization, i.e., $\lambda = 0$, we observe some unnecessary changes between the image tuples in each row. For example, e.g., the added sun-glasses and skin color change in the first row. TGAN changes the background (first row of third panel). CoGAN changes the skin color (second row, second p<u>an</u>el).

More results...

CoGAN StyleGAN2-ADA **TGAN** $\lambda = 0.1$ $\lambda = 0$

Figure 11: AFHQ. StyleGAN2-ADA changes animal poses in many examples, e.g., second and third row of first panel. Our base ($\lambda = 0$) also changes the poses, e.g., first and third row of second panel. CoGAN and TGAN are slightly better in preserving poses but we can observe that some generated images are unrealistic. For example, the pose (first row, third panel of TGAN) and the dog (third row, third panel of CoGAN).

Alternative strategy: learning hidden representations from IID data.

Talk to Yujia about it. ;)

CRL from Changes: Outline

I., but non-I.D.	No	No	More informative than MEC (CD-NOD)
	Yes		May have unique identifiability
	No	Yes	Changing subspace identifiable
	Yes		Variables in changing relations identifiable

- CD-NOD (Causal Discovery from Nonstationary/Heterogenuous data)
- Nonlinear ICA with partial changes across domains
 - Partial disentanglement
 - Domain adaptation, image translation, and multi-domain data generation
 - Learning from text-image pairs
- A general setting
- Connection to the IID case: Synergy between minimal changes and sparsity

Motivation: Controllability for Image Generation / Editing

- Existing text-to-image (T2I) models are not controllable: editing a specific feature through text often causes unwanted changes
- Example:

"Happy"

"Angry"

"Surprised"

Prevailing generative AI tools: not controllable

Example2: Change the style

Example1: Add Mustache

Example3: Change facial expression₁

Our Causal GenAI Enables Precise Control & Refinement

Our Causal GenAI Enables Precise Control & Refinement

Example 3: Change facial expression

A smiling girl in garden

From Text to Images: The Process

t: text

 z_i^{T} : atomic textual concepts z_j^{I} : atomic visual concepts *i*: images

Text and images have atomic concepts

- Textual atomic concepts determine their visual counterparts: why?
- Xie, Kong, Zheng, Tang, Xing, Chen, and Zhang, under submission

Learning Identifiable Concepts for Controllability t: text z_i^{T} : atomic textual concepts z_5^{I} z_i^{I} : atomic visual concepts *i*: images

Certain sparsity constraints on the cross links + conditional independence of image concepts \Rightarrow identifiable concepts:

- 1. Learning *disentangled*, *atomic* concepts z_m^{T} and z_n^{I} .
- 2. *Aligning* them.

Results: Controllable Generation

Our method can make only necessary changes without affecting other attributes!

Illustration: Importance of Sparsity

Remember these results? By Stable Diffusion: One Year Ago

• Prompt: a peacock eating ice cream

By DALL ·E 3: Three Months Ago

• Prompt: a peacock eating ice cream

"a realistic image of a peacock eating ice cream"

4 Designer

Powered by DALL·E 3

Let Peacock Eat Ice Cream, Controllably

Prompt: a peacock eating
 Prompt: a peacock eating
 ice cream
 White ice cream

CRL from Changes: Outline

I., but non-I.D.	No	No	More informative than MEC (CD-NOD)
	Yes		May have unique identifiability
	No	Yes	Changing subspace identifiable
	Yes		Variables in changing relations identifiable

- CD-NOD (Causal Discovery from Nonstationary/Heterogenuous data)
- Nonlinear ICA with partial changes across domains
 - Partial disentanglement
 - Domain adaptation, image translation, and multi-domain data generation
 - Learning from text-image pairs
- A general setting
- Connection to the IID case: Synergy between changes and sparsity

Causal Representation Learning from Multiple Distributions: A General Setting

i.i.d. data?	Parametric constraints?	Latent confounders?
Yes	No	No
No	Yes	Yes

- Goal: Uncovering hidden variables Z_i with changing causal relations from \mathbf{X} in nonparametric settings
- What is identifiable?
 - Markov network of Z_i
 - Each estimated variable \tilde{Z}_i is a function of Z_i and it intimate neighbors
- In this example, each Z_i ($i \neq 4$) can be recovered up to component-wise transformation

variables Z_i .

(a) \mathcal{G}_Z , the DAG over true latent (b) The corresponding Markov network \mathcal{M}_Z .

 Z_4

Zhang, Xie, Ng, Zheng, "Causal Representation Learning from Multiple Distributions: A General Setting," ICML 2024

CRL from Changes: Outline

I., but non-I.D.	No	No	More informative than MEC (CD-NOD)
	Yes		May have unique identifiability
	No	Yes	Changing subspace identifiable
	Yes		Variables in changing relations identifiable

- CD-NOD (Causal Discovery from Nonstationary/Heterogenuous data)
- Nonlinear ICA with partial changes across domains
 - Partial disentanglement
 - Domain adaptation, image translation, and multi-domain data generation
 - Learning from text-image pairs
- A general setting
- Connection to the IID case: Synergy between minimal changes and sparsity

SYNERGY BETWEEN SUFFICIENT CHANGES AND SPARSE MIXING PROCEDURE FOR DISENTANGLED REPRESENTATION LEARNING

Zijian Li^{†•*} Shunxing Fan^{•*} Yujia Zheng[†] Ignavier Ng[†] Shaoan Xie[†] Guangyi Chen^{†•} Xinshuai Dong[†] Ruichu Cai[‡] Kun Zhang^{†•}

[†]Carnegie Mellon University, Pittsburgh PA, USA

Mohamed bin Zayed University of Artificial Intelligence, Abu Dhabi, UAE

[‡]Guangdong University of Technology, Guangzhou, China

ABSTRACT

Disentangled representation learning aims to uncover latent variables underlying the observed data, and generally speaking, rather strong assumptions are needed

Is it possible to leverage both the distribution changeability & sparsity constraint in a complementary, principled way to learn disentangled representations with identifiability guarantees?

nability. Specifically, when conditioned on auxiliary variables, the sparse mixing procedure assumption provides structural constraints on the mapping from estimated to true latent variables and hence compensates for potentially insufficient distribution changes. Building on this insight, we propose an identifiability theory with less restrictive constraints regarding distribution changes and the sparse mixing procedure enhancing applicability to real-world scenarios. Additionally, we

SYNERGY BETWEEN SUFFICIENT CHANGES AND SPARSE MIXING PROCEDURE FOR DISENTANGLED REPRESENTATION LEARNING

Summary

- Remember Semmelweis?
 - Learning hidden causal factor from different distributions
- How can CRL benefit from distribution shift?
 - Constraints on the changes!
 - E.g., only $p(S_i)$ change
 - Minimal changes for "concept" identifiability
 - Learning atomic textual and visual concepts and connections
- Unification: the benefit from **sparse** mixing procedure & **minimal** changes