
Causality and Machine Learning 
(80-816/516)

Classes 17 (March 18, 2025)

Instructor: 
Kun Zhang (kunz1@cmu.edu) 

Zoom link: https://cmu.zoom.us/j/8214572323) 
Office Hours: W 3:00–4:00PM (on Zoom or in person); other times by 

appointment

Practical Issues in Causal Discovery:  
Missing Values and Temporal Constraints 

and 
Basic Idea of  Identifiability Establishment

mailto:kunz1@cmu.edu
https://cmu.zoom.us/j/8214572323


Issue 3: Causal Discovery in the 
Presence of  Missing Data

• Conditional independence relations in the data are sensitive to 
the missingness mechanism 

• Key issue: Recover conditional independence relations in the 
original population from incomplete data

R. Tu, C. Zhang, P. Ackermann, K. Mohan, H. Kjellström, C. Glymour, K. Zhang, “Causal discovery in the presence 
of missing data,” AISTATS 2019
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Figure 1: Exemplar missingness graphs in MCAR, MAR, and MNAR. X , Y , Z and W are random variables. In the m-graph,
gray nodes denote partially observed variables, and white nodes are fully observed variables. Ry and Rw are the missingness
indicators for Y and W .

considering the missingness procedure as a particular type
of selection bias, it is shown that FCI combined with test-
wise deletion for CI tests is still sound when one aims to
estimate the PAG for the variables including the effect of
missingness (a particular type of selection bias). It is usually
different from the causal graph for generating the variables
we are concerned with. Data missingness is usually differ-
ent from selection bias, because in the selection bias case
we have only the distribution of the selected sample but
no clue about the population. While in the missing data
case, we may be able to check the (conditional) indepen-
dence relation between two variables by making use of the
available data on other variables. In the case where the
missingness mechanisms are known, this problem is closely
related to the recoverability of models with missing data
[Mohan et al., 2013].

3 Behavior of the deletion-based PC

In this section, we discuss the influence of missing data
on the deletion-based PC algorthm. Primarily, we provide
theoretical analysis to identify the particular structures that
errors occur due to missingness. Firstly, we utilize the m-
graph and summarize assumptions of our work. We then
provide naive extensions of test-wise deletion based and
list-wise deletion based method on the PC algorithm. Our
analysis focuses on properties of the results produced by
these algorithms in the presence of missing values, and
provides the conditions, under which CI tests produce wrong
edges in the causal graph result from incomplete data.

Missingness graph. In our work, we utilize the nota-
tion of the m-graph [Mohan et al., 2013] to represent the
missingness mechanisms of variables and their causal re-
lations. In the original definition in [Mohan et al., 2013],
an m-graph is a causal DAG over the variable set V =
V[U[V

⇤ [R. U is the set of unobserved variables; in this
paper, we assume causal sufficiency, so U is an empty set.
V is a substantive variable set which is the set of observable
variables containing Vo and Vm. Vo ✓ V is the set of fully
observed variables, denoted as white nodes in our graphi-
cal representation. Vm ✓ V is the set of partially observed
variables that are missing in at least one record, which is
shadowed in gray. R denotes missingness indicators, and

Ry 2 R is the corresponding missingness indicator for Y .
Here, Ry = 1 presents that the corresponding value is miss-
ing, and Ry = 0 indicates that the corresponding value for the
variable Y is observed. The proxy variable Y ⇤ is introduced
as an auxiliary variable for the convenience of derivation. It
takes the value of Y if Ry = 0, and corresponds to a missing
entry if Ry = 1. In this paper, proxy variables are not shown
in the m-graph for clarity [Mohan et al., 2018]. In this work
we adopt the CI based definitions of missingness categories
as stated in [Mohan et al., 2013]. We denote independent
relation in a data set as ?? and d-separation in a m-graph as
??d . Data are MCAR if (Vm,Vo) ??dR holds in the m-graph
( e.g., Figure 1a), MAR if Vm ??dR | Vo holds (e.g., Figure
1b) and MNAR otherwise (e.g., Figure 1c).

Assumptions about dealing with missingness. Let
{X ,Y} 2 V denote random variables of interest, and Z ✓
V\{X ,Y}. The CI relation between X and Y given Z is de-
noted by X ?? Y | Z. Apart from the basic assumptions for
the PC algorithm with fully observed data, in this paper, we
make the following additional assumptions for all methods
that address missing data entries:

• Faithful observability: We assume that X ?? Y |
{Z,RK = 0}() X ?? Y | {Z,RK}. Here, RK is the
superset of {Rx,Ry,Rz} and the subset of R. Con-
ditioning on RK = 0 means conditioning on all the
missingness indicators in RK taking the value zero.
According to the faithfulness assumption of the distri-
bution relative to the m-graph [Glymour et al., 2001],
all d-separation relations in the graph correspond to
CI relations in the distribution, such as X ?? Y |
{Z,RK} () X ??dY | {Z,RK}. In the presence of
missing data, for each variable we only observe its
value when the corresponding missingness indicator is
zero. In principle, X ?? Y | {Z,RK} may be stronger
than X ?? Y | {Z,RK = 0}. Roughly speaking, this as-
sumption states that the missingness mechanism does
not deceive us in the sense that although the observed
data and the unobserved data may have different distri-
butions, they will have the same CI relations.

• No causal interactions between missingness indicators:
We assume that a missingness indicator cannot be de-
terministically related to other missingness indicators
or be the cause of variables in V.



Causal Discovery in the Presence of  
Missing Data

• R is the set of missingness indicators that represent the status of 
missingness 

• If RX is 1, the corresponding value of X is missing; if it is 0, it is 
observed 

• Missingness graph
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indicators for Y and W .

considering the missingness procedure as a particular type
of selection bias, it is shown that FCI combined with test-
wise deletion for CI tests is still sound when one aims to
estimate the PAG for the variables including the effect of
missingness (a particular type of selection bias). It is usually
different from the causal graph for generating the variables
we are concerned with. Data missingness is usually differ-
ent from selection bias, because in the selection bias case
we have only the distribution of the selected sample but
no clue about the population. While in the missing data
case, we may be able to check the (conditional) indepen-
dence relation between two variables by making use of the
available data on other variables. In the case where the
missingness mechanisms are known, this problem is closely
related to the recoverability of models with missing data
[Mohan et al., 2013].

3 Behavior of the deletion-based PC

In this section, we discuss the influence of missing data
on the deletion-based PC algorthm. Primarily, we provide
theoretical analysis to identify the particular structures that
errors occur due to missingness. Firstly, we utilize the m-
graph and summarize assumptions of our work. We then
provide naive extensions of test-wise deletion based and
list-wise deletion based method on the PC algorithm. Our
analysis focuses on properties of the results produced by
these algorithms in the presence of missing values, and
provides the conditions, under which CI tests produce wrong
edges in the causal graph result from incomplete data.

Missingness graph. In our work, we utilize the nota-
tion of the m-graph [Mohan et al., 2013] to represent the
missingness mechanisms of variables and their causal re-
lations. In the original definition in [Mohan et al., 2013],
an m-graph is a causal DAG over the variable set V =
V[U[V

⇤ [R. U is the set of unobserved variables; in this
paper, we assume causal sufficiency, so U is an empty set.
V is a substantive variable set which is the set of observable
variables containing Vo and Vm. Vo ✓ V is the set of fully
observed variables, denoted as white nodes in our graphi-
cal representation. Vm ✓ V is the set of partially observed
variables that are missing in at least one record, which is
shadowed in gray. R denotes missingness indicators, and

Ry 2 R is the corresponding missingness indicator for Y .
Here, Ry = 1 presents that the corresponding value is miss-
ing, and Ry = 0 indicates that the corresponding value for the
variable Y is observed. The proxy variable Y ⇤ is introduced
as an auxiliary variable for the convenience of derivation. It
takes the value of Y if Ry = 0, and corresponds to a missing
entry if Ry = 1. In this paper, proxy variables are not shown
in the m-graph for clarity [Mohan et al., 2018]. In this work
we adopt the CI based definitions of missingness categories
as stated in [Mohan et al., 2013]. We denote independent
relation in a data set as ?? and d-separation in a m-graph as
??d . Data are MCAR if (Vm,Vo) ??dR holds in the m-graph
( e.g., Figure 1a), MAR if Vm ??dR | Vo holds (e.g., Figure
1b) and MNAR otherwise (e.g., Figure 1c).

Assumptions about dealing with missingness. Let
{X ,Y} 2 V denote random variables of interest, and Z ✓
V\{X ,Y}. The CI relation between X and Y given Z is de-
noted by X ?? Y | Z. Apart from the basic assumptions for
the PC algorithm with fully observed data, in this paper, we
make the following additional assumptions for all methods
that address missing data entries:

• Faithful observability: We assume that X ?? Y |
{Z,RK = 0}() X ?? Y | {Z,RK}. Here, RK is the
superset of {Rx,Ry,Rz} and the subset of R. Con-
ditioning on RK = 0 means conditioning on all the
missingness indicators in RK taking the value zero.
According to the faithfulness assumption of the distri-
bution relative to the m-graph [Glymour et al., 2001],
all d-separation relations in the graph correspond to
CI relations in the distribution, such as X ?? Y |
{Z,RK} () X ??dY | {Z,RK}. In the presence of
missing data, for each variable we only observe its
value when the corresponding missingness indicator is
zero. In principle, X ?? Y | {Z,RK} may be stronger
than X ?? Y | {Z,RK = 0}. Roughly speaking, this as-
sumption states that the missingness mechanism does
not deceive us in the sense that although the observed
data and the unobserved data may have different distri-
butions, they will have the same CI relations.

• No causal interactions between missingness indicators:
We assume that a missingness indicator cannot be de-
terministically related to other missingness indicators
or be the cause of variables in V.



Categories of  Missing Data Mechanism

• All missing data mechanisms fall into one of the following three 
categories (Rubin, 1976):  

• Data are Missing Missing Completely At Random (MCAR) if the 
cause of missingness is purely random. 

• Data are Missing At Random (MAR) when the direct cause of 
missingness is fully observed.  

• Data that are neither MAR nor MCAR fall under the Missing Not 
At Random (MNAR) category.



Assumptions for the Method
• Assumption 1 (Missingness indicators are not causes): No 

missingness indicator can be a cause of any substantive 
(observed) variable.

• Assumption 2 (Faithful observability): Any conditional 
independence relation in the observed data also holds in the 
unobserved data.

• Assumption 3 (No deterministic relation between missingness 
indicators): No missingness indicator can be a deterministic 
function of any other missingness indicators. 

• Assumption 4 (No self-masking missingness): Self-masking 
missingness refers to missingness in a variable that is caused by 
itself.

*



Observations

• Trust the testwise deletion conditional independence relations for 
causal discovery?

• Given Assumptions 1-4, we can prove:

• If X ⫫ Y | Z in the testwise-deleted data, then X⫫Y | Z in the full 
data. 

• If testwise deletion gives extra dependence X⫫Y | Z, compared to 
the population, then for at least one variable in {X}∪{Y}∪Z, its 
missingness indicator is either the direct common effect or a 
descendant of the direct common effect of X and Y.
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wise deletion for CI tests is still sound when one aims to
estimate the PAG for the variables including the effect of
missingness (a particular type of selection bias). It is usually
different from the causal graph for generating the variables
we are concerned with. Data missingness is usually differ-
ent from selection bias, because in the selection bias case
we have only the distribution of the selected sample but
no clue about the population. While in the missing data
case, we may be able to check the (conditional) indepen-
dence relation between two variables by making use of the
available data on other variables. In the case where the
missingness mechanisms are known, this problem is closely
related to the recoverability of models with missing data
[Mohan et al., 2013].

3 Behavior of the deletion-based PC

In this section, we discuss the influence of missing data
on the deletion-based PC algorthm. Primarily, we provide
theoretical analysis to identify the particular structures that
errors occur due to missingness. Firstly, we utilize the m-
graph and summarize assumptions of our work. We then
provide naive extensions of test-wise deletion based and
list-wise deletion based method on the PC algorithm. Our
analysis focuses on properties of the results produced by
these algorithms in the presence of missing values, and
provides the conditions, under which CI tests produce wrong
edges in the causal graph result from incomplete data.

Missingness graph. In our work, we utilize the nota-
tion of the m-graph [Mohan et al., 2013] to represent the
missingness mechanisms of variables and their causal re-
lations. In the original definition in [Mohan et al., 2013],
an m-graph is a causal DAG over the variable set V =
V[U[V

⇤ [R. U is the set of unobserved variables; in this
paper, we assume causal sufficiency, so U is an empty set.
V is a substantive variable set which is the set of observable
variables containing Vo and Vm. Vo ✓ V is the set of fully
observed variables, denoted as white nodes in our graphi-
cal representation. Vm ✓ V is the set of partially observed
variables that are missing in at least one record, which is
shadowed in gray. R denotes missingness indicators, and

Ry 2 R is the corresponding missingness indicator for Y .
Here, Ry = 1 presents that the corresponding value is miss-
ing, and Ry = 0 indicates that the corresponding value for the
variable Y is observed. The proxy variable Y ⇤ is introduced
as an auxiliary variable for the convenience of derivation. It
takes the value of Y if Ry = 0, and corresponds to a missing
entry if Ry = 1. In this paper, proxy variables are not shown
in the m-graph for clarity [Mohan et al., 2018]. In this work
we adopt the CI based definitions of missingness categories
as stated in [Mohan et al., 2013]. We denote independent
relation in a data set as ?? and d-separation in a m-graph as
??d . Data are MCAR if (Vm,Vo) ??dR holds in the m-graph
( e.g., Figure 1a), MAR if Vm ??dR | Vo holds (e.g., Figure
1b) and MNAR otherwise (e.g., Figure 1c).

Assumptions about dealing with missingness. Let
{X ,Y} 2 V denote random variables of interest, and Z ✓
V\{X ,Y}. The CI relation between X and Y given Z is de-
noted by X ?? Y | Z. Apart from the basic assumptions for
the PC algorithm with fully observed data, in this paper, we
make the following additional assumptions for all methods
that address missing data entries:

• Faithful observability: We assume that X ?? Y |
{Z,RK = 0}() X ?? Y | {Z,RK}. Here, RK is the
superset of {Rx,Ry,Rz} and the subset of R. Con-
ditioning on RK = 0 means conditioning on all the
missingness indicators in RK taking the value zero.
According to the faithfulness assumption of the distri-
bution relative to the m-graph [Glymour et al., 2001],
all d-separation relations in the graph correspond to
CI relations in the distribution, such as X ?? Y |
{Z,RK} () X ??dY | {Z,RK}. In the presence of
missing data, for each variable we only observe its
value when the corresponding missingness indicator is
zero. In principle, X ?? Y | {Z,RK} may be stronger
than X ?? Y | {Z,RK = 0}. Roughly speaking, this as-
sumption states that the missingness mechanism does
not deceive us in the sense that although the observed
data and the unobserved data may have different distri-
butions, they will have the same CI relations.

• No causal interactions between missingness indicators:
We assume that a missingness indicator cannot be de-
terministically related to other missingness indicators
or be the cause of variables in V.
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Missing-Value PC (MVPC)

• Add missingness variables R to the dataset with measured variables V

• Create knowledge that R variables do not cause V variables

• Run PC adjacency search over V∪R

• Identify adjacencies over V in triangles over V∪R-–these might be 
false positives!

• Try to remove these extra adjacencies using correction…

• Finally, do collider orientation and apply the Meek rules to graph G 
over V



Essential Step in Missing Value PC

• Goal: see whether X⫫Y | Z by analyzing data with missing values

• Can we recover p(X,Y, Z) when Y has missing values? 

• In the linear-Gaussian or discrete case, permutation test:

TU, ZHANG, ACKERMANN, BERTILSON, GLYMOUR, KJELLSTRÖM AND ZHANG

4.3 Recovery of the true causal skeleton

As shown in Section 3, TD-PC produces extraneous edges in the causal skeleton, resulting in the
situations of Proposition 2. In this section, we introduce our correction methods to remove the
extraneous edges. We first introduce Permutation-based Correction (PermC) with an example. We
then show that PermC handles most of the missingness cases. Next, we propose an alternative
solution, named Density Ratio Weighted correction (DRW), for the cases which PermC does not
cover.

4.3.1 PERMUTATION-BASED CORRECTION

PermC in continuous cases. We use an example in continuous cases to demonstrate how to re-
move the extraneous edges with PermC. For example, suppose that we have a dataset with missing
values of which the underlying missingness graph is shown in Figure 1b. As discussed in Section
3, when applying TD-PC to this dataset, we produce an extraneous edge between X and Y in the
output of TD-PC. The problem is that data samples from joint distribution P(X ,Y,Z) are not avail-
able in the observed dataset. In this case, we test the CI relations in the test-wise deleted data from
P(X ,Y ∗

,Z | Ry = 0), producing the extraneous edge.
PermC solves this problem by testing the CI relations in the reconstructed virtual dataset utiliz-

ing the observed data concerning

P(X ,Y,Z) =
∫

W
P(X ,Y,Z |W )P(W )dW

=
∫

W
P(X ,Y ∗

,Z |W,Ry = 0)P(W )dW, (1)

such that reconstructed data follow the joint distribution P(X ,Y,Z). As shown in the first step of
Equation 1, we introduce a random variable W which is the direct cause of Ry in Figure 1b to
reconstruct the dataset and then marginalize it out. With W , the joint distribution P(X ,Y,Z) is
estimated by 1) learning the model for P(X ,Y,Z | W ) from test-wise deleted data, 2) plugging in
the values of W in the dataset, as data samples from P(W ), and 3) disregarding the input W and
keeping the generated virtual data for {X ,Y,Z} to marginalize W out. Given virtual data of X , Y ,
and Z that follow the joint distribution P(X ,Y,Z), one can test CI relations in the complete data.

Now the issue is that the data samples from P(X ,Y,Z | W ) are not directly available. Never-
theless, we learn a model for P(X ,Y ∗

,Z |W,Ry = 0) to generate virtual data of X , Y , and Z from
W , as shown in the second step of Equation 1. Under Assumptions 1∼4 we have P(X ,Y,Z |W ) =
P(X ,Y ∗

,Z | W,Ry = 0) because Ry ⊥⊥d{X ,Y,Z} | W ; moreover, data samples from P(X ,Y ∗
,Z |

W,Ry = 0) can be constructed by test-wise deletion. For simplicity, under the linear Gaussian
assumption we apply linear regression to learning the model for P(X ,Y ∗

,Z |W,Ry = 0) as :

X = α1W + ε1, Y = α2W + ε2, Z = α3W + ε3, (2)

where αi is the parameter of linear regression models and εi is the residual.
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Issue 4: Causality in Time Series

• Functional causal models in time series

• Time-delayed causality + instantaneous 
relations

• Causal discovery from subsampled or 
temporally aggregated data

• From partially observable time series
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Granger Causality: 
Motivation
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Granger Causality: Original Definition & 
Practical Constraints

• Two principles (Granger, ‘80)

• Future cannot cause past

• No redundant info: Cause contains unique information about effect

• X causes Y if  
• Completely nonparametric; Yt+1 ⫫ Xt given all the remaining 

information until time t

• In practice: causality in mean; linear Granger causality

- C.W.J. Granger, Testing for causality: A personal viewpoint. Journal of Economic Dynamics & 
Control 2: 329–352, 1980
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Conditional Independence-Based Method 
for Causal Discovery from Time Series

• Two principles (Granger, ‘80)

• Future cannot cause past 

• No redundant info: Cause contains unique information about effect

• X causes Y if  
• Completely nonparametric; Yt+1 ⫫ Xt given all the remaining 

information until time t

• In practice: causality in mean; linear Granger causality
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- The PC algorithm still applies; additional temporal 
constraints!



Extension of PC for Causal Analysis of 
Time series

• Unroll the processes

• Apply PC + temporal constraints

• Has been applied to climate analysis

Chu and Glymour, Search for nonlinear time series causal models, JMLR 2008 



Application: Ocean Climate Analysis

CHU AND GLYMOUR

Climate teleconnections are associations of geospatially remote climate phenomena produced
by atmospheric and oceanic processes. The most famous, and first established teleconnection, is the
association of the El Nino/Southern Oscillation (ENSO) with the failure of monsoons in India. A
variety of associations have been documented among sea surface temperatures (SST), atmospheric
pressure at sea level (SLP), land surface temperatures (LST) and precipitation over land areas. Since
the 1970s data from a sequence of satellites have provided monthly (and now daily) measurements
of such variables, at resolutions as small as 1 square kilometer. Measurements in particular spatial
regions have been clustered into time indexed indices for the regions, usually by principal com-
ponents analysis, but also by other methods. Climate research has established that some of these
phenomena are exogenous drivers of others, and has sought physical mechanisms for the telecon-
nections. We consider here whether constraints on such mechanisms can be obtained by data-driven
model selection from time series of ocean indices.

Our data set consists of the following 4 ocean climate indices, recorded monthly from 1958 to
1999, each forming a time series of 504 time steps:

SOI Southern Oscillation Index: Sea Level Pressure (SLP) anomalies between Darwin and Tahiti

WP Western Pacific: Low frequency temporal function of the ‘zonal dipole’ SLP spatial pattern
over the North Pacific.

AO Arctic Oscillation: First principal component of SLP poleward of 20◦ N

NAO North Atlantic Oscillation: Normalized SLP differences between Ponta Delgada, Azores and
Stykkisholmur, Iceland

To check stationarity, we conduct the augmented Dickey-Fuller (ADF) test. ADF tests for all 4
time series reject the null hypothesis that the tested series has a unit root against the alternative that
the series is stationary, with p values of the tests smaller than 0.01. As a complementary to ADF
tests, we also conduct the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test. For all 4 time series,
KPSS tests with lag truncation parameter set to 12 fail to reject the null hypothesis that the tested
series is (trend) stationary against the unit root alternative, with p values of the tests higher than
0.1. We also plot the autocorrelations for the 4 time series to check if the data satisfies the strong
mixing condition (Figure 6). The idea is that, if a time series satisfies the strong mixing condition,
its autocorrelation should decrease rapidly as the lag increases. From the plot, the auto correlations
of SOI do not decrease as quickly as for other indices, but they become insignificant when the lag
is above 12 months.

We assume that the 4 indices are generated from a lag 12 additive non-linear model. The choice
of 12 is partly based on the fact that the ocean indices are monthly data. Another concern is that
with a length of 504, the data would be too sparse for a model with a much longer lag. As in the
simulation study, the R package gam (version 0.97) is used in this analysis. We first remove any
linear trend from the data, then, following the causal inference procedure presented in Section 3,
derive a causal structure represented by a PAG for the 4 ocean climate indices. Figure 7 gives the
learned causal structure.

Because of the relative shorter length of the ocean indices data (10 observations per variable for
a lag 12 model), it is worth conducting another inference on the 4 ocean indices using the linear
procedure. The resulting causal structure is given in Figure 8.
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Practical Granger Causality

• X1: {X1t} Granger causes X2: {X2t} if it contains information helping 
predict X2,t+h (h>0) contained nowhere else (Granger, 1969)

• Temporal constraint: causes must precede effects + linear causal 
relations 

• Vector autoregression (VAR) estimated by multivariate least squares 
(MLS)

X1t

X2t

Xt =
pX

⌧=1

B⌧Xt�⌧ +Et



An Example

• Analyze cheese price (X1), butter price (X2), and milk price 
(X3);recorded monthly from January 1986 to April 2014

• http://future.aae. wisc.edu/tab/prices.html  

• Estimate 
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Figure 2. RMSE of Algorithm 2 and the practical Granger estima-
tor as a function of sample length L.

causation estimator on the sample of only X .

Outcome: We calculated the root-mean-square error
(RMSE) of Algorithm 2, i.e., 1

20

P20
n=1(B

best est
n � Btrue

n )2,
where Bbest est

n , Btrue
n denotes the best estimate for B re-

turned by Algorithm 2 (i.e., the one out of the two outputs
that minimizes the RMSE) and true B for each run n, re-
spectively. The RMSE as a function of the sample length L
is depicted in Figure 2, along with the RMSE of the practi-
cal Granger estimator.

Discussion: This empirically shows that the set of two out-
puts of Algorithm 2 asymptotically seem to contain the true
B. However, it takes at least 1000 samples to output rea-
sonable estimates. As expected, the practical Granger esti-
mator does not seem to converge against the true B.

8.2. Real-World Data
Here we examine how Algorithm 1 performs on a real-
world data set.

Experimental setup: We consider a time series Y of
length 340 and the three components: cheese price Y 1,
butter price Y 2, milk price Y 3 (recorded monthly from
January 1986 to April 2014, http://future.aae.
wisc.edu/tab/prices.html). We used the follow-
ing estimators: We applied practical Granger estimation to
the full time series Y (i.e., considering X = Y ) and denote
the outcome by AfG. We applied practical Granger estima-
tion to the reduced time series (Y 1, Y 2)> (i.e., considering
X = (Y 1, Y 2)>) and denote the outcome by BpG. We ap-
plied Algorithm 1 to the full time series Y (i.e., considering
X = Y ), while assuming an additional hidden univariate
Z, and denote the outcome by ĀfA. We applied Algorithm
1 to the reduced time series (Y 1, Y 2)> (i.e., considering
X = (Y 1, Y 2)>), while assuming an additional hidden
univariate Z, and denote the outcome by ÃpA. Furthermore
we do a model check as suggested in Section 7.3, although
the sample size may be too small for the independence test

to work reliably.

Outcome: The outputs are:

AfG =

0

@
0.8381 0.0810 0.0375
0.0184 0.9592 �0.0473
0.2318 0.0522 0.7446

1

A ,

BpG =

✓
0.8707 0.0837
�0.0227 0.9559

◆
,

ĀfA =

0

BB@

0.8809 0.1812 0.1016 �0.1595
0.0221 1.0142 �0.0290 �0.0492
0.2296 0.1291 0.8172 �0.1143
1.0761 0.6029 �0.7184 0.4226

1

CCA ,

ÃpA =

0

@
0.9166 0.0513 �0.0067
�0.0094 0.9828 �0.0047
�0.0031 0.1441 �0.2365

1

A .

The outcome of the model check, based on a significance
level of 5%, is the following: the hypothesis of Gaussian-
ity is rejected. Also the independence hypothesis stated in
Section 7.3 is rejected. The latter implies that the model
assumptions underlying Algorithm 1 are probably wrong.

Discussion: We consider AfG as ground truth. Intuitively,
non-zero entries at positions (i, 3) can be explained by the
milk price influencing cheese/butter prices via production
costs, while non-zero entries at positions (3, j) can be ex-
plained by cheese/butter prices driving the milk price via
demand for milk. The explanation of non-zero entries at
positions (1, 2) an (2, 1) is less clear. One can see that the
upper left 2 ⇥ 2 submatrix of ÃpA is quite close to that of
AfG (the RMSE over all entries is 0.0753), which shows
that Algorithm 1 works well in this respect. Note that BpG
is even a bit closer (the RMSE is 0.0662). However, the
upper right 2 ⇥ 1 matrix of ÃpA is not close to a scaled
version of the upper right 2 ⇥ 1 submatrix of AfG (which
corresponds to C). This is in contrast to what one could ex-
pect based on Theorem 2. ĀfA can be seen as an alternative
ground truth. It is important to mention that the estimated
order (lag length) of the full time series Y is 3, according to
Schwarz’s criterion (SC) (Lütkepohl, 2006), which would
violate our assumption of a VAR process of order 1 (Sec-
tion 4.1). The model check seems to detect this violation
of the model assumptions.

9. Conclusions
We considered the problem of causal inference from obser-
vational time series data. Our approach consisted of two
parts: First, we examined possible conditions for identifi-
ability of causal properties of the underlying system from
the given data. Second, we proposed two estimation algo-
rithms and showed that they work on simulated data under
the respective conditions from the first part.

http://future.aae


Granger Causality with Instantaneous 
Relations

• Are Eit independent? ⇒ instantaneous effects between 
Xit (Reale, Wilson et al., 2001)

• Granger causality with instantaneous effects: 

Xt =
pX

⌧=1

B⌧Xt�⌧ +B0Xt +Et, or Xt =
pX

⌧=0

B⌧Xt�⌧ +Et
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What Happens If We Ignore Instantaneous 
Effects (Hyvärinen et al., ICML 2008)

• Time-delayed “causal relations” will be changed

• Example

:

:

X1,t-1 X1t

X2,t-1 X2t

0.9

0.9

X3,t-1 X3t

1

1
0.9

0.9

0.90.9

Xt =
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B⌧Xt�⌧ +Et

)Xt =
pX

⌧=1

(I�B0)
�1 ·B⌧ ·Xt�⌧ + (I�B0)

�1Et



Identification (Zhang & Hyvärinen, 
ECML 2009)

•  Eit independent for different i and 
t, i.e., spatially & temporally 
independent

• If at most one of Eit is Gaussian, it 
can be solved by multichannel blind 
deconvolution (MBD) with causal 
FIR filters

• MBD estimates W to make Êit 
spatially and temporally 
independent

• Bτ can be found from Wτ, by 
extending LiNGAM analysis
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X2,t-1

X1,t

X2,t

X1,t+1

X2,t+1

...

... ...

...

B1 B1

B0 B0

Xt =
pX

⌧=0

B⌧Xt�⌧ +Et

)Et = (I�B0)Xt �
pX

⌧=1

B⌧Xt�⌧

=
pX

⌧=0

W⌧Xt�⌧



Experiment on Financial Data

• Extended Granger causality analysis (Granger causality 
with instantaneous effects) of daily returns of stock indices 
DJI, N225, HSI, and SSEC, with k = 1 lag (Zhang & 
Hyvärinen, ECML 2009)



Two Schemes of Temporal Aggregation

• Subsampling (systematic 
sampling) 

• Taking local averages (aggregation)

x1, x2,..., xk, xk+1, xk+2,...,x2k, x2k+1,...

x1, x2,..., xk, xk+1, xk+2,...,x2k, x2k+1,...

︸︸
x̃1 = x1, x̃2 = xk+1,

x̃1 =
1

k

kX

l=1

xl, x̃2 =
1

k

kX

l=1

xk+l, ...

...

X1,t-1 
. 
. 
. 
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X1t 
. 
. 
. 

Xnt

A

X1,t+1 
. 
. 
. 

Xn,t+1

A? ?

Causal info tends to disappear 
as k→∞

Causal info tends to be 
instantaneous as k→∞ :

Assume Xt = AXt�1 +Et

X̃t ⇡ AX̃t + Ẽt

Can we recover the causal 

influence matrix A? 

- Examples: temperature 

data, stock daily returns, 

GDP, fMRI...
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Abstract

Granger causal analysis has been an important
tool for causal analysis for time series in various
fields, including neuroscience and economics,
and recently it has been extended to include in-
stantaneous effects between the time series to
explain the contemporaneous dependence in the
residuals. In this paper, we assume that the time
series at the true causal frequency follow the vec-
tor autoregressive model. We show that when the
data resolution becomes lower due to subsam-
pling, neither the original Granger causal anal-
ysis nor the extended one is able to discover the
underlying causal relations. We then aim to an-
swer the following question: can we estimate
the temporal causal relations at the right causal
frequency from the subsampled data? Tradi-
tionally this suffers from the identifiability prob-
lems: under the Gaussianity assumption of the
data, the solutions are generally not unique. We
prove that, however, if the noise terms are non-
Gaussian, the underlying model for the high-
frequency data is identifiable from subsampled
data under mild conditions. We then propose an
Expectation-Maximization (EM) approach and a
variational inference approach to recover tempo-
ral causal relations from such subsampled data.
Experimental results on both simulated and real
data are reported to illustrate the performance of
the proposed approaches.

Proceedings of the 32nd
International Conference on Machine

Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s). * Equal contribution.

1. Introduction
Granger causal analysis (Granger, 1980) has been widely
used to find the temporal causal relations from time se-
ries. Time series x1 is said to cause times series x2 in the
Granger’s sense, if and only if the past and current values of
x1 contain useful information to predict the future values of
x2 that are not contained elsewhere.1 In practice, although
its nonlinear or nonparametric extensions exist, Granger
causal analysis usually assumes a linear model, and conse-
quently, the Granger causal relations can be seen by fitting
the vector autoregressive (VAR) regression model (Sims,
1980). When using VAR to estimate temporal causal re-
lations, one assumes that the data are obtained at the right
causal frequency, i.e., the VAR model serves as an approx-
imator to the true data-generating process. However, in
practice the causal frequency is usually unknown, and the
data are available at some fixed frequency such as daily,
weekly, or monthly. As a consequence, the sampling fre-
quency of the data is usually different from the true causal
frequency.

There are two typical aggregation schemes to generate low-
resolution or low-frequency data from high frequency ones.
One is by subsampling or systematic sampling: for ev-
ery k consecutive observations, one is kept, the rest being
skipped. We call k the subsampling factor. The other is to
take the local averages of k consecutive, non-overlapping
observations as the new observations. See Silvestrini &
Veredas (2008) for a survey on aggregation of univariate
and multivariate time series models. Subsampling is a com-
mon phenomenon in time series, and is our main focus in

1In physics, it might be more mathematically tractable to con-
struct theoretical models in continuous time, and often an exact
description requires the use of continuous time. However, we
would like to note that some time series are inherently discrete;
an example is the dividend paid by a company to shareholders
in successive years. Furthermore, even for continuous processes,
their causal interactions may take place at discrete points.

ICML 2015



Causal Discovery from Temporally 
Aggregated Time Series

Causal Discovery from Temporally Aggregated Time Series
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Abstract

Discovering causal structure of a dynamical sys-
tem from observed time series is a traditional
and important problem. In many practical ap-
plications, observed data are obtained by apply-
ing subsampling or temporally aggregation to the
original causal processes, making it difficult to
discover the underlying causal relations. Subsam-
pling refers to the procedure that for every k con-
secutive observations, one is kept, the rest being
skipped, and recently some advances have been
made in causal discovery from such data. With
temporal aggregation, the local averages or sums
of k consecutive, non-overlapping observations
in the causal process are computed as new obser-
vations, and causal discovery from such data is
even harder. In this paper, we investigate how to
recover causal relations at the original causal fre-
quency from temporally aggregated data when k

is known. Assuming the time series at the causal
frequency follows a vector autoregressive (VAR)
model, we show that the causal structure at the
causal frequency is identifiable from aggregated
time series if the noise terms are independent and
non-Gaussian and some other technical conditions
hold. We then present an estimation method based
on non-Gaussian state-space modeling and eval-
uate its performance on both synthetic and real
data.

1 INTRODUCTION

Causal modeling (Spirtes et al., 2001; Pearl, 2000) of time
series data has been widely applied in many fields such as
econometrics (Ghysels et al., 2016), neuroscience (Zhou
et al., 2014), and climate science (Van Nes et al., 2015).
Classical causal discovery approaches, e.g., Granger causal-
ity test (Granger, 1969), usually assume that the data mea-
surement frequency matches the true causal frequency of the

underlying physical process. However, since the true causal
frequency is usually unknown, the time series data are often
measured at the frequency lower than the causal frequency.
For example, some econometric indicators such as GDP
and non-farm payroll are usually recorded at quarterly and
monthly scales. Causal interactions between the processes,
however, may take place at the weekly or fortnightly scales
(Ghysels et al., 2016). In neuroscience, imaging technolo-
gies have relatively low temporal resolutions, while many
high frequency neuronal interactions are important for un-
derstanding neuronal dynamics (Zhou et al., 2014). In these
situations, the available observations have a lower resolution
than the underlying causal process.

There are two typical schemes to generate low-resolution or
low-frequency data from high-frequency ones (Silvestrini
& Veredas, 2008; Marcellino, 1999). One is by subsam-
pling: for every k consecutive observations, one is kept,
the rest being skipped. The other is temporally aggrega-
tion, i.e., taking the local averages or sums of k consecutive,
non-overlapping observations from the underlying causal
process as new observations. For instance, the time series
of interest, money supply, and temperature are usually ob-
tained by subsampling; in contrast, the U.S. nominal GDP
was obtained by aggregation – it refers to a total number of
dollars spent over a time period.

Numerous contributions have been made on analyzing the
effects of the above two schemes to generate low-resolution
data on the properties of the time series such as estimated
causal relations and exogeneity (Tiao, 1972; Weiss, 1984;
Granger, 1987; Marcellino, 1999; Rajaguru & Abeysinghe,
2008). These studies found that temporal aggregation can
lead to errors in the estimated causal relations if not prop-
erly addressed. For example, Breitung & Swanson (2002)
examined the impact of temporal aggregation on Granger
causality in vector autoregressive (VAR) models and found
that the results of Granger causal analysis heavily depend
on temporal aggregation.

Recovering the high frequency causal relations from tem-
porally aggregated data is a very hard problem due to infor-
mation loss in the aggregation process. A classical way to

UAI 2017



Confounding Effect

• What if Zt is not observable?

• Discovered causal relations sensitive to confounders: 
Example

• Can we identify B (as well as C) from Xt ?

- G. Philipp, K. Zhang, M. Gong, D. Janzing, B. Schölkopf. Causal inference by identification of vector 
autoregressive processes with hidden components, ICML 2015
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Causal Inference by Identification of Vector Autoregressive Processes with Hidden Components

We say W is a diagonal-structural VAR process, or DS-
VAR process for short, if in the above definition the addi-
tional condition is met that N1

0 , . . . , N
K
0 are mutually in-

dependent.2

3.2. Statistical Model of Observed and Hidden
Components

In this section we define the time series which we will ex-
amine throughout the paper. Let KX be arbitrary but fixed.
Let X be a KX -variate time series. As stated in Section
1, X is the random process from which we assume we
measured a sample. In particular, the random variables
in X have a meaning in reality (e.g., X1

3 is the tempera-
ture measured in room 1 at time 3) and we are interested in
the causal relations between these variables. Let X be re-
lated to a K-variate VAR process W , with VAR matrix A,
noise time series N , and noise convariance matrix ⌃, and a
KZ-variate time series Z, as follows: W = (X,Z)> and
KZ  KX . Furthermore, let

A =:

✓
B C
D E

◆
, (2)

with B a KX ⇥KX matrix.

We call B, which is the most interesting part of A in this
paper, the structural matrix underlying X . Furthermore, in
case C 6= 0, we call Z a hidden confounder.

3.3. Link Between Statistical and Causal Models
As already mentioned in Section 1, throughout this paper
we assume that the variables in Z are in principle measur-
able and intervenable, and based on this that the entries of
A, in particular the submatrix B, capture the actual direct
causal influences between the variables in W .

We also mentioned that there are two lines of thought based
on which this assumption can be justified. Let us briefly
elaborate on this here.

On the one hand, Granger (Granger, 1969) proposed a def-
inition of causation between observables which we will re-
fer to as Granger’s ideal definition. Assume the statistical
model for the observed sample of X specified in Subsection
3.2. If we additionally assume that Z models the whole rest
of the universe or the “relevant” subpart of it, then accord-
ing to Granger’s ideal definition the non-instantaneous (di-
rect) causal influences between the components of X are
precisely given by the entries of B. But this implies that
everything about B that we can infer from X can be in-
terpreted causally, if one accepts Granger’s ideal definition
and the additional assumptions that are necessary (such as
KZ  KX , which in fact may be a quite strong assumption
of course). This is one way to justify our approach.

2Note that the notion “diagonal-structural” is a special case of
the more general notion of “structural” in e.g., (Lütkepohl, 2006).

On the other hand, Pearl, Spirtes and others (Pearl, 2000;
Spirtes et al., 2000) do not define causation based on ob-
servable distributions but instead formalize causation by
so-called structural equation models and link them to ob-
servable distributions via additional assumptions. In this
sense, let us assume that X together with some hidden Z
forms a causally sufficient set of variables W = (X,Z)>,
whose structural equations are given by the VAR(1) equa-
tions (2), i.e., these equations represent causal influences
from the r.h.s. to the l.h.s. In particular these equations
define the (temporal) causal directed acyclic graph (DAG)
for (X,Z)>. Then, essentially following the above men-
tioned authors, everything about B that we can infer from
the distribution of X can be interpreted causally. This is
the other way to justify our approach (in case the require-
ment KZ  KX and the other additional assumptions are
met). Note that we neglect here that W is not a finite set of
variables while Pearl generally only considers such finite
sets.

3.4. Relation to Practical Granger Causal Analysis and
How It Can Go Wrong

The above ideal definition of causation by Granger (Sub-
section 3.3) needs to be contrasted with what we introduced
as “practical Granger causation” in Section 1. In practi-
cal Granger causal analysis, one just performs a linear re-
gression of present on past on the observed X and then
interpret the regression matrix causally.3 While making the
ideal definition practically feasible, this may lead to wrong
causal conclusions in the sense that it does not comply with
the causal structure that we would infer given we had more
information.

Let us give an example for this. Let X be bivariate and Z
be univariate. Moreover, assume

A =

0

@
0.9 0 0.5
0.1 0.1 0.8
0 0 0.9

1

A ,

and let the covariance matrix of Nt be the identity matrix.
To perform practical Granger causal analysis, we proceed
as usual: we fit a VAR model on only X , in particular cal-
culate the VAR transition matrix by

BpG := E(XtX
>
t�1)E(XtX

>
t )�1 =

✓
0.89 0.35
0.08 0.65

◆

(3)

(up to rounding) and interpret the coefficients of BpG as
causal influences. Although, based on A, X2

t does not
3We are aware that nonlinear models (Chu and Glymour,

2008) and nonparametric estimators (Schreiber, 2000) have been
used to find temporal causal relations. In this paper we focus on
the linear case.
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Causal Inference by Identification of Vector Autoregressive Processes with Hidden Components

We say W is a diagonal-structural VAR process, or DS-
VAR process for short, if in the above definition the addi-
tional condition is met that N1

0 , . . . , N
K
0 are mutually in-

dependent.2

3.2. Statistical Model of Observed and Hidden
Components

In this section we define the time series which we will ex-
amine throughout the paper. Let KX be arbitrary but fixed.
Let X be a KX -variate time series. As stated in Section
1, X is the random process from which we assume we
measured a sample. In particular, the random variables
in X have a meaning in reality (e.g., X1

3 is the tempera-
ture measured in room 1 at time 3) and we are interested in
the causal relations between these variables. Let X be re-
lated to a K-variate VAR process W , with VAR matrix A,
noise time series N , and noise convariance matrix ⌃, and a
KZ-variate time series Z, as follows: W = (X,Z)> and
KZ  KX . Furthermore, let

A =:

✓
B C
D E

◆
, (2)

with B a KX ⇥KX matrix.

We call B, which is the most interesting part of A in this
paper, the structural matrix underlying X . Furthermore, in
case C 6= 0, we call Z a hidden confounder.

3.3. Link Between Statistical and Causal Models
As already mentioned in Section 1, throughout this paper
we assume that the variables in Z are in principle measur-
able and intervenable, and based on this that the entries of
A, in particular the submatrix B, capture the actual direct
causal influences between the variables in W .

We also mentioned that there are two lines of thought based
on which this assumption can be justified. Let us briefly
elaborate on this here.

On the one hand, Granger (Granger, 1969) proposed a def-
inition of causation between observables which we will re-
fer to as Granger’s ideal definition. Assume the statistical
model for the observed sample of X specified in Subsection
3.2. If we additionally assume that Z models the whole rest
of the universe or the “relevant” subpart of it, then accord-
ing to Granger’s ideal definition the non-instantaneous (di-
rect) causal influences between the components of X are
precisely given by the entries of B. But this implies that
everything about B that we can infer from X can be in-
terpreted causally, if one accepts Granger’s ideal definition
and the additional assumptions that are necessary (such as
KZ  KX , which in fact may be a quite strong assumption
of course). This is one way to justify our approach.

2Note that the notion “diagonal-structural” is a special case of
the more general notion of “structural” in e.g., (Lütkepohl, 2006).

On the other hand, Pearl, Spirtes and others (Pearl, 2000;
Spirtes et al., 2000) do not define causation based on ob-
servable distributions but instead formalize causation by
so-called structural equation models and link them to ob-
servable distributions via additional assumptions. In this
sense, let us assume that X together with some hidden Z
forms a causally sufficient set of variables W = (X,Z)>,
whose structural equations are given by the VAR(1) equa-
tions (2), i.e., these equations represent causal influences
from the r.h.s. to the l.h.s. In particular these equations
define the (temporal) causal directed acyclic graph (DAG)
for (X,Z)>. Then, essentially following the above men-
tioned authors, everything about B that we can infer from
the distribution of X can be interpreted causally. This is
the other way to justify our approach (in case the require-
ment KZ  KX and the other additional assumptions are
met). Note that we neglect here that W is not a finite set of
variables while Pearl generally only considers such finite
sets.

3.4. Relation to Practical Granger Causal Analysis and
How It Can Go Wrong

The above ideal definition of causation by Granger (Sub-
section 3.3) needs to be contrasted with what we introduced
as “practical Granger causation” in Section 1. In practi-
cal Granger causal analysis, one just performs a linear re-
gression of present on past on the observed X and then
interpret the regression matrix causally.3 While making the
ideal definition practically feasible, this may lead to wrong
causal conclusions in the sense that it does not comply with
the causal structure that we would infer given we had more
information.

Let us give an example for this. Let X be bivariate and Z
be univariate. Moreover, assume

A =

0
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0.9 0 0.5
0.1 0.1 0.8
0 0 0.9

1

A ,

and let the covariance matrix of Nt be the identity matrix.
To perform practical Granger causal analysis, we proceed
as usual: we fit a VAR model on only X , in particular cal-
culate the VAR transition matrix by

BpG := E(XtX
>
t�1)E(XtX

>
t )�1 =

✓
0.89 0.35
0.08 0.65

◆

(3)

(up to rounding) and interpret the coefficients of BpG as
causal influences. Although, based on A, X2

t does not
3We are aware that nonlinear models (Chu and Glymour,

2008) and nonparametric estimators (Schreiber, 2000) have been
used to find temporal causal relations. In this paper we focus on
the linear case.



We tried to find causal relations among  
the measured time series; what if 

causal processes are hidden?

Causal representation learning from 
temporal data (Next week!)
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Idea of Identifiability establishment: 
A Linear, Non-Gaussian Case
(see the notes in PDF)
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Identifiability of Parameters in 
Statistical Models

• Identifiability, in simple words, means that different values of a 
parameter must produce different probability distributions. 

• Mathematically, a parameter θ is said to be identifiable if and 
only  

• Is the mean of a Gaussian distribution identifiable?

θ ≠ θ′ ⇒ Pθ ≠ Pθ′ ,  or equivalently  Pθ = Pθ′ ⇒ θ = θ′ 



Example 1: On the Identifiability of the Post-
Nonlinear Causal Model (https://arxiv.org/pdf/1205.2599)

https://arxiv.org/pdf/1205.2599


Example 2: Causal Representation Learning from Multiple 
Distributions: A General Setting (https://arxiv.org/abs/2402.05052)

• Goal: Uncovering hidden variables  with 
changing causal relations from X in 
nonparametric settings 

• What is identifiable? 

• Markov network of   

• Each estimated variable  is a function of  
 and it intimate neighbors 

• In this example, each  (i≠4) can be recovered 
up to component-wise transformation

Zi

Zi

Z̃i
Zi

Zi

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes

Causal Disentanglement with Minimal Changes from Multiple
Distributions

You

June 28, 2023

Abstract

In many problems, the measured variables (e.g., image pixels) are just mathematical functions
of the underline hidden causal variables (e.g., the underlying concepts or objects). For the purpose
of making prediction the changing environment or making proper changes to the system, it is
helpful to recover the underlying hidden causal variables Zi, their causal relations represented
by graph GZ , and how their causal influences change, which can be explained by suitable latent
factors ✓i governing changes in the causal mechanisms. This paper is concerned with the problem of
estimating the underlying hidden causal variables and the latent factors from multiple distributions
(arising from heterogeneous data or nonstationary time series) in nonparametric settings. We first
show that under the sparsity constraint on the recovered graph over the latent variables and
suitable su�cient change conditions on the causal influences, one can recover the equivalence
class of the original graph, and we further show the recovered latent variables are related to
the underlying hidden causal variables in a specific way. Moreover, we show that orthogonally,
under the independent change condition on the causal modules (without the sparsity constraint
on the graph), the underlying latent factors ✓i can be recovered up to component-wise invertible
transformations. Putting them together, one is able to recover the underlying hidden variables and
their causal relations up to minor indeterminacies. Next, we consider the scenario where only a
subset of the causal relations in causal graph GZ change and show up to what extent the underlying
causal variables can be recovered. Finally, we propose a learning procedure called change encoding
network to accomplish the considered task.

1 New Title

Revealing Hidden Causal Variables and Latent Factors from Multiple Distributions

2 New Introduction

1. causal discovery... hidden variables... 2. review. 3. problem setting. (define ✓i as the latent
(changing) factor and Zi as hidden causal variables... hard interventions will make things easier...)
4. interestingly... Undirected graph (and v-structures?)... 5. benefit from independent changes... 5.
contribution...

(special cases...)

Z4Z2

Z3

Z5Z1

✓1 ✓3✓2 ✓4 ✓5

g

X

Figure 1: The generating process for each Zi changes, governed by ✓i, and X = g(Z).
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Example 2: Causal Representation Learning from Multiple 
Distributions: A General Setting (https://arxiv.org/abs/2402.05052)

https://arxiv.org/abs/2402.05052


See the notes in PDF
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Summary

• Practical issues in causal discovery to be considered: They 
are part of  the data-generating process 

• Selection bias is ubiquitous 

• Where is it? Finding correct causal model in the 
presence of  selection bias? 

• Connection between measurement error and confounders 

• Missingness is a causal problem! 

• Missingness graph; causal discovery under missing values 

• Basic but general idea of  identifiability establishment in 
causal representation learning


