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Practical Issues in Causal Discovery…
• Nonlinearities (Zhang & Chan, ICONIP’06; Hoyer et al., NIPS’08; Zhang & Hyvärinen, UAI’09; Huang 

et al., KDD’18)

• Categorical variables or mixed cases (Huang et al., KDD’18; Cai et al., NIPS’18) 

• Measurement error (Zhang et al., UAI’18; PSA’18) 

• Selection bias (Spirtes 1995; Zhang et al., UAI’16) 

• Confounding (SGS 1993; Zhang et al., 2018c; Cai et al., NIPS’19; Ding et al., NIPS’19); latent causal 
representation learning (Silva et  al., JMLR’06; Xie et al., NeurIPS’20; Cai et al., NeurIPS’19; Adams 
et al., NeurIPS’21)

• Missing values (Tu et al., AISTATS’19)

• Causality in time series

• Time-delayed + instantaneous relations (Hyvarinen ICML’08; Zhang et al., ECML’09; 
Hyvarinen et al., JMLR’10)

• Subsampling / temporally aggregation (Danks & Plis, NIPS WS’14; Gong et al., ICML’15 & 
UAI’17)

• From partially observable time series (Geiger et al., ICML’15)

• Nonstationary/heterogeneous data (Zhang et al., IJCAI’17; Huang et al, ICDM’17, 
Ghassami et al., NIPS’18; Huang et al., ICML’19 & NIPS’19; Huang et al., JMLR’20) 

nonstationarity



Issue 1: Selection Bias
• Examples 

• Hospital-based disease research 

• Selection bias: The chance of  including a data point in the 
sample depends on some attributes of  the point 

• Often distorts the results of  statistical analysis 

• In causal inference, both learning causal structures and 
estimating causal mechanisms become more difficult
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Figure 6: Illustration of the e↵ect of outcome-dependent selection. The data were generated from a linear
additive noise model Y = X + E with selection on Y . Left: The data distribution on the whole population
(before applying selection bias). Middle: The distribution of selected data (with selection bias). Right: The
distribution of the estimated noise and cause on the selected data: they are clearly not independent.

First note that if ⌘00E1
6= 0, f(1)0

f(2)0 can be written as

a function of f (1)(x); otherwise, there will exist two

points x1 and x2 corresponding to the same one value

of f (1)(x) but di↵erent values of
f(1)0
f(2)0 , and then (25)

cannot hold on both x1 and x2, leading to a contradic-

tion.

Since
f(1)0

f(2)0 � 1 as a function of f (1)(x), we let
f(1)0

f(2)0 �
1 = fc(f (1)(x)). Further note that l00� is a function of

(f (1)(x) + e1) and that ⌘00E1
is a function of e1. Eq. 25

is then the multiplicative Pexider functional equation

with arguments f (1)(x) and e1. According to Theorem

3.2.3 in (Castillo, 1992), we have the following three

possible solutions to the above functional equation:

P1: l00�(y) ⌘ 0, ⌘00E1
⌘ 0;

P2: l00�(y) ⌘ 0, f(1)0

f(2)0 � 1 ⌘ 0;

P3: l00�(y) = �abecy, ⌘00E1
= aece1 , f(1)0

f(2)0 � 1 = becf
(1)(x)

.

Here a, b, and c are some constants.

We consider the above possible solutions one by one.

1. Solution P1 is not valid, because the condition that

⌘00E2
⌘ 0 does not correspond to a valid distribu-

tion (Kagan et al., 1973).

2. If P2 holds, we have f (1)0 = f (2)0
, i.e., f (1)(x) =

f (2)(x)+ c1, where c1 is a constant. Consequently

e2 = e1 + c1. (Note that the mean of the noise is

not fixed; if one sets it to a constant, say, 0, c1
will then be 0.) Moreover, the condition l00�(y) ⌘ 0
implies that l0�(y) = c2 or that l�(y) = c2y + d1.
That is,

�r(y) = ec2y+d1 = ed1 · ec2f1(x) · ec2e1 .

Bearing (12) in mind , we then have the following

relationships between p(1)X and p(2)X and between

pE1 and pE2 accordingly:

p(2)X / p(1)X · e�c2f
(1)(x),

pE2 / pE1 · e�c2e1 =/ pE1(e2 � c1) · e�c2e2 .

3. If P3 holds, c must be zero such that E1 has a valid

distribution. Furthermore, E1 must be Gaussian

(and correspondingly a must be negative) of the

form pE1 / e
a
2 e

2
1+c3e1+d2 (Kagan et al., 1973). If

the noise is assumed to have a zero mean, then

pE1 / e
a
2 e

2
1 . (26)

Equation
f(1)0

f(2)0 � 1 = b implies that f (2)0 =
1

1+bf
(1)0

, i.e., f (2)(x) = 1
1+bf

(1)(x) + d3. Cor-

respondingly, l00�(y) = �ab, leading to

�r(y) = e
�ab
2 y2+c4y+d4 , (27)

which is a Gaussian function.

Q.E.D.

S4. Proof of Corollary 3

Proof 3 This directly follows from Theorem 2. Here

we set �2(y) ⌘ 1, i.e., (F2,�2(y)) is an ordinary

ANM F2. According to Theorem 1, when E1 is

non-Gaussian, if (F2,�2(y)) and (F1,�1(y)) produce

the same distribution over (X,Y ), then �r(y) =
�2(y)/�1(y) = ��1

1 (y) / ec2y for a constant c2, which
contradicts a). Similarly, when E1 is Gaussian, to

make (11) hold, �r(y) = ��1
1 (y) / e�

ab
2 y2+c4y for

some constants a, b, and c4, contradicting b). Q.E.D.



Selection Bias: Illustration
• Suppose the true causal process is

• Connection between the population and the distribution of the 
selected sample? 

• Section variable S (similar to missingness indicator); the selected 
sample follows P(X | S=1)

• What will be the discovered causal structure if we select data 
points according to X1? 

• X4? 

• X1 & X4?  

• Other situations (e.g., X4 is a common effect)? 

• Suppose we work with data collected from patients…

X2 X3X1 X4

X1

S



Causal Discovery & Inference under 
Different Kinds of Selection Bias

causal interpretations), including intervention e↵ects.
In addition to the work on various selection models
in econometrics and social science (Heckman, 1979;
Winship & Mare, 1992), recent literature has seen in-
teresting work on the recoverability of causal param-
eters based on graphical models (Didelez et al., 2010;
Bareinboim & Pearl, 2012; Bareinboim et al., 2014;
Evans & Didelez, 2015). Much of this work, however,
deals with linear models or discrete variables, whereas
we are concerned in this paper with continous variables
that may bear a nonlinear relationship.

We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.

2 Outcome-Dependent Selection Bias

A common way to represent selection bias is to use a
binary selection variable S encoding whether or not a
unit is included in the sample. Suppose we are inter-
ested in the relationship between X and Y , where X
has a causal influence on Y . Let pXY denote the joint
distribution of X and Y in the population. Thanks to
selection, the selected sample follows pXY |S=1 instead
of pXY . In general, pXY |S=1 6= pXY , and that is how
selection may distort statistical and causal inference.
However, di↵erent kinds of selection engender di↵er-
ent levels of di�culty. In general, S may depend on
any number of substantive variables, as illustrated in
Figure 1, where X = (X1, X2). 1

1
In this paper, we assume that we only know which vari-

ables the selection variable S depends on, but the selection

mechanism is unknown, i.e., the probability of S = 1 given

those variables is unknown. Notice that we do not have

access to the data points that were not selected. This is

very di↵erent from Heckman’s framework to correct the

bias caused by a censored sample (Heckman, 1979), which

assumes access to an i.i.d. sample from the whole popula-

tion, on which the Y values are observable only for the data

points that satisfy the selection criterion (implied by the

selection equation), but other attributes of the “censored”

points are still available, enabling one to directly identify

the selection mechanism.

W X1 X2 Y

S

W X1 X2 Y

S U

(a) (b)

W X1 X2 Y

S

W X1 X2 Y

S

(c) (d)

Figure 1: Illustration of di↵erent situations with sam-
ple selection bias. (a) S depends on X = (X1, X2) but
not on Y . (b) S depends on X and is also statistically
dependent on Y given X due to a confounder U . (c)
S directly depends solely on Y (outcome-dependent
selection). (d) S depends on both X and Y .

Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection
seriously complicates analysis, it can be handled in

• Is the causal direction between two variables identifiable?  

• Is the causal mechanism as represented by a SEM identifiable?

Selected sample follows PXY|S=1 instead of PXY (dstr in the population)



Causal Discovery & Inference under 
Different Kinds of Selection Bias

(c) Outcome-dependent 
selection bias (OSB): 
PY|X,S=1 ≠ PY|X

causal interpretations), including intervention e↵ects.
In addition to the work on various selection models
in econometrics and social science (Heckman, 1979;
Winship & Mare, 1992), recent literature has seen in-
teresting work on the recoverability of causal param-
eters based on graphical models (Didelez et al., 2010;
Bareinboim & Pearl, 2012; Bareinboim et al., 2014;
Evans & Didelez, 2015). Much of this work, however,
deals with linear models or discrete variables, whereas
we are concerned in this paper with continuous vari-
ables that may bear a nonlinear relationship.

We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.

2 Outcome-Dependent Selection Bias

A common way to represent selection bias is to use a
binary selection variable S encoding whether or not
a unit is included in the sample. Suppose we are in-
terested in the relationship between X and Y , where
X has a causal influence on Y . Let pXY denote the
joint distribution of X and Y in the population. The
selected sample follows pXY |S=1 instead of pXY . In
general, pXY |S=1 6= pXY , and that is how selection
may distort statistical and causal inference. However,
di↵erent kinds of selection engender di↵erent levels of
di�culty. In general, S may depend on any number of
substantive variables, as illustrated in Figure 1, where
X = (X1, X2). 1

1
In this paper, we assume that we only know which vari-

ables the selection variable S depends on, but the selection

mechanism is unknown, i.e., the probability of S = 1 given

those variables is unknown. Notice that we do not have

access to the data points that were not selected. This is

very di↵erent from Heckman’s framework to correct the

bias caused by a censored sample (Heckman, 1979), which

assumes access to an i.i.d. sample from the whole popula-

tion, on which the Y values are observable only for the data

points that satisfy the selection criterion (implied by the

selection equation), but other attributes of the “censored”

points are still available, enabling one to directly identify

the selection mechanism.
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Figure 1: Illustration of di↵erent situations with sam-
ple selection bias. (a) S depends on X = (X1, X2) but
not on Y . (b) S depends on X and is also statistically
dependent on Y given X due to a confounder U . (c)
S directly depends solely on Y (outcome-dependent
selection). (d) S depends on both X and Y .

Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection
seriously complicates analysis, it can be handled in
the identification and estimation of functional causal

Selected sample follows PXY|S=1 instead of PXY (dstr in the population)

• Is the causal direction between two variables identifiable?  

• Is the causal mechanism as represented by a SEM identifiable?

Zhang, Zhang, Huang, Schölkopf, Glymour, On the Identifiability and Estimation of Functional 
Causal Models in the Presence of Outcome-Dependent Selection, Proc. UAI 2016, plenary talk



Effect of OSB

• The distribution of the observed sample is changed by the 
selection process 

• Illustration: Error is not independent any more from cause
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Figure 6: Illustration of the e↵ect of outcome-dependent selection. The data were generated from a linear
additive noise model Y = X + E with selection on Y . Left: The data distribution on the whole population
(before applying selection bias). Middle: The distribution of selected data (with selection bias). Right: The
distribution of the estimated noise and cause on the selected data: they are clearly not independent.

First note that if ⌘00E1
6= 0, f(1)0

f(2)0 can be written as

a function of f (1)(x); otherwise, there will exist two

points x1 and x2 corresponding to the same one value

of f (1)(x) but di↵erent values of
f(1)0
f(2)0 , and then (25)

cannot hold on both x1 and x2, leading to a contradic-

tion.

Since
f(1)0

f(2)0 � 1 as a function of f (1)(x), we let
f(1)0

f(2)0 �
1 = fc(f (1)(x)). Further note that l00� is a function of

(f (1)(x) + e1) and that ⌘00E1
is a function of e1. Eq. 25

is then the multiplicative Pexider functional equation

with arguments f (1)(x) and e1. According to Theorem

3.2.3 in (Castillo, 1992), we have the following three

possible solutions to the above functional equation:

P1: l00�(y) ⌘ 0, ⌘00E1
⌘ 0;

P2: l00�(y) ⌘ 0, f(1)0

f(2)0 � 1 ⌘ 0;

P3: l00�(y) = �abecy, ⌘00E1
= aece1 , f(1)0

f(2)0 � 1 = becf
(1)(x)

.

Here a, b, and c are some constants.

We consider the above possible solutions one by one.

1. Solution P1 is not valid, because the condition that

⌘00E2
⌘ 0 does not correspond to a valid distribu-

tion (Kagan et al., 1973).

2. If P2 holds, we have f (1)0 = f (2)0
, i.e., f (1)(x) =

f (2)(x)+ c1, where c1 is a constant. Consequently

e2 = e1 + c1. (Note that the mean of the noise is

not fixed; if one sets it to a constant, say, 0, c1
will then be 0.) Moreover, the condition l00�(y) ⌘ 0
implies that l0�(y) = c2 or that l�(y) = c2y + d1.
That is,

�r(y) = ec2y+d1 = ed1 · ec2f1(x) · ec2e1 .

Bearing (12) in mind , we then have the following

relationships between p(1)X and p(2)X and between

pE1 and pE2 accordingly:

p(2)X / p(1)X · e�c2f
(1)(x),

pE2 / pE1 · e�c2e1 =/ pE1(e2 � c1) · e�c2e2 .

3. If P3 holds, c must be zero such that E1 has a valid

distribution. Furthermore, E1 must be Gaussian

(and correspondingly a must be negative) of the

form pE1 / e
a
2 e

2
1+c3e1+d2 (Kagan et al., 1973). If

the noise is assumed to have a zero mean, then

pE1 / e
a
2 e

2
1 . (26)

Equation
f(1)0

f(2)0 � 1 = b implies that f (2)0 =
1

1+bf
(1)0

, i.e., f (2)(x) = 1
1+bf

(1)(x) + d3. Cor-

respondingly, l00�(y) = �ab, leading to

�r(y) = e
�ab
2 y2+c4y+d4 , (27)

which is a Gaussian function.

Q.E.D.

S4. Proof of Corollary 3

Proof 3 This directly follows from Theorem 2. Here

we set �2(y) ⌘ 1, i.e., (F2,�2(y)) is an ordinary

ANM F2. According to Theorem 1, when E1 is

non-Gaussian, if (F2,�2(y)) and (F1,�1(y)) produce

the same distribution over (X,Y ), then �r(y) =
�2(y)/�1(y) = ��1

1 (y) / ec2y for a constant c2, which
contradicts a). Similarly, when E1 is Gaussian, to

make (11) hold, �r(y) = ��1
1 (y) / e�

ab
2 y2+c4y for

some constants a, b, and c4, contradicting b). Q.E.D.

causal interpretations), including intervention e↵ects.
In addition to the work on various selection models
in econometrics and social science (Heckman, 1979;
Winship & Mare, 1992), recent literature has seen in-
teresting work on the recoverability of causal param-
eters based on graphical models (Didelez et al., 2010;
Bareinboim & Pearl, 2012; Bareinboim et al., 2014;
Evans & Didelez, 2015). Much of this work, however,
deals with linear models or discrete variables, whereas
we are concerned in this paper with continous variables
that may bear a nonlinear relationship.

We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.

2 Outcome-Dependent Selection Bias

A common way to represent selection bias is to use a
binary selection variable S encoding whether or not a
unit is included in the sample. Suppose we are inter-
ested in the relationship between X and Y , where X
has a causal influence on Y . Let pXY denote the joint
distribution of X and Y in the population. Thanks to
selection, the selected sample follows pXY |S=1 instead
of pXY . In general, pXY |S=1 6= pXY , and that is how
selection may distort statistical and causal inference.
However, di↵erent kinds of selection engender di↵er-
ent levels of di�culty. In general, S may depend on
any number of substantive variables, as illustrated in
Figure 1, where X = (X1, X2). 1

1
In this paper, we assume that we only know which vari-

ables the selection variable S depends on, but the selection

mechanism is unknown, i.e., the probability of S = 1 given

those variables is unknown. Notice that we do not have

access to the data points that were not selected. This is

very di↵erent from Heckman’s framework to correct the

bias caused by a censored sample (Heckman, 1979), which

assumes access to an i.i.d. sample from the whole popula-

tion, on which the Y values are observable only for the data

points that satisfy the selection criterion (implied by the

selection equation), but other attributes of the “censored”

points are still available, enabling one to directly identify

the selection mechanism.

W X1 X2 Y

S

W X1 X2 Y

S U

(a) (b)

W X1 X2 Y

S

W X1 X2 Y

S

(c) (d)

Figure 1: Illustration of di↵erent situations with sam-
ple selection bias. (a) S depends on X = (X1, X2) but
not on Y . (b) S depends on X and is also statistically
dependent on Y given X due to a confounder U . (c)
S directly depends solely on Y (outcome-dependent
selection). (d) S depends on both X and Y .

Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection
seriously complicates analysis, it can be handled in

the identification and estimation of functional causal
models. Note that in the case of outcome-dependent
selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:

p�XY , pXY |S=1 =
pX,Y,S=1

P (S = 1)
= pXY · P (S = 1|X,Y )

P (S = 1)

= pXY · P (S = 1|Y )

P (S = 1)
= �(y)pXY , (1)

where the nonnegative function �(y) , P (S =
1|Y )/P (S = 1) is a density ratio for biased sampling
that only depends on Y . We will adopt this represen-
tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-

fect An even more general situation is depicted in
Figure 1(d), where the selection depends on both X
and Y (and probably others). In such a situation,
the density ratio function � will depend on both X
and Y . The selected sample follows the distribution
p�XY / pXY �(x, y, w). Roughly speaking, the se-
lection procedure is so flexible that without further
constraints on �(x, y, w), we cannot see much infor-
mation about the population pXY : if pXY is posi-
tive on (�1,+1), the same p�XY can be generated
from a large class of distributions pXY with a suitably
chosen �(x, y, w). Moreover, the causal direction is
generally not identifiable, for with a su�ciently flex-
ible �(x, y, w), either direction can be made compat-
ible with whatever distribution. Interestingly, when
� depends only on Y , as is the case under outcome-
dependent selection, the causal direction according to
a restricted functional causal model is still generically
identifiable, without any substantial restriction on �.
To this result we now turn.

3 Identifiability of Causal Direction

In this section we investigate whether it is possible to
successfully recover the causal direction between two
variables when the data are generated according to a
functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
(Spirtes et al., 2001; Pearl, 2000) and the score-based
approach (Chickering, 2002; Heckerman et al., 1995)
cannot distinguish Markov equivalent causal struc-
tures without background knowledge. In particular,
with only two variables, those methods cannot distin-
guish cause from e↵ect. The more recent approach

based on restricted functional causal models is usually
more powerful in this respect. In a functional causal
model, the e↵ect is taken to be a function of the direct
causes together with an noise term that is independent
of the direct causes (Pearl, 2000). When the class of
functions is constrained, the causal direction is usually
identifiable in that only one direction can satisfy the
model assumptions, such as the assumed independence
between the noise term and the direct causes. Avail-
able identifiability results include those on linear, non-
Gaussian, acyclic Model (LiNGAM) (Shimizu et al.,
2006)), additive noise model (ANM) (Hoyer et al.,
2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
they are special cases of PNL models.

A PNL model for X ! Y is specified as follows:

Y = f2(f1(X) + E), (2)

where X and E are statistically independent, f1 is
a non-constant smooth function, f2 is an invertible
smooth function, and f 0

2 6= 0. This model is su�ciently
flexible to represent or approximate many causal pro-
cesses in reality (Zhang & Hyvärinen, 2009).

Similarly, for the reverse direction Y ! X, a PNL
model would take the following form:

X = g2(g1(Y ) + Ẽ), (3)

where Y and Ẽ are independent, g1 is non-constant
and smooth, g2 is invertible and smooth, and g02 6= 0.

As shown in (Zhang & Hyvärinen, 2009), (2) and (3)
can generate the same distribution of X and Y only
for very special configurations of the functions and dis-
tributions. In generic cases, if data are generated ac-
cording to a model of form (2), there is no model of
form (3) that generates the same distribution. Hence
the causal direction is generically identifiable.

3.2 Identifiability of Causal Direction in

PNL-OSB

We now show that the generic identifiability of causal
direction based on PNL models still holds even if we
allow the possibilty of outcome-dependent selection.

Suppose the data distribution is generated by a PNL
causal model from X to Y in the form of (2), denoted
by F!, followed by an outcome-dependent selection
with an density ratio �(y), as in (1). Call (F!,�(y))
a PNL-OSB model, and let p!XY denote the joint den-
sity of X and Y resulting from (F!,�(y)). We are
interested in whether there is a PNL-OSB model in
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causal interpretations), including intervention e↵ects.
In addition to the work on various selection models
in econometrics and social science (Heckman, 1979;
Winship & Mare, 1992), recent literature has seen in-
teresting work on the recoverability of causal param-
eters based on graphical models (Didelez et al., 2010;
Bareinboim & Pearl, 2012; Bareinboim et al., 2014;
Evans & Didelez, 2015). Much of this work, however,
deals with linear models or discrete variables, whereas
we are concerned in this paper with continous variables
that may bear a nonlinear relationship.

We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.

2 Outcome-Dependent Selection Bias

A common way to represent selection bias is to use a
binary selection variable S encoding whether or not a
unit is included in the sample. Suppose we are inter-
ested in the relationship between X and Y , where X
has a causal influence on Y . Let pXY denote the joint
distribution of X and Y in the population. Thanks to
selection, the selected sample follows pXY |S=1 instead
of pXY . In general, pXY |S=1 6= pXY , and that is how
selection may distort statistical and causal inference.
However, di↵erent kinds of selection engender di↵er-
ent levels of di�culty. In general, S may depend on
any number of substantive variables, as illustrated in
Figure 1, where X = (X1, X2). 1

1
In this paper, we assume that we only know which vari-

ables the selection variable S depends on, but the selection

mechanism is unknown, i.e., the probability of S = 1 given

those variables is unknown. Notice that we do not have

access to the data points that were not selected. This is

very di↵erent from Heckman’s framework to correct the

bias caused by a censored sample (Heckman, 1979), which

assumes access to an i.i.d. sample from the whole popula-

tion, on which the Y values are observable only for the data

points that satisfy the selection criterion (implied by the

selection equation), but other attributes of the “censored”

points are still available, enabling one to directly identify

the selection mechanism.

W X1 X2 Y

S

W X1 X2 Y

S U

(a) (b)

W X1 X2 Y

S

W X1 X2 Y

S

(c) (d) X Y S
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Figure 1: Illustration of di↵erent situations with sam-
ple selection bias. (a) S depends on X = (X1, X2) but
not on Y . (b) S depends on X and is also statistically
dependent on Y given X due to a confounder U . (c)
S directly depends solely on Y (outcome-dependent
selection). (d) S depends on both X and Y .

Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection
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Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection

seriously complicates analysis, it can be handled in
the identification and estimation of functional causal
models. Note that in the case of outcome-dependent
selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:

p�XY , pXY |S=1 =
pX,Y,S=1

P (S = 1)
= pXY · P (S = 1|X,Y )

P (S = 1)

= pXY · P (S = 1|Y )

P (S = 1)
= �(y)pXY , (1)

where the nonnegative function �(y) , P (S =
1|Y )/P (S = 1) is a density ratio for biased sampling
that only depends on Y . We will adopt this represen-
tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-

fect An even more general situation is depicted in
Figure 1(d), where the selection depends on both X
and Y (and probably others). In such a situation,
the density ratio function � will depend on both X
and Y . The selected sample follows the distribution
p�XY / pXY �(x, y, w). Roughly speaking, the se-
lection procedure is so flexible that without further
constraints on �(x, y, w), we cannot see much infor-
mation about the population pXY : if pXY is posi-
tive on (�1,+1), the same p�XY can be generated
from a large class of distributions pXY with a suitably
chosen �(x, y, w). Moreover, the causal direction is
generally not identifiable, for with a su�ciently flex-
ible �(x, y, w), either direction can be made compat-
ible with whatever distribution. Interestingly, when
� depends only on Y , as is the case under outcome-
dependent selection, the causal direction according to
a restricted functional causal model is still generically
identifiable, without any substantial restriction on �.
To this result we now turn.

3 Identifiability of Causal Direction

In this section we investigate whether it is possible to
successfully recover the causal direction between two
variables when the data are generated according to a
functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
(Spirtes et al., 2001; Pearl, 2000) and the score-based
approach (Chickering, 2002; Heckerman et al., 1995)
cannot distinguish Markov equivalent causal struc-
tures without background knowledge. In particular,

with only two variables, those methods cannot distin-
guish cause from e↵ect. The more recent approach
based on restricted functional causal models is usually
more powerful in this respect. In a functional causal
model, the e↵ect is taken to be a function of the direct
causes together with an noise term that is independent
of the direct causes (Pearl, 2000). When the class of
functions is constrained, the causal direction is usually
identifiable in that only one direction can satisfy the
model assumptions, such as the assumed independence
between the noise term and the direct causes. Avail-
able identifiability results include those on linear, non-
Gaussian, acyclic Model (LiNGAM) (Shimizu et al.,
2006)), additive noise model (ANM) (Hoyer et al.,
2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
they are special cases of PNL models.

A PNL model for X ! Y is specified as follows:

Y = f2(f1(X) + E), (2)

where X and E are statistically independent, f1 is
a non-constant smooth function, f2 is an invertible
smooth function, and f 0

2 6= 0. This model is su�ciently
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where Y and Ẽ are independent, g1 is non-constant
and smooth, g2 is invertible and smooth, and g02 6= 0.

As shown in (Zhang & Hyvärinen, 2009), (2) and (3)
can generate the same distribution of X and Y only
for very special configurations of the functions and dis-
tributions. In generic cases, if data are generated ac-
cording to a model of form (2), there is no model of
form (3) that generates the same distribution. Hence
the causal direction is generically identifiable.

3.2 Identifiability of Causal Direction in

PNL-OSB

We now show that the generic identifiability of causal
direction based on PNL models still holds even if we
allow the possibilty of outcome-dependent selection.

Suppose the data distribution is generated by a PNL
causal model from X to Y in the form of (2), denoted
by F!, followed by an outcome-dependent selection
with an density ratio �(y), as in (1). Call (F!,�(y))
a PNL-OSB model, and let p!XY denote the joint den-
sity of X and Y resulting from (F!,�(y)). We are

seriously complicates analysis, it can be handled in
the identification and estimation of functional causal
models. Note that in the case of outcome-dependent
selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:

p�XY , pXY |S=1 =
pX,Y,S=1

P (S = 1)
= pXY · P (S = 1|X,Y )

P (S = 1)

= pXY · P (S = 1|Y )

P (S = 1)
= �(y)pXY , (1)

where the nonnegative function �(y) , P (S =
1|Y )/P (S = 1) is a density ratio for biased sampling
that only depends on Y . We will adopt this represen-
tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-

fect An even more general situation is depicted in
Figure 1(d), where the selection depends on both X
and Y (and probably others). In such a situation,
the density ratio function � will depend on both X
and Y . The selected sample follows the distribution
p�XY / pXY �(x, y, w). Roughly speaking, the se-
lection procedure is so flexible that without further
constraints on �(x, y, w), we cannot see much infor-
mation about the population pXY : if pXY is posi-
tive on (�1,+1), the same p�XY can be generated
from a large class of distributions pXY with a suitably
chosen �(x, y, w). Moreover, the causal direction is
generally not identifiable, for with a su�ciently flex-
ible �(x, y, w), either direction can be made compat-
ible with whatever distribution. Interestingly, when
� depends only on Y , as is the case under outcome-
dependent selection, the causal direction according to
a restricted functional causal model is still generically
identifiable, without any substantial restriction on �.
To this result we now turn.

3 Identifiability of Causal Direction

In this section we investigate whether it is possible to
successfully recover the causal direction between two
variables when the data are generated according to a
functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
(Spirtes et al., 2001; Pearl, 2000) and the score-based
approach (Chickering, 2002; Heckerman et al., 1995)
cannot distinguish Markov equivalent causal struc-
tures without background knowledge. In particular,

with only two variables, those methods cannot distin-
guish cause from e↵ect. The more recent approach
based on restricted functional causal models is usually
more powerful in this respect. In a functional causal
model, the e↵ect is taken to be a function of the direct
causes together with an noise term that is independent
of the direct causes (Pearl, 2000). When the class of
functions is constrained, the causal direction is usually
identifiable in that only one direction can satisfy the
model assumptions, such as the assumed independence
between the noise term and the direct causes. Avail-
able identifiability results include those on linear, non-
Gaussian, acyclic Model (LiNGAM) (Shimizu et al.,
2006)), additive noise model (ANM) (Hoyer et al.,
2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
they are special cases of PNL models.

A PNL model for X ! Y is specified as follows:

Y = f2(f1(X) + E), (2)

where X and E are statistically independent, f1 is
a non-constant smooth function, f2 is an invertible
smooth function, and f 0

2 6= 0. This model is su�ciently
flexible to represent or approximate many causal pro-
cesses in reality (Zhang & Hyvärinen, 2009).

Similarly, for the reverse direction Y ! X, a PNL
model would take the following form:

X = g2(g1(Y ) + Ẽ), (3)

where Y and Ẽ are independent, g1 is non-constant
and smooth, g2 is invertible and smooth, and g02 6= 0.

As shown in (Zhang & Hyvärinen, 2009), (2) and (3)
can generate the same distribution of X and Y only
for very special configurations of the functions and dis-
tributions. In generic cases, if data are generated ac-
cording to a model of form (2), there is no model of
form (3) that generates the same distribution. Hence
the causal direction is generically identifiable.

3.2 Identifiability of Causal Direction in

PNL-OSB

We now show that the generic identifiability of causal
direction based on PNL models still holds even if we
allow the possibilty of outcome-dependent selection.

Suppose the data distribution is generated by a PNL
causal model from X to Y in the form of (2), denoted
by F!, followed by an outcome-dependent selection
with an density ratio �(y), as in (1). Call (F!,�(y))
a PNL-OSB model, and let p!XY denote the joint den-
sity of X and Y resulting from (F!,�(y)). We are

interested in whether there is a PNL-OSB model in
the reverse direction that can generate the same data
distribution. That is, consider (F , v(x)), where F 
is a PNL causal model from Y to X in the form of
(3), and v(x) is an density ratio function that depends
on X. Let p XY denote the joint density of X and Y
resulting from (F , v(x)). When is it the case that
p!XY = p XY ?

To simplify the presentation, we define random vari-
ables T , g�12 (X), Z , f�12 (Y ), and function h ,
f1 � g2. That is, h(t) = f1(g2(t)) = f1(x). Sim-
ilarly, h1 , g1 � f2 is a function of Z. Moreover,
we let ⌘1(t) , log pT (t) = log pX(x) + log |g02(t)|, and
⌘2(e) , log pE(e).

Note that T and E are independent (for X and E are
assumed to be independent), and Z and Ẽ are inde-
pendent (for Y and Ẽ are assumed to be independent).
It follows that

p!XY = �(y)pF!XY = �(y)pXE/|f 02| = �f2(z)pT pE/|f 02g02|,
p XY = v(x)pF XY = v(x)pY Ẽ/|g

0
2| = vg2(t)pZẼ/|f

0
2g
0
2|,

where �f2 = � � f2, and vg2 = v � g2.

Now suppose
p!XY = p XY (4)

This implies

pZẼ =
�f2(z)

vg2(t)
pT pE ,

or equivalently

log pZẼ = log �f2(z)� log vg2(t) + log pT + log pE

= log �f2(z) + ⌘̃1(t) + ⌘2(e), (5)

where ⌘̃1(t) , log pT � log vg2(t) = ⌘1(t) � log vg2(t).
Since Z and Ẽ are independent, we have

@2 log pZẼ

@z@ẽ
⌘ 0. (6)

(5) and (6) entail very strong constraints on the dis-
tribution of E, as stated in the following theorem.

Theorem 1 Suppose that the densities of E and

T and the functions f1, f2, g1, g2, and v(x) are

third-order di↵erentiable and that pE is positive on

(�1,+1). The condition (4) implies that for every

point of (X,Y ) satisfying ⌘002h
0 6= 0:

⌘̃0001 � ⌘̃001h
00

h0
=

⇣⌘02⌘0002
⌘002

� 2⌘002

⌘
· h0h00 � ⌘0002

⌘002
· h0⌘̃001

+ ⌘02 ·
⇣
h000 � h002

h0

⌘
, (7)

and h1 depends on ⌘̃1, ⌘2, and h in the following way:

1

h01
=

⌘̃001 + ⌘002h
02 � ⌘02h

00

⌘002h
0 . (8)

Further assume that ⌘002h
0 6= 0 almost everywhere.

Then in order for (7) to hold, pE and h must satisfy

one of the five conditions listed in Table 1.

Table 1: All situations in which the causal direction
implied by the PNL-OSB model may be unidentifiable.

pE h = f1 � g2
1 Gaussian linear

2 log-mix-lin-exp linear

3 log-mix-lin-exp h strictly monotonic,

and h0 ! 0, as t1 !
+1 or as t1 ! �1

4 log-mix-lin-exp Same as above

5 generalized mixture

of two exponentials

Same as above

All proofs are given in the Supplementary material.
In the five situations given in Table 1, the causal di-
rection may not be identifiable according to the PNL-
OSB model, and the involved distribution pE is very
specific. For the definition of distributions of the form
log-mix-lin-exp or generalized mixture of two
exponentials, see (Zhang & Hyvärinen, 2009). As a
consequence, generally speaking, the causal direction
implied by PNL-OSB is identifiable.

This identifiability result regarding the causal direc-
tion implied by PNL-OSB is similar to the original re-
sult on PNL, which was given in (Zhang & Hyvärinen,
2009). The di↵erence is that ⌘1(t) = log pT (t) in the
original identifiability result on PNL is replaced by
⌘̃1(t) = log pT (t)

vg2 (t)
. Recall that vg2(t) can be any valid

density ratio; if pT (t) is positive on (�1,+1), one

can always adjust vg2(t) so that pT (t)
vg2 (t)

meets the con-

straint on ⌘1 in (Zhang & Hyvärinen, 2009). That is,
in our result any pT (t) that is positive on (�1,+1)
is allowed. Therefore, our non-identifiable situations
(Table 1) do not contain any constraints on pT , but
still have very strong constraints on PE and h = f1�g2.

4 Identifiability of ANM-OSB Model

Given the causal direction, a further important ques-
tion is whether the causal mechanism, represented by
the functional causal model, and the selection proce-
dure, represented by �(y), can be recovered from data.

For simplicity of the derivation and presentation, we
shall consider the ANM for the causal mechanism (not
a PNL one in this section):

Y = fAN (X) + E, (9)

where E ?? X. Here we further assume that fAN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the

or
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4 Identifiability of ANM-OSB Model

Given the causal direction, a further important ques-
tion is whether the causal mechanism, represented by
the functional causal model, and the selection proce-
dure, represented by �(y), can be recovered from data.

For simplicity of the derivation and presentation, we
shall consider the ANM for the causal mechanism (not
a PNL one in this section):

Y = fAN (X) + E, (9)

where E ?? X. Here we further assume that fAN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the

causal interpretations), including intervention e↵ects.
In addition to the work on various selection models
in econometrics and social science (Heckman, 1979;
Winship & Mare, 1992), recent literature has seen in-
teresting work on the recoverability of causal param-
eters based on graphical models (Didelez et al., 2010;
Bareinboim & Pearl, 2012; Bareinboim et al., 2014;
Evans & Didelez, 2015). Much of this work, however,
deals with linear models or discrete variables, whereas
we are concerned in this paper with continous variables
that may bear a nonlinear relationship.

We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.

2 Outcome-Dependent Selection Bias

A common way to represent selection bias is to use a
binary selection variable S encoding whether or not a
unit is included in the sample. Suppose we are inter-
ested in the relationship between X and Y , where X
has a causal influence on Y . Let pXY denote the joint
distribution of X and Y in the population. Thanks to
selection, the selected sample follows pXY |S=1 instead
of pXY . In general, pXY |S=1 6= pXY , and that is how
selection may distort statistical and causal inference.
However, di↵erent kinds of selection engender di↵er-
ent levels of di�culty. In general, S may depend on
any number of substantive variables, as illustrated in
Figure 1, where X = (X1, X2). 1

1
In this paper, we assume that we only know which vari-

ables the selection variable S depends on, but the selection

mechanism is unknown, i.e., the probability of S = 1 given

those variables is unknown. Notice that we do not have

access to the data points that were not selected. This is

very di↵erent from Heckman’s framework to correct the

bias caused by a censored sample (Heckman, 1979), which

assumes access to an i.i.d. sample from the whole popula-

tion, on which the Y values are observable only for the data

points that satisfy the selection criterion (implied by the

selection equation), but other attributes of the “censored”

points are still available, enabling one to directly identify

the selection mechanism.

W X1 X2 Y

S

W X1 X2 Y

S U

(a) (b)

W X1 X2 Y

S

W X1 X2 Y

S

(c) (d) X Y S

Y X S

Figure 1: Illustration of di↵erent situations with sam-
ple selection bias. (a) S depends on X = (X1, X2) but
not on Y . (b) S depends on X and is also statistically
dependent on Y given X due to a confounder U . (c)
S directly depends solely on Y (outcome-dependent
selection). (d) S depends on both X and Y .

Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection
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corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection

seriously complicates analysis, it can be handled in
the identification and estimation of functional causal
models. Note that in the case of outcome-dependent
selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:

p�XY , pXY |S=1 =
pX,Y,S=1

P (S = 1)
= pXY · P (S = 1|X,Y )

P (S = 1)

= pXY · P (S = 1|Y )

P (S = 1)
= �(y)pXY , (1)

where the nonnegative function �(y) , P (S =
1|Y )/P (S = 1) is a density ratio for biased sampling
that only depends on Y . We will adopt this represen-
tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-

fect An even more general situation is depicted in
Figure 1(d), where the selection depends on both X
and Y (and probably others). In such a situation,
the density ratio function � will depend on both X
and Y . The selected sample follows the distribution
p�XY / pXY �(x, y, w). Roughly speaking, the se-
lection procedure is so flexible that without further
constraints on �(x, y, w), we cannot see much infor-
mation about the population pXY : if pXY is posi-
tive on (�1,+1), the same p�XY can be generated
from a large class of distributions pXY with a suitably
chosen �(x, y, w). Moreover, the causal direction is
generally not identifiable, for with a su�ciently flex-
ible �(x, y, w), either direction can be made compat-
ible with whatever distribution. Interestingly, when
� depends only on Y , as is the case under outcome-
dependent selection, the causal direction according to
a restricted functional causal model is still generically
identifiable, without any substantial restriction on �.
To this result we now turn.

3 Identifiability of Causal Direction

In this section we investigate whether it is possible to
successfully recover the causal direction between two
variables when the data are generated according to a
functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
(Spirtes et al., 2001; Pearl, 2000) and the score-based
approach (Chickering, 2002; Heckerman et al., 1995)
cannot distinguish Markov equivalent causal struc-
tures without background knowledge. In particular,

with only two variables, those methods cannot distin-
guish cause from e↵ect. The more recent approach
based on restricted functional causal models is usually
more powerful in this respect. In a functional causal
model, the e↵ect is taken to be a function of the direct
causes together with an noise term that is independent
of the direct causes (Pearl, 2000). When the class of
functions is constrained, the causal direction is usually
identifiable in that only one direction can satisfy the
model assumptions, such as the assumed independence
between the noise term and the direct causes. Avail-
able identifiability results include those on linear, non-
Gaussian, acyclic Model (LiNGAM) (Shimizu et al.,
2006)), additive noise model (ANM) (Hoyer et al.,
2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
they are special cases of PNL models.

A PNL model for X ! Y is specified as follows:

Y = f2(f1(X) + E), (2)

where X and E are statistically independent, f1 is
a non-constant smooth function, f2 is an invertible
smooth function, and f 0

2 6= 0. This model is su�ciently
flexible to represent or approximate many causal pro-
cesses in reality (Zhang & Hyvärinen, 2009).

Similarly, for the reverse direction Y ! X, a PNL
model would take the following form:

X = g2(g1(Y ) + Ẽ), (3)

where Y and Ẽ are independent, g1 is non-constant
and smooth, g2 is invertible and smooth, and g02 6= 0.

As shown in (Zhang & Hyvärinen, 2009), (2) and (3)
can generate the same distribution of X and Y only
for very special configurations of the functions and dis-
tributions. In generic cases, if data are generated ac-
cording to a model of form (2), there is no model of
form (3) that generates the same distribution. Hence
the causal direction is generically identifiable.

3.2 Identifiability of Causal Direction in

PNL-OSB

We now show that the generic identifiability of causal
direction based on PNL models still holds even if we
allow the possibilty of outcome-dependent selection.

Suppose the data distribution is generated by a PNL
causal model from X to Y in the form of (2), denoted
by F!, followed by an outcome-dependent selection
with an density ratio �(y), as in (1). Call (F!,�(y))
a PNL-OSB model, and let p!XY denote the joint den-
sity of X and Y resulting from (F!,�(y)). We are

seriously complicates analysis, it can be handled in
the identification and estimation of functional causal
models. Note that in the case of outcome-dependent
selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:

p�XY , pXY |S=1 =
pX,Y,S=1

P (S = 1)
= pXY · P (S = 1|X,Y )

P (S = 1)

= pXY · P (S = 1|Y )

P (S = 1)
= �(y)pXY , (1)

where the nonnegative function �(y) , P (S =
1|Y )/P (S = 1) is a density ratio for biased sampling
that only depends on Y . We will adopt this represen-
tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-

fect An even more general situation is depicted in
Figure 1(d), where the selection depends on both X
and Y (and probably others). In such a situation,
the density ratio function � will depend on both X
and Y . The selected sample follows the distribution
p�XY / pXY �(x, y, w). Roughly speaking, the se-
lection procedure is so flexible that without further
constraints on �(x, y, w), we cannot see much infor-
mation about the population pXY : if pXY is posi-
tive on (�1,+1), the same p�XY can be generated
from a large class of distributions pXY with a suitably
chosen �(x, y, w). Moreover, the causal direction is
generally not identifiable, for with a su�ciently flex-
ible �(x, y, w), either direction can be made compat-
ible with whatever distribution. Interestingly, when
� depends only on Y , as is the case under outcome-
dependent selection, the causal direction according to
a restricted functional causal model is still generically
identifiable, without any substantial restriction on �.
To this result we now turn.

3 Identifiability of Causal Direction

In this section we investigate whether it is possible to
successfully recover the causal direction between two
variables when the data are generated according to a
functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
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tures without background knowledge. In particular,

with only two variables, those methods cannot distin-
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2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
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a non-constant smooth function, f2 is an invertible
smooth function, and f 0

2 6= 0. This model is su�ciently
flexible to represent or approximate many causal pro-
cesses in reality (Zhang & Hyvärinen, 2009).
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X = g2(g1(Y ) + Ẽ), (3)

where Y and Ẽ are independent, g1 is non-constant
and smooth, g2 is invertible and smooth, and g02 6= 0.
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form (3) that generates the same distribution. Hence
the causal direction is generically identifiable.

3.2 Identifiability of Causal Direction in

PNL-OSB

We now show that the generic identifiability of causal
direction based on PNL models still holds even if we
allow the possibilty of outcome-dependent selection.

Suppose the data distribution is generated by a PNL
causal model from X to Y in the form of (2), denoted
by F!, followed by an outcome-dependent selection
with an density ratio �(y), as in (1). Call (F!,�(y))
a PNL-OSB model, and let p!XY denote the joint den-
sity of X and Y resulting from (F!,�(y)). We are

interested in whether there is a PNL-OSB model in
the reverse direction that can generate the same data
distribution. That is, consider (F , v(x)), where F 
is a PNL causal model from Y to X in the form of
(3), and v(x) is an density ratio function that depends
on X. Let p XY denote the joint density of X and Y
resulting from (F , v(x)). When is it the case that
p!XY = p XY ?

To simplify the presentation, we define random vari-
ables T , g�12 (X), Z , f�12 (Y ), and function h ,
f1 � g2. That is, h(t) = f1(g2(t)) = f1(x). Sim-
ilarly, h1 , g1 � f2 is a function of Z. Moreover,
we let ⌘1(t) , log pT (t) = log pX(x) + log |g02(t)|, and
⌘2(e) , log pE(e).

Note that T and E are independent (for X and E are
assumed to be independent), and Z and Ẽ are inde-
pendent (for Y and Ẽ are assumed to be independent).
It follows that

p!XY = �(y)pF!XY = �(y)pXE/|f 02| = �f2(z)pT pE/|f 02g02|,
p XY = v(x)pF XY = v(x)pY Ẽ/|g

0
2| = vg2(t)pZẼ/|f

0
2g
0
2|,

where �f2 = � � f2, and vg2 = v � g2.

Now suppose
p!XY = p XY (4)

This implies

pZẼ =
�f2(z)

vg2(t)
pT pE ,

or equivalently

log pZẼ = log �f2(z)� log vg2(t) + log pT + log pE

= log �f2(z) + ⌘̃1(t) + ⌘2(e), (5)

where ⌘̃1(t) , log pT � log vg2(t) = ⌘1(t) � log vg2(t).
Since Z and Ẽ are independent, we have

@2 log pZẼ

@z@ẽ
⌘ 0. (6)

(5) and (6) entail very strong constraints on the dis-
tribution of E, as stated in the following theorem.

Theorem 1 Suppose that the densities of E and

T and the functions f1, f2, g1, g2, and v(x) are

third-order di↵erentiable and that pE is positive on

(�1,+1). The condition (4) implies that for every

point of (X,Y ) satisfying ⌘002h
0 6= 0:

⌘̃0001 � ⌘̃001h
00

h0
=

⇣⌘02⌘0002
⌘002

� 2⌘002

⌘
· h0h00 � ⌘0002

⌘002
· h0⌘̃001

+ ⌘02 ·
⇣
h000 � h002

h0

⌘
, (7)

and h1 depends on ⌘̃1, ⌘2, and h in the following way:

1

h01
=

⌘̃001 + ⌘002h
02 � ⌘02h

00

⌘002h
0 . (8)

Further assume that ⌘002h
0 6= 0 almost everywhere.

Then in order for (7) to hold, pE and h must satisfy

one of the five conditions listed in Table 1.

Table 1: All situations in which the causal direction
implied by the PNL-OSB model may be unidentifiable.

pE h = f1 � g2
1 Gaussian linear

2 log-mix-lin-exp linear

3 log-mix-lin-exp h strictly monotonic,

and h0 ! 0, as t1 !
+1 or as t1 ! �1

4 log-mix-lin-exp Same as above

5 generalized mixture

of two exponentials

Same as above

All proofs are given in the Supplementary material.
In the five situations given in Table 1, the causal di-
rection may not be identifiable according to the PNL-
OSB model, and the involved distribution pE is very
specific. For the definition of distributions of the form
log-mix-lin-exp or generalized mixture of two
exponentials, see (Zhang & Hyvärinen, 2009). As a
consequence, generally speaking, the causal direction
implied by PNL-OSB is identifiable.

This identifiability result regarding the causal direc-
tion implied by PNL-OSB is similar to the original re-
sult on PNL, which was given in (Zhang & Hyvärinen,
2009). The di↵erence is that ⌘1(t) = log pT (t) in the
original identifiability result on PNL is replaced by
⌘̃1(t) = log pT (t)

vg2 (t)
. Recall that vg2(t) can be any valid

density ratio; if pT (t) is positive on (�1,+1), one

can always adjust vg2(t) so that pT (t)
vg2 (t)

meets the con-

straint on ⌘1 in (Zhang & Hyvärinen, 2009). That is,
in our result any pT (t) that is positive on (�1,+1)
is allowed. Therefore, our non-identifiable situations
(Table 1) do not contain any constraints on pT , but
still have very strong constraints on PE and h = f1�g2.

4 Identifiability of ANM-OSB Model

Given the causal direction, a further important ques-
tion is whether the causal mechanism, represented by
the functional causal model, and the selection proce-
dure, represented by �(y), can be recovered from data.

For simplicity of the derivation and presentation, we
shall consider the ANM for the causal mechanism (not
a PNL one in this section):

Y = fAN (X) + E, (9)

where E ?? X. Here we further assume that fAN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the

or
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Given the causal direction, a further important ques-
tion is whether the causal mechanism, represented by
the functional causal model, and the selection proce-
dure, represented by �(y), can be recovered from data.

For simplicity of the derivation and presentation, we
shall consider the ANM for the causal mechanism (not
a PNL one in this section):

Y = fAN (X) + E, (9)

where E ?? X. Here we further assume that fAN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the

2) 3) 4)

causal interpretations), including intervention e↵ects.
In addition to the work on various selection models
in econometrics and social science (Heckman, 1979;
Winship & Mare, 1992), recent literature has seen in-
teresting work on the recoverability of causal param-
eters based on graphical models (Didelez et al., 2010;
Bareinboim & Pearl, 2012; Bareinboim et al., 2014;
Evans & Didelez, 2015). Much of this work, however,
deals with linear models or discrete variables, whereas
we are concerned in this paper with continous variables
that may bear a nonlinear relationship.

We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.

2 Outcome-Dependent Selection Bias

A common way to represent selection bias is to use a
binary selection variable S encoding whether or not a
unit is included in the sample. Suppose we are inter-
ested in the relationship between X and Y , where X
has a causal influence on Y . Let pXY denote the joint
distribution of X and Y in the population. Thanks to
selection, the selected sample follows pXY |S=1 instead
of pXY . In general, pXY |S=1 6= pXY , and that is how
selection may distort statistical and causal inference.
However, di↵erent kinds of selection engender di↵er-
ent levels of di�culty. In general, S may depend on
any number of substantive variables, as illustrated in
Figure 1, where X = (X1, X2). 1

1
In this paper, we assume that we only know which vari-

ables the selection variable S depends on, but the selection

mechanism is unknown, i.e., the probability of S = 1 given

those variables is unknown. Notice that we do not have

access to the data points that were not selected. This is

very di↵erent from Heckman’s framework to correct the

bias caused by a censored sample (Heckman, 1979), which

assumes access to an i.i.d. sample from the whole popula-

tion, on which the Y values are observable only for the data

points that satisfy the selection criterion (implied by the

selection equation), but other attributes of the “censored”

points are still available, enabling one to directly identify

the selection mechanism.

W X1 X2 Y

S

W X1 X2 Y

S U

(a) (b)

W X1 X2 Y

S

W X1 X2 Y

S

(c) (d) X Y S

Y X S

Figure 1: Illustration of di↵erent situations with sam-
ple selection bias. (a) S depends on X = (X1, X2) but
not on Y . (b) S depends on X and is also statistically
dependent on Y given X due to a confounder U . (c)
S directly depends solely on Y (outcome-dependent
selection). (d) S depends on both X and Y .

Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection
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Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
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This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection

seriously complicates analysis, it can be handled in
the identification and estimation of functional causal
models. Note that in the case of outcome-dependent
selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:

p�XY , pXY |S=1 =
pX,Y,S=1

P (S = 1)
= pXY · P (S = 1|X,Y )

P (S = 1)

= pXY · P (S = 1|Y )

P (S = 1)
= �(y)pXY , (1)

where the nonnegative function �(y) , P (S =
1|Y )/P (S = 1) is a density ratio for biased sampling
that only depends on Y . We will adopt this represen-
tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-

fect An even more general situation is depicted in
Figure 1(d), where the selection depends on both X
and Y (and probably others). In such a situation,
the density ratio function � will depend on both X
and Y . The selected sample follows the distribution
p�XY / pXY �(x, y, w). Roughly speaking, the se-
lection procedure is so flexible that without further
constraints on �(x, y, w), we cannot see much infor-
mation about the population pXY : if pXY is posi-
tive on (�1,+1), the same p�XY can be generated
from a large class of distributions pXY with a suitably
chosen �(x, y, w). Moreover, the causal direction is
generally not identifiable, for with a su�ciently flex-
ible �(x, y, w), either direction can be made compat-
ible with whatever distribution. Interestingly, when
� depends only on Y , as is the case under outcome-
dependent selection, the causal direction according to
a restricted functional causal model is still generically
identifiable, without any substantial restriction on �.
To this result we now turn.

3 Identifiability of Causal Direction

In this section we investigate whether it is possible to
successfully recover the causal direction between two
variables when the data are generated according to a
functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
(Spirtes et al., 2001; Pearl, 2000) and the score-based
approach (Chickering, 2002; Heckerman et al., 1995)
cannot distinguish Markov equivalent causal struc-
tures without background knowledge. In particular,

with only two variables, those methods cannot distin-
guish cause from e↵ect. The more recent approach
based on restricted functional causal models is usually
more powerful in this respect. In a functional causal
model, the e↵ect is taken to be a function of the direct
causes together with an noise term that is independent
of the direct causes (Pearl, 2000). When the class of
functions is constrained, the causal direction is usually
identifiable in that only one direction can satisfy the
model assumptions, such as the assumed independence
between the noise term and the direct causes. Avail-
able identifiability results include those on linear, non-
Gaussian, acyclic Model (LiNGAM) (Shimizu et al.,
2006)), additive noise model (ANM) (Hoyer et al.,
2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
they are special cases of PNL models.

A PNL model for X ! Y is specified as follows:

Y = f2(f1(X) + E), (2)

where X and E are statistically independent, f1 is
a non-constant smooth function, f2 is an invertible
smooth function, and f 0

2 6= 0. This model is su�ciently
flexible to represent or approximate many causal pro-
cesses in reality (Zhang & Hyvärinen, 2009).

Similarly, for the reverse direction Y ! X, a PNL
model would take the following form:

X = g2(g1(Y ) + Ẽ), (3)

where Y and Ẽ are independent, g1 is non-constant
and smooth, g2 is invertible and smooth, and g02 6= 0.

As shown in (Zhang & Hyvärinen, 2009), (2) and (3)
can generate the same distribution of X and Y only
for very special configurations of the functions and dis-
tributions. In generic cases, if data are generated ac-
cording to a model of form (2), there is no model of
form (3) that generates the same distribution. Hence
the causal direction is generically identifiable.

3.2 Identifiability of Causal Direction in

PNL-OSB

We now show that the generic identifiability of causal
direction based on PNL models still holds even if we
allow the possibilty of outcome-dependent selection.

Suppose the data distribution is generated by a PNL
causal model from X to Y in the form of (2), denoted
by F!, followed by an outcome-dependent selection
with an density ratio �(y), as in (1). Call (F!,�(y))
a PNL-OSB model, and let p!XY denote the joint den-
sity of X and Y resulting from (F!,�(y)). We are

seriously complicates analysis, it can be handled in
the identification and estimation of functional causal
models. Note that in the case of outcome-dependent
selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:

p�XY , pXY |S=1 =
pX,Y,S=1

P (S = 1)
= pXY · P (S = 1|X,Y )

P (S = 1)

= pXY · P (S = 1|Y )

P (S = 1)
= �(y)pXY , (1)

where the nonnegative function �(y) , P (S =
1|Y )/P (S = 1) is a density ratio for biased sampling
that only depends on Y . We will adopt this represen-
tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-

fect An even more general situation is depicted in
Figure 1(d), where the selection depends on both X
and Y (and probably others). In such a situation,
the density ratio function � will depend on both X
and Y . The selected sample follows the distribution
p�XY / pXY �(x, y, w). Roughly speaking, the se-
lection procedure is so flexible that without further
constraints on �(x, y, w), we cannot see much infor-
mation about the population pXY : if pXY is posi-
tive on (�1,+1), the same p�XY can be generated
from a large class of distributions pXY with a suitably
chosen �(x, y, w). Moreover, the causal direction is
generally not identifiable, for with a su�ciently flex-
ible �(x, y, w), either direction can be made compat-
ible with whatever distribution. Interestingly, when
� depends only on Y , as is the case under outcome-
dependent selection, the causal direction according to
a restricted functional causal model is still generically
identifiable, without any substantial restriction on �.
To this result we now turn.

3 Identifiability of Causal Direction

In this section we investigate whether it is possible to
successfully recover the causal direction between two
variables when the data are generated according to a
functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
(Spirtes et al., 2001; Pearl, 2000) and the score-based
approach (Chickering, 2002; Heckerman et al., 1995)
cannot distinguish Markov equivalent causal struc-
tures without background knowledge. In particular,

with only two variables, those methods cannot distin-
guish cause from e↵ect. The more recent approach
based on restricted functional causal models is usually
more powerful in this respect. In a functional causal
model, the e↵ect is taken to be a function of the direct
causes together with an noise term that is independent
of the direct causes (Pearl, 2000). When the class of
functions is constrained, the causal direction is usually
identifiable in that only one direction can satisfy the
model assumptions, such as the assumed independence
between the noise term and the direct causes. Avail-
able identifiability results include those on linear, non-
Gaussian, acyclic Model (LiNGAM) (Shimizu et al.,
2006)), additive noise model (ANM) (Hoyer et al.,
2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
they are special cases of PNL models.

A PNL model for X ! Y is specified as follows:

Y = f2(f1(X) + E), (2)

where X and E are statistically independent, f1 is
a non-constant smooth function, f2 is an invertible
smooth function, and f 0

2 6= 0. This model is su�ciently
flexible to represent or approximate many causal pro-
cesses in reality (Zhang & Hyvärinen, 2009).

Similarly, for the reverse direction Y ! X, a PNL
model would take the following form:

X = g2(g1(Y ) + Ẽ), (3)
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interested in whether there is a PNL-OSB model in
the reverse direction that can generate the same data
distribution. That is, consider (F , v(x)), where F 
is a PNL causal model from Y to X in the form of
(3), and v(x) is an density ratio function that depends
on X. Let p XY denote the joint density of X and Y
resulting from (F , v(x)). When is it the case that
p!XY = p XY ?

To simplify the presentation, we define random vari-
ables T , g�12 (X), Z , f�12 (Y ), and function h ,
f1 � g2. That is, h(t) = f1(g2(t)) = f1(x). Sim-
ilarly, h1 , g1 � f2 is a function of Z. Moreover,
we let ⌘1(t) , log pT (t) = log pX(x) + log |g02(t)|, and
⌘2(e) , log pE(e).

Note that T and E are independent (for X and E are
assumed to be independent), and Z and Ẽ are inde-
pendent (for Y and Ẽ are assumed to be independent).
It follows that

p!XY = �(y)pF!XY = �(y)pXE/|f 02| = �f2(z)pT pE/|f 02g02|,
p XY = v(x)pF XY = v(x)pY Ẽ/|g

0
2| = vg2(t)pZẼ/|f

0
2g
0
2|,

where �f2 = � � f2, and vg2 = v � g2.

Now suppose
p!XY = p XY (4)

This implies

pZẼ =
�f2(z)

vg2(t)
pT pE ,

or equivalently

log pZẼ = log �f2(z)� log vg2(t) + log pT + log pE

= log �f2(z) + ⌘̃1(t) + ⌘2(e), (5)

where ⌘̃1(t) , log pT � log vg2(t) = ⌘1(t) � log vg2(t).
Since Z and Ẽ are independent, we have

@2 log pZẼ

@z@ẽ
⌘ 0. (6)

(5) and (6) entail very strong constraints on the dis-
tribution of E, as stated in the following theorem.

Theorem 1 Suppose that the densities of E and

T and the functions f1, f2, g1, g2, and v(x) are

third-order di↵erentiable and that pE is positive on

(�1,+1). The condition (4) implies that for every

point of (X,Y ) satisfying ⌘002h
0 6= 0:

⌘̃0001 � ⌘̃001h
00

h0
=

⇣⌘02⌘0002
⌘002

� 2⌘002

⌘
· h0h00 � ⌘0002

⌘002
· h0⌘̃001

+ ⌘02 ·
⇣
h000 � h002

h0

⌘
, (7)

and h1 depends on ⌘̃1, ⌘2, and h in the following way:

1

h01
=

⌘̃001 + ⌘002h
02 � ⌘02h

00

⌘002h
0 . (8)

Further assume that ⌘002h
0 6= 0 almost everywhere.

Then in order for (7) to hold, pE and h must satisfy

one of the five conditions listed in Table 1.

Table 1: All situations in which the causal direction
implied by the PNL-OSB model may be unidentifiable.

pE h = f1 � g2
1 Gaussian linear

2 log-mix-lin-exp linear

3 log-mix-lin-exp h strictly monotonic,

and h0 ! 0, as t1 !
+1 or as t1 ! �1

4 log-mix-lin-exp Same as above

5 generalized mixture

of two exponentials

Same as above

All proofs are given in the Supplementary material.
In the five situations given in Table 1, the causal di-
rection may not be identifiable according to the PNL-
OSB model, and the involved distribution pE is very
specific. For the definition of distributions of the form
log-mix-lin-exp or generalized mixture of two
exponentials, see (Zhang & Hyvärinen, 2009). As a
consequence, generally speaking, the causal direction
implied by PNL-OSB is identifiable.

This identifiability result regarding the causal direc-
tion implied by PNL-OSB is similar to the original re-
sult on PNL, which was given in (Zhang & Hyvärinen,
2009). The di↵erence is that ⌘1(t) = log pT (t) in the
original identifiability result on PNL is replaced by
⌘̃1(t) = log pT (t)

vg2 (t)
. Recall that vg2(t) can be any valid

density ratio; if pT (t) is positive on (�1,+1), one

can always adjust vg2(t) so that pT (t)
vg2 (t)

meets the con-

straint on ⌘1 in (Zhang & Hyvärinen, 2009). That is,
in our result any pT (t) that is positive on (�1,+1)
is allowed. Therefore, our non-identifiable situations
(Table 1) do not contain any constraints on pT , but
still have very strong constraints on PE and h = f1�g2.

4 Identifiability of ANM-OSB Model

Given the causal direction, a further important ques-
tion is whether the causal mechanism, represented by
the functional causal model, and the selection proce-
dure, represented by �(y), can be recovered from data.

For simplicity of the derivation and presentation, we
shall consider the ANM for the causal mechanism (not
a PNL one in this section):

Y = fAN (X) + E, (9)

where E ?? X. Here we further assume that fAN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the
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Since Z and Ẽ are independent, we have

@2 log pZẼ
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Given the causal direction, a further important ques-
tion is whether the causal mechanism, represented by
the functional causal model, and the selection proce-
dure, represented by �(y), can be recovered from data.

For simplicity of the derivation and presentation, we
shall consider the ANM for the causal mechanism (not
a PNL one in this section):

Y = fAN (X) + E, (9)

where E ?? X. Here we further assume that fAN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the

causal interpretations), including intervention e↵ects.
In addition to the work on various selection models
in econometrics and social science (Heckman, 1979;
Winship & Mare, 1992), recent literature has seen in-
teresting work on the recoverability of causal param-
eters based on graphical models (Didelez et al., 2010;
Bareinboim & Pearl, 2012; Bareinboim et al., 2014;
Evans & Didelez, 2015). Much of this work, however,
deals with linear models or discrete variables, whereas
we are concerned in this paper with continous variables
that may bear a nonlinear relationship.

We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.

2 Outcome-Dependent Selection Bias

A common way to represent selection bias is to use a
binary selection variable S encoding whether or not a
unit is included in the sample. Suppose we are inter-
ested in the relationship between X and Y , where X
has a causal influence on Y . Let pXY denote the joint
distribution of X and Y in the population. Thanks to
selection, the selected sample follows pXY |S=1 instead
of pXY . In general, pXY |S=1 6= pXY , and that is how
selection may distort statistical and causal inference.
However, di↵erent kinds of selection engender di↵er-
ent levels of di�culty. In general, S may depend on
any number of substantive variables, as illustrated in
Figure 1, where X = (X1, X2). 1

1
In this paper, we assume that we only know which vari-

ables the selection variable S depends on, but the selection

mechanism is unknown, i.e., the probability of S = 1 given

those variables is unknown. Notice that we do not have

access to the data points that were not selected. This is

very di↵erent from Heckman’s framework to correct the

bias caused by a censored sample (Heckman, 1979), which

assumes access to an i.i.d. sample from the whole popula-

tion, on which the Y values are observable only for the data

points that satisfy the selection criterion (implied by the

selection equation), but other attributes of the “censored”

points are still available, enabling one to directly identify

the selection mechanism.

W X1 X2 Y

S

W X1 X2 Y

S U

(a) (b)

W X1 X2 Y
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(c) (d) X Y S
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Figure 1: Illustration of di↵erent situations with sam-
ple selection bias. (a) S depends on X = (X1, X2) but
not on Y . (b) S depends on X and is also statistically
dependent on Y given X due to a confounder U . (c)
S directly depends solely on Y (outcome-dependent
selection). (d) S depends on both X and Y .

Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection
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Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection

seriously complicates analysis, it can be handled in
the identification and estimation of functional causal
models. Note that in the case of outcome-dependent
selection, X is independent of S given Y , and so we
can model the distribution of the observed sample as:

p�XY , pXY |S=1 =
pX,Y,S=1

P (S = 1)
= pXY · P (S = 1|X,Y )

P (S = 1)

= pXY · P (S = 1|Y )

P (S = 1)
= �(y)pXY , (1)

where the nonnegative function �(y) , P (S =
1|Y )/P (S = 1) is a density ratio for biased sampling
that only depends on Y . We will adopt this represen-
tation of outcome-dependent selection in what follows.

Selection Bias on Both the Cause and the Ef-

fect An even more general situation is depicted in
Figure 1(d), where the selection depends on both X
and Y (and probably others). In such a situation,
the density ratio function � will depend on both X
and Y . The selected sample follows the distribution
p�XY / pXY �(x, y, w). Roughly speaking, the se-
lection procedure is so flexible that without further
constraints on �(x, y, w), we cannot see much infor-
mation about the population pXY : if pXY is posi-
tive on (�1,+1), the same p�XY can be generated
from a large class of distributions pXY with a suitably
chosen �(x, y, w). Moreover, the causal direction is
generally not identifiable, for with a su�ciently flex-
ible �(x, y, w), either direction can be made compat-
ible with whatever distribution. Interestingly, when
� depends only on Y , as is the case under outcome-
dependent selection, the causal direction according to
a restricted functional causal model is still generically
identifiable, without any substantial restriction on �.
To this result we now turn.

3 Identifiability of Causal Direction

In this section we investigate whether it is possible to
successfully recover the causal direction between two
variables when the data are generated according to a
functional causal model, but with outcome-dependent
selection. Here we assume that both X and Y are
scalar variables.

3.1 Identifiability Without Selection Bias

The traditional approaches to inferring causal struc-
ture from data, such as the constraint-based approach
(Spirtes et al., 2001; Pearl, 2000) and the score-based
approach (Chickering, 2002; Heckerman et al., 1995)
cannot distinguish Markov equivalent causal struc-
tures without background knowledge. In particular,

with only two variables, those methods cannot distin-
guish cause from e↵ect. The more recent approach
based on restricted functional causal models is usually
more powerful in this respect. In a functional causal
model, the e↵ect is taken to be a function of the direct
causes together with an noise term that is independent
of the direct causes (Pearl, 2000). When the class of
functions is constrained, the causal direction is usually
identifiable in that only one direction can satisfy the
model assumptions, such as the assumed independence
between the noise term and the direct causes. Avail-
able identifiability results include those on linear, non-
Gaussian, acyclic Model (LiNGAM) (Shimizu et al.,
2006)), additive noise model (ANM) (Hoyer et al.,
2009), and post-nonlinear (PNL) causal model (Zhang
& Hyvärinen, 2009). In this section, we will establish a
main result for the PNL causal model. The result also
applies to linear models and additive noise models, as
they are special cases of PNL models.

A PNL model for X ! Y is specified as follows:

Y = f2(f1(X) + E), (2)

where X and E are statistically independent, f1 is
a non-constant smooth function, f2 is an invertible
smooth function, and f 0

2 6= 0. This model is su�ciently
flexible to represent or approximate many causal pro-
cesses in reality (Zhang & Hyvärinen, 2009).

Similarly, for the reverse direction Y ! X, a PNL
model would take the following form:

X = g2(g1(Y ) + Ẽ), (3)

where Y and Ẽ are independent, g1 is non-constant
and smooth, g2 is invertible and smooth, and g02 6= 0.

As shown in (Zhang & Hyvärinen, 2009), (2) and (3)
can generate the same distribution of X and Y only
for very special configurations of the functions and dis-
tributions. In generic cases, if data are generated ac-
cording to a model of form (2), there is no model of
form (3) that generates the same distribution. Hence
the causal direction is generically identifiable.

3.2 Identifiability of Causal Direction in

PNL-OSB

We now show that the generic identifiability of causal
direction based on PNL models still holds even if we
allow the possibilty of outcome-dependent selection.

Suppose the data distribution is generated by a PNL
causal model from X to Y in the form of (2), denoted
by F!, followed by an outcome-dependent selection
with an density ratio �(y), as in (1). Call (F!,�(y))
a PNL-OSB model, and let p!XY denote the joint den-
sity of X and Y resulting from (F!,�(y)). We are
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We now show that the generic identifiability of causal
direction based on PNL models still holds even if we
allow the possibilty of outcome-dependent selection.

Suppose the data distribution is generated by a PNL
causal model from X to Y in the form of (2), denoted
by F!, followed by an outcome-dependent selection
with an density ratio �(y), as in (1). Call (F!,�(y))
a PNL-OSB model, and let p!XY denote the joint den-
sity of X and Y resulting from (F!,�(y)). We are

interested in whether there is a PNL-OSB model in
the reverse direction that can generate the same data
distribution. That is, consider (F , v(x)), where F 
is a PNL causal model from Y to X in the form of
(3), and v(x) is an density ratio function that depends
on X. Let p XY denote the joint density of X and Y
resulting from (F , v(x)). When is it the case that
p!XY = p XY ?

To simplify the presentation, we define random vari-
ables T , g�12 (X), Z , f�12 (Y ), and function h ,
f1 � g2. That is, h(t) = f1(g2(t)) = f1(x). Sim-
ilarly, h1 , g1 � f2 is a function of Z. Moreover,
we let ⌘1(t) , log pT (t) = log pX(x) + log |g02(t)|, and
⌘2(e) , log pE(e).

Note that T and E are independent (for X and E are
assumed to be independent), and Z and Ẽ are inde-
pendent (for Y and Ẽ are assumed to be independent).
It follows that

p!XY = �(y)pF!XY = �(y)pXE/|f 02| = �f2(z)pT pE/|f 02g02|,
p XY = v(x)pF XY = v(x)pY Ẽ/|g

0
2| = vg2(t)pZẼ/|f

0
2g
0
2|,

where �f2 = � � f2, and vg2 = v � g2.

Now suppose
p!XY = p XY (4)

This implies

pZẼ =
�f2(z)

vg2(t)
pT pE ,

or equivalently

log pZẼ = log �f2(z)� log vg2(t) + log pT + log pE

= log �f2(z) + ⌘̃1(t) + ⌘2(e), (5)

where ⌘̃1(t) , log pT � log vg2(t) = ⌘1(t) � log vg2(t).
Since Z and Ẽ are independent, we have

@2 log pZẼ

@z@ẽ
⌘ 0. (6)

(5) and (6) entail very strong constraints on the dis-
tribution of E, as stated in the following theorem.

Theorem 1 Suppose that the densities of E and

T and the functions f1, f2, g1, g2, and v(x) are

third-order di↵erentiable and that pE is positive on

(�1,+1). The condition (4) implies that for every

point of (X,Y ) satisfying ⌘002h
0 6= 0:

⌘̃0001 � ⌘̃001h
00

h0
=

⇣⌘02⌘0002
⌘002

� 2⌘002

⌘
· h0h00 � ⌘0002

⌘002
· h0⌘̃001

+ ⌘02 ·
⇣
h000 � h002

h0

⌘
, (7)

and h1 depends on ⌘̃1, ⌘2, and h in the following way:

1

h01
=

⌘̃001 + ⌘002h
02 � ⌘02h

00

⌘002h
0 . (8)

Further assume that ⌘002h
0 6= 0 almost everywhere.

Then in order for (7) to hold, pE and h must satisfy

one of the five conditions listed in Table 1.

Table 1: All situations in which the causal direction
implied by the PNL-OSB model may be unidentifiable.

pE h = f1 � g2
1 Gaussian linear

2 log-mix-lin-exp linear

3 log-mix-lin-exp h strictly monotonic,

and h0 ! 0, as t1 !
+1 or as t1 ! �1

4 log-mix-lin-exp Same as above

5 generalized mixture

of two exponentials

Same as above

All proofs are given in the Supplementary material.
In the five situations given in Table 1, the causal di-
rection may not be identifiable according to the PNL-
OSB model, and the involved distribution pE is very
specific. For the definition of distributions of the form
log-mix-lin-exp or generalized mixture of two
exponentials, see (Zhang & Hyvärinen, 2009). As a
consequence, generally speaking, the causal direction
implied by PNL-OSB is identifiable.

This identifiability result regarding the causal direc-
tion implied by PNL-OSB is similar to the original re-
sult on PNL, which was given in (Zhang & Hyvärinen,
2009). The di↵erence is that ⌘1(t) = log pT (t) in the
original identifiability result on PNL is replaced by
⌘̃1(t) = log pT (t)

vg2 (t)
. Recall that vg2(t) can be any valid

density ratio; if pT (t) is positive on (�1,+1), one

can always adjust vg2(t) so that pT (t)
vg2 (t)

meets the con-

straint on ⌘1 in (Zhang & Hyvärinen, 2009). That is,
in our result any pT (t) that is positive on (�1,+1)
is allowed. Therefore, our non-identifiable situations
(Table 1) do not contain any constraints on pT , but
still have very strong constraints on PE and h = f1�g2.

4 Identifiability of ANM-OSB Model

Given the causal direction, a further important ques-
tion is whether the causal mechanism, represented by
the functional causal model, and the selection proce-
dure, represented by �(y), can be recovered from data.

For simplicity of the derivation and presentation, we
shall consider the ANM for the causal mechanism (not
a PNL one in this section):

Y = fAN (X) + E, (9)

where E ?? X. Here we further assume that fAN is
smooth. The observed data are generated by applying
the selection bias on Y , i.e., they were drawn from the

or
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(29) with the proper constraints on ↵2i and ↵3i with
the constrained nonlinear optimization toolbox (im-
plemented by the function “fmincon” in MATLAB).

To do so, one has to find the derivative of (29) w.r.t.
the involved parameters ✓:

@Ĵ(✓)

@✓
=
1

n

nX

k=1

h@ ̃X(k)

@✓
+
@ ̃Y (k)

@✓
+  X(k) · @ X(k)

@✓
+

 Y (k) ·
@ Y (k)

@✓

i
.

More specifically,

@Ĵ(✓)

@✓1
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n

nX

k=1

h@3w̃(yk)
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+  Y (k)
@2w̃(yk)

@y@✓1

i
,

@Ĵ(✓)

@✓2
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1

n

nX

k=1

h@3log pX(xk)
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+  X(k)

@2log pX(xk)

@x@✓2

i
,

@Ĵ(✓)

@✓3
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n

nX

k=1

h@3 log pE(yk � fAN (xk))
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+

@3 log pE(yk � fAN (xk))
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+

 X(k) · @
2 log pE(yk � fAN (xk))
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+

 Y (k) ·
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i
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+
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+

 Y (k) ·
@2 log pE(yk � fAN (xk))

@y@✓4

i
.

The involved partial derivatives can be calculated ac-
cording to the parameterization (28).

S8. More Results on Real Data

We went through the cause-e↵ect pairs (http://
webdav.tuebingen.mpg.de/cause-effect/) to find
data sets which are likely to su↵er the OSB issue ac-
cording to commonsense or background knowledge. We
select Pairs 25, 40, and 41: Pair 25 is about the rela-
tionship between the age (X) and the concrete com-
pressive strength (Y ) of di↵erent samples of concrete;
Pair 40 is on the relations between the age (X) and di-
astolic blood pressure (Y ) of di↵erent subjects; Pair 41
contains the age (X) of the subjects and their plasma
glucose concentration a 2 hours in an oral glucose tol-
erance test (Y ).

The empirical distribution of the data in Pair 25 sug-
gests that it is very likely for the e↵ect to su↵er from
a PNL distortion. We use a rough way to take into
account both the PNL distortion in the causal process
and the OSB. We first fit the PNL causal model (Zhang
& Hyvärinen, 2009) on the data and correct the data
with the estimated PNL transformation on the hypo-
thetical e↵ect. We then fit the ANM-OSB procedure
on the corrected data. To avoid local optima, we run
the algorithm presented in Section 5.1 five times with
random initializations and choose the one with the
highest likelihood. Figure 7 shows the result on Pair
25. As seen from �̂(y), it seems for some reason, the
samples whose compressive strength is very high were
not selected. The estimated function f̂GP

M L seems to
address this issue. For Pair 40, whose results are shown
in Figure 8, �̂(y) suggests that people with relatively
high diastolic blood pressure seem more likely to take
part in the test. The interpretation on the results on
Pair 41 (Figure 9) may require some domain expertise
knowledge.
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Figure 7: Results on pair 25 of the cause-e↵ect pairs.
(a) The scatterplot of the data (after correcting the
nonlinear distortion in the hypothetical cause with the
PNL causal model, the nonlinear regression function
f̂GP on the data, and the estimated function f̂AN

ML by
the proposed maximum likelihood approach. (b) The
estimated density ratio �(y) for the selection proce-
dure.
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Figure 8: Results on pair 40 (original data without
PNL correction).
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Autoregresstive Generation in Music, 
Text, etc.?



Selection in Sequential Data 
Identifiable

• Theorem: Let the observed data be a large enough sample generated 
by the above model. Under the faithfulness assumption, Markov 
condition, and two more technical conditions, all selection pairs, 
direct relations, and confounded pairs in the causal graph are 
identifiable 

• Selection patterns in music verified

Sequential data with selection and confounders



How should We Generate Text?

Current LLMs generate text by sampling the 
next token only. 

However, as indicated by the Viterbi algorithm 
(to compute the most probable path of  the 
hidden variables), the optimal sequence can’t be 
discovered by GREEDILY adding best local 
solution to the final sequence. 



Proposal: Looking forward and 
backward for Generation

• Two stages of  text generation: text generation in an auto-regressive 
way + detector & rewriter



Issue 2: Causal Discovery in the 
Presence of  Measurement Error

• To estimate     over variables      from noisy 
observations  

• Conditional independence/dependence relations 
among      different from those among    

• Illustration: Correlation(X1, X2) & 
partial_correlation(X1, X3 | X2)

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.
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Figure 2: The correlation coefficient ⇢12 between X1

and X2 and partial correlation coefficient ⇢13,2 between
X1 and X3 given X2 as functions of �, the ratio of the
standard deviation of measurement error to the that of
X̃2. We have assumed that the correlation coefficient
between X̃1 and X̃2 and that between X̃2 and X̃3 are
the same (denoted by ⇢̃), and that there is measurement
error only in X2.

3 Canonical Representation of Causal
Models with Measurement Error

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
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Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.
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Abstract

Measurement error in the observed values of
the variables can greatly change the output of
various causal discovery methods. This prob-
lem has received much attention in multiple
fields, but it is not clear to what extent the
causal model for the measurement-error-free
variables can be identified in the presence of
measurement error with unknown variance. In
this paper, we study precise sufficient identifi-
ability conditions for the measurement-error-
free causal model and show what information
of the causal model can be recovered from ob-
served data. In particular, we present two dif-
ferent sets of identifiability conditions, based
on the second-order statistics and higher-order
statistics of the data, respectively. The former
was inspired by the relationship between the
generating model of the measurement-error-
contaminated data and the factor analysis
model, and the latter makes use of the identi-
fiability result of the over-complete indepen-
dent component analysis problem.

1 Introduction

Understanding and using causal relations among vari-
ables of interest has been a fundamental problem in var-
ious fields, including biology, neuroscience, and social
sciences. Since interventions or controlled randomized
experiments are usually expensive or even impossible
to conduct, discovering causal information from obser-
vational data, known as causal discovery (Spirtes et al.,
2001; Pearl, 2000), has been an important task and
received much attention in computer science, statistics,
and philosophy. Roughly speaking, methods for causal
discovery are categorized into constraint-based ones,
such as the PC algorithm (Spirtes et al., 2001), and
score-based ones, such as Greedy Equivalence Search

(GES) (Chickering, 2002).

Causal discovery algorithms aim to find the causal
relations among the observed variables. However, in
many cases the measured variables are not identical to
the variables we intend to measure. For instance, the
measured brain signals may contain error introduced by
the instruments, and in social sciences many variables
are not directly measurable and one usually resorts to
proxies (e.g., for “regional security" in a particular area).
In this paper, we assume that the observed variables
Xi, i = 1, ..., n, are generated from the underlying
measurement-noise-free variables X̃i with additional
random measurement errors Ei:

Xi = X̃i + Ei. (1)

Here we assume that the measurement errors Ei are
independent from X̃i and have non-zero variances.
We call this model the CAusal Model with Measure-
ment Error (CAMME). Generally speaking, because of
the presence of measurement errors, the d-separation
patterns among Xi are different from those among
the underlying variables X̃i. This generating pro-
cess has been called the random measurement error
model in (Scheines & Ramsey, 2017). According
to the causal Markov condition (Spirtes et al., 2001;
Pearl, 2000), observed variables Xi and the underly-
ing variables X̃i may have different conditional inde-
pendence/dependence relations and, as a consequence,
the output of constraint-based approaches to causal
discovery is sensitive to such error, as demonstrated
in (Scheines & Ramsey, 2017). Furthermore, because of
the measurement error, the structural equation models
according to which the measurement-error-free vari-
ables X̃i are generated usually do not hold for the
observed variables Xi. (In fact, Xi follow error-in-
variables models, for which the identifiability of the un-
derlying causal relation is not clear.) Hence, approaches
based on structural equation models, such as the linear,
non-Gaussian, acyclic model (LiNGAM (Shimizu et al.,
2006)), will generally fail to find the correct causal
direction and causal model.

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.
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3 Canonical Representation of Causal
Models with Measurement Error

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.

In this paper, we aim to estimate the causal model
underlying the measurement-error-free variables X̃i

from their observed values Xi contaminated by random
measurement error. We assume linearity of the causal
model and causal sufficiency relative to {X̃i}ni=1. We
particularly focus on the case where the causal structure
for X̃i is represented by a Directed Acyclic Graph
(DAG), although this condition can be weakened. In
order to develop principled causal discovery methods
to recover the causal model for {X̃i}ni=1 from observed
values of {Xi}ni=1, we have to address theoretical issues
include

• whether the causal model of interest is completely
or partially identifiable from the contaminated
observations,

• what are the precise identifiability conditions, and

• what information in the measured data is essential
for estimating the identifiable causal knowledge.

We make an attempt to answer the above questions on
both theoretical and methodological sides.

One of the main difficulties in dealing with causal dis-
covery in the presence of measurement error is because
the variances of the measurement errors are unknown.
Otherwise, if they are known, one can readily calculate
the covariance matrix of the measurement-error-free
variables X̃i and apply traditional causal discovery
methods such as the PC (Spirtes et al., 2001) or
GES (Chickering, 2002)) algorithm. It is worth noting
that there exist causal discovery methods to deal with
confounders, i.e., hidden direct common causes, such
as the Fast Causal Inference (FCI) algorithm (Spirtes
et al., 2001). However, they cannot estimate the causal
structure over the latent variables, which is what we aim
to recover in this paper. (Silva et al., 2006) and (Kum-
merfeld et al.) have provided algorithms for recovering
latent variables and their causal relations when each
latent variable has multiple measured effects. Their
problem is different from the measurement error set-
ting we consider, where clustering for latent common
causes is not required and each measured variable is the
direct effect of a single "true" variable. Furthermore,
as shown in next section, their models can be seen as
special cases of our setting.

2 Effect of Measurement Error on
Conditional Independence /
Dependence

We use an example to demonstrate how measurement
error changes the (conditional) independence and de-
pendence relationships in the data. More precisely,

we will see how the (conditional) independence and
independence relations between the observed variables
Xi are different from those between the measurement-
error-free variables X̃i. Suppose we observe X1, X2,
and X3, which are generated from measurement-error-
free variables according to the structure given in Fig-
ure 1. Clearly X̃1 is dependent on X̃2, while X̃1 and
X̃3 are conditionally independent given X̃2. One may
consider general settings for the variances of the mea-
surement errors. For simplicity, here let us assume that
there is only measurement error in X2, i.e., X1 = X̃1,
X2 = X̃2 + E2, and X3 = X̃3.

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME to demonstrate the effect
of measurement error on conditional independence and
dependence relationships. For simplicity, we consider
the special case where there is measurement error only
in X2, i.e., X2 = X̃2 +E2, but X1 = X̃1 and X3 = X̃3.

Let ⇢̃12 be the correlation coefficient between X̃1 and
X̃2 and ⇢̃13,2 be the partial correlation coefficient be-
tween X̃1 and X̃3 given X̃2, which is zero. Let ⇢12

and ⇢13,2 be the corresponding correlation coefficient
and partial correlation coefficient in the presence of
measurement error. We also let ⇢̃12 = ⇢̃23 = ⇢̃ to make
the result simpler. So we have ⇢13 = ⇢̃13 = ⇢̃12⇢̃23 = ⇢̃

2.
Let � = Std(E2)

Std(X̃2)
. For the data with measurement error,

⇢12 =
Cov(X1, X2)

Var1/2(X1)Var1/2(X2)

=
Cov(X̃1, X̃2)

Var1/2(X̃1)(Var(X̃2) + Var(E2))1/2

=
⇢̃

(1 + �2)1/2
;

⇢13,2 =
⇢13 � ⇢12⇢23

(1� ⇢212)
1/2(1� ⇢223)

1/2

=
⇢̃13 � ⇢̃12⇢̃23

1+�2

�
1� ⇢̃2

(1+�2)

�1/2�
1� ⇢̃2

(1+�2)

�1/2

=
r
2
⇢̃
2

1 + �2 � ⇢̃2
.

As the variance of the measurement error in X2 in-
creases, � become larger, and ⇢12 decreases and finally
goes to zero; in contrast, ⇢13,2, which is zero for the
measurement-error-free variables, is increasing and fi-
nally converges to ⇢̃

2. See Figure 2 for an illustration.
In other words, in this example as the variance of the
measurement error in X2 increases, X1 and X2 be-
come more and more independent, while X1 and X3

are conditionally more and more dependent given X2.
However, for the measurement-error-free variables, X̃1

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.
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Abstract

Measurement error in the observed values of
the variables can greatly change the output of
various causal discovery methods. This prob-
lem has received much attention in multiple
fields, but it is not clear to what extent the
causal model for the measurement-error-free
variables can be identified in the presence of
measurement error with unknown variance. In
this paper, we study precise sufficient identifi-
ability conditions for the measurement-error-
free causal model and show what information
of the causal model can be recovered from ob-
served data. In particular, we present two dif-
ferent sets of identifiability conditions, based
on the second-order statistics and higher-order
statistics of the data, respectively. The former
was inspired by the relationship between the
generating model of the measurement-error-
contaminated data and the factor analysis
model, and the latter makes use of the identi-
fiability result of the over-complete indepen-
dent component analysis problem.

1 Introduction

Understanding and using causal relations among vari-
ables of interest has been a fundamental problem in var-
ious fields, including biology, neuroscience, and social
sciences. Since interventions or controlled randomized
experiments are usually expensive or even impossible
to conduct, discovering causal information from obser-
vational data, known as causal discovery (Spirtes et al.,
2001; Pearl, 2000), has been an important task and
received much attention in computer science, statistics,
and philosophy. Roughly speaking, methods for causal
discovery are categorized into constraint-based ones,
such as the PC algorithm (Spirtes et al., 2001), and
score-based ones, such as Greedy Equivalence Search

(GES) (Chickering, 2002).

Causal discovery algorithms aim to find the causal
relations among the observed variables. However, in
many cases the measured variables are not identical to
the variables we intend to measure. For instance, the
measured brain signals may contain error introduced by
the instruments, and in social sciences many variables
are not directly measurable and one usually resorts to
proxies (e.g., for “regional security" in a particular area).
In this paper, we assume that the observed variables
Xi, i = 1, ..., n, are generated from the underlying
measurement-noise-free variables X̃i with additional
random measurement errors Ei:

Xi = X̃i + Ei. (1)

Here we assume that the measurement errors Ei are
independent from X̃i and have non-zero variances.
We call this model the CAusal Model with Measure-
ment Error (CAMME). Generally speaking, because of
the presence of measurement errors, the d-separation
patterns among Xi are different from those among
the underlying variables X̃i. This generating pro-
cess has been called the random measurement error
model in (Scheines & Ramsey, 2017). According
to the causal Markov condition (Spirtes et al., 2001;
Pearl, 2000), observed variables Xi and the underly-
ing variables X̃i may have different conditional inde-
pendence/dependence relations and, as a consequence,
the output of constraint-based approaches to causal
discovery is sensitive to such error, as demonstrated
in (Scheines & Ramsey, 2017). Furthermore, because of
the measurement error, the structural equation models
according to which the measurement-error-free vari-
ables X̃i are generated usually do not hold for the
observed variables Xi. (In fact, Xi follow error-in-
variables models, for which the identifiability of the un-
derlying causal relation is not clear.) Hence, approaches
based on structural equation models, such as the linear,
non-Gaussian, acyclic model (LiNGAM (Shimizu et al.,
2006)), will generally fail to find the correct causal
direction and causal model.
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and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.
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3 Canonical Representation of Causal
Models with Measurement Error

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.
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of the error terms in Ẽ because (2) implies
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Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
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ferent sets of identifiability conditions, based
on the second-order statistics and higher-order
statistics of the data, respectively. The former
was inspired by the relationship between the
generating model of the measurement-error-
contaminated data and the factor analysis
model, and the latter makes use of the identi-
fiability result of the over-complete indepen-
dent component analysis problem.
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are not directly measurable and one usually resorts to
proxies (e.g., for “regional security" in a particular area).
In this paper, we assume that the observed variables
Xi, i = 1, ..., n, are generated from the underlying
measurement-noise-free variables X̃i with additional
random measurement errors Ei:

Xi = X̃i + Ei. (1)

Here we assume that the measurement errors Ei are
independent from X̃i and have non-zero variances.
We call this model the CAusal Model with Measure-
ment Error (CAMME). Generally speaking, because of
the presence of measurement errors, the d-separation
patterns among Xi are different from those among
the underlying variables X̃i. This generating pro-
cess has been called the random measurement error
model in (Scheines & Ramsey, 2017). According
to the causal Markov condition (Spirtes et al., 2001;
Pearl, 2000), observed variables Xi and the underly-
ing variables X̃i may have different conditional inde-
pendence/dependence relations and, as a consequence,
the output of constraint-based approaches to causal
discovery is sensitive to such error, as demonstrated
in (Scheines & Ramsey, 2017). Furthermore, because of
the measurement error, the structural equation models
according to which the measurement-error-free vari-
ables X̃i are generated usually do not hold for the
observed variables Xi. (In fact, Xi follow error-in-
variables models, for which the identifiability of the un-
derlying causal relation is not clear.) Hence, approaches
based on structural equation models, such as the linear,
non-Gaussian, acyclic model (LiNGAM (Shimizu et al.,
2006)), will generally fail to find the correct causal
direction and causal model.
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies
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Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.
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In this paper, we aim to estimate the causal model
underlying the measurement-error-free variables X̃i

from their observed values Xi contaminated by random
measurement error. We assume linearity of the causal
model and causal sufficiency relative to {X̃i}ni=1. We
particularly focus on the case where the causal structure
for X̃i is represented by a Directed Acyclic Graph
(DAG), although this condition can be weakened. In
order to develop principled causal discovery methods
to recover the causal model for {X̃i}ni=1 from observed
values of {Xi}ni=1, we have to address theoretical issues
include

• whether the causal model of interest is completely
or partially identifiable from the contaminated
observations,

• what are the precise identifiability conditions, and

• what information in the measured data is essential
for estimating the identifiable causal knowledge.

We make an attempt to answer the above questions on
both theoretical and methodological sides.

One of the main difficulties in dealing with causal dis-
covery in the presence of measurement error is because
the variances of the measurement errors are unknown.
Otherwise, if they are known, one can readily calculate
the covariance matrix of the measurement-error-free
variables X̃i and apply traditional causal discovery
methods such as the PC (Spirtes et al., 2001) or
GES (Chickering, 2002)) algorithm. It is worth noting
that there exist causal discovery methods to deal with
confounders, i.e., hidden direct common causes, such
as the Fast Causal Inference (FCI) algorithm (Spirtes
et al., 2001). However, they cannot estimate the causal
structure over the latent variables, which is what we aim
to recover in this paper. (Silva et al., 2006) and (Kum-
merfeld et al.) have provided algorithms for recovering
latent variables and their causal relations when each
latent variable has multiple measured effects. Their
problem is different from the measurement error set-
ting we consider, where clustering for latent common
causes is not required and each measured variable is the
direct effect of a single "true" variable. Furthermore,
as shown in next section, their models can be seen as
special cases of our setting.

2 Effect of Measurement Error on
Conditional Independence /
Dependence

We use an example to demonstrate how measurement
error changes the (conditional) independence and de-
pendence relationships in the data. More precisely,

we will see how the (conditional) independence and
independence relations between the observed variables
Xi are different from those between the measurement-
error-free variables X̃i. Suppose we observe X1, X2,
and X3, which are generated from measurement-error-
free variables according to the structure given in Fig-
ure 1. Clearly X̃1 is dependent on X̃2, while X̃1 and
X̃3 are conditionally independent given X̃2. One may
consider general settings for the variances of the mea-
surement errors. For simplicity, here let us assume that
there is only measurement error in X2, i.e., X1 = X̃1,
X2 = X̃2 + E2, and X3 = X̃3.

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME to demonstrate the effect
of measurement error on conditional independence and
dependence relationships. For simplicity, we consider
the special case where there is measurement error only
in X2, i.e., X2 = X̃2 +E2, but X1 = X̃1 and X3 = X̃3.

Let ⇢̃12 be the correlation coefficient between X̃1 and
X̃2 and ⇢̃13,2 be the partial correlation coefficient be-
tween X̃1 and X̃3 given X̃2, which is zero. Let ⇢12

and ⇢13,2 be the corresponding correlation coefficient
and partial correlation coefficient in the presence of
measurement error. We also let ⇢̃12 = ⇢̃23 = ⇢̃ to make
the result simpler. So we have ⇢13 = ⇢̃13 = ⇢̃12⇢̃23 = ⇢̃

2.
Let � = Std(E2)

Std(X̃2)
. For the data with measurement error,

⇢12 =
Cov(X1, X2)

Var1/2(X1)Var1/2(X2)

=
Cov(X̃1, X̃2)

Var1/2(X̃1)(Var(X̃2) + Var(E2))1/2

=
⇢̃

(1 + �2)1/2
;

⇢13,2 =
⇢13 � ⇢12⇢23
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.

As the variance of the measurement error in X2 in-
creases, � become larger, and ⇢12 decreases and finally
goes to zero; in contrast, ⇢13,2, which is zero for the
measurement-error-free variables, is increasing and fi-
nally converges to ⇢̃

2. See Figure 2 for an illustration.
In other words, in this example as the variance of the
measurement error in X2 increases, X1 and X2 be-
come more and more independent, while X1 and X3

are conditionally more and more dependent given X2.
However, for the measurement-error-free variables, X̃1

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.
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Figure 2: The correlation coefficient ⇢12 between X1

and X2 and partial correlation coefficient ⇢13,2 between
X1 and X3 given X2 as functions of �, the ratio of the
standard deviation of measurement error to the that of
X̃2. We have assumed that the correlation coefficient
between X̃1 and X̃2 and that between X̃2 and X̃3 are
the same (denoted by ⇢̃), and that there is measurement
error only in X2.

3 Canonical Representation of Causal
Models with Measurement Error

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.
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Abstract

Measurement error in the observed values of
the variables can greatly change the output of
various causal discovery methods. This prob-
lem has received much attention in multiple
fields, but it is not clear to what extent the
causal model for the measurement-error-free
variables can be identified in the presence of
measurement error with unknown variance. In
this paper, we study precise sufficient identifi-
ability conditions for the measurement-error-
free causal model and show what information
of the causal model can be recovered from ob-
served data. In particular, we present two dif-
ferent sets of identifiability conditions, based
on the second-order statistics and higher-order
statistics of the data, respectively. The former
was inspired by the relationship between the
generating model of the measurement-error-
contaminated data and the factor analysis
model, and the latter makes use of the identi-
fiability result of the over-complete indepen-
dent component analysis problem.

1 Introduction

Understanding and using causal relations among vari-
ables of interest has been a fundamental problem in var-
ious fields, including biology, neuroscience, and social
sciences. Since interventions or controlled randomized
experiments are usually expensive or even impossible
to conduct, discovering causal information from obser-
vational data, known as causal discovery (Spirtes et al.,
2001; Pearl, 2000), has been an important task and
received much attention in computer science, statistics,
and philosophy. Roughly speaking, methods for causal
discovery are categorized into constraint-based ones,
such as the PC algorithm (Spirtes et al., 2001), and
score-based ones, such as Greedy Equivalence Search

(GES) (Chickering, 2002).

Causal discovery algorithms aim to find the causal
relations among the observed variables. However, in
many cases the measured variables are not identical to
the variables we intend to measure. For instance, the
measured brain signals may contain error introduced by
the instruments, and in social sciences many variables
are not directly measurable and one usually resorts to
proxies (e.g., for “regional security" in a particular area).
In this paper, we assume that the observed variables
Xi, i = 1, ..., n, are generated from the underlying
measurement-noise-free variables X̃i with additional
random measurement errors Ei:

Xi = X̃i + Ei. (1)

Here we assume that the measurement errors Ei are
independent from X̃i and have non-zero variances.
We call this model the CAusal Model with Measure-
ment Error (CAMME). Generally speaking, because of
the presence of measurement errors, the d-separation
patterns among Xi are different from those among
the underlying variables X̃i. This generating pro-
cess has been called the random measurement error
model in (Scheines & Ramsey, 2017). According
to the causal Markov condition (Spirtes et al., 2001;
Pearl, 2000), observed variables Xi and the underly-
ing variables X̃i may have different conditional inde-
pendence/dependence relations and, as a consequence,
the output of constraint-based approaches to causal
discovery is sensitive to such error, as demonstrated
in (Scheines & Ramsey, 2017). Furthermore, because of
the measurement error, the structural equation models
according to which the measurement-error-free vari-
ables X̃i are generated usually do not hold for the
observed variables Xi. (In fact, Xi follow error-in-
variables models, for which the identifiability of the un-
derlying causal relation is not clear.) Hence, approaches
based on structural equation models, such as the linear,
non-Gaussian, acyclic model (LiNGAM (Shimizu et al.,
2006)), will generally fail to find the correct causal
direction and causal model.



Canonical Representation of  CAMME

• Two issues: 

• Is CR-CAMME 
identifiable from data? 

• Is     identifiable from 
the CR-CAMME?

In this paper, we aim to estimate the causal model
underlying the measurement-error-free variables X̃i

from their observed values Xi contaminated by random
measurement error. We assume linearity of the causal
model and causal sufficiency relative to {X̃i}ni=1. We
particularly focus on the case where the causal structure
for X̃i is represented by a Directed Acyclic Graph
(DAG), although this condition can be weakened. In
order to develop principled causal discovery methods
to recover the causal model for {X̃i}ni=1 from observed
values of {Xi}ni=1, we have to address theoretical issues
include

• whether the causal model of interest is completely
or partially identifiable from the contaminated
observations,

• what are the precise identifiability conditions, and

• what information in the measured data is essential
for estimating the identifiable causal knowledge.

We make an attempt to answer the above questions on
both theoretical and methodological sides.

One of the main difficulties in dealing with causal dis-
covery in the presence of measurement error is because
the variances of the measurement errors are unknown.
Otherwise, if they are known, one can readily calculate
the covariance matrix of the measurement-error-free
variables X̃i and apply traditional causal discovery
methods such as the PC (Spirtes et al., 2001) or
GES (Chickering, 2002)) algorithm. It is worth noting
that there exist causal discovery methods to deal with
confounders, i.e., hidden direct common causes, such
as the Fast Causal Inference (FCI) algorithm (Spirtes
et al., 2001). However, they cannot estimate the causal
structure over the latent variables, which is what we aim
to recover in this paper. (Silva et al., 2006) and (Kum-
merfeld et al.) have provided algorithms for recovering
latent variables and their causal relations when each
latent variable has multiple measured effects. Their
problem is different from the measurement error set-
ting we consider, where clustering for latent common
causes is not required and each measured variable is the
direct effect of a single "true" variable. Furthermore,
as shown in next section, their models can be seen as
special cases of our setting.

2 Effect of Measurement Error on
Conditional Independence /
Dependence

We use an example to demonstrate how measurement
error changes the (conditional) independence and de-
pendence relationships in the data. More precisely,

we will see how the (conditional) independence and
independence relations between the observed variables
Xi are different from those between the measurement-
error-free variables X̃i. Suppose we observe X1, X2,
and X3, which are generated from measurement-error-
free variables according to the structure given in Fig-
ure 1. Clearly X̃1 is dependent on X̃2, while X̃1 and
X̃3 are conditionally independent given X̃2. One may
consider general settings for the variances of the mea-
surement errors. For simplicity, here let us assume that
there is only measurement error in X2, i.e., X1 = X̃1,
X2 = X̃2 + E2, and X3 = X̃3.

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME to demonstrate the effect
of measurement error on conditional independence and
dependence relationships. For simplicity, we consider
the special case where there is measurement error only
in X2, i.e., X2 = X̃2 +E2, but X1 = X̃1 and X3 = X̃3.

Let ⇢̃12 be the correlation coefficient between X̃1 and
X̃2 and ⇢̃13,2 be the partial correlation coefficient be-
tween X̃1 and X̃3 given X̃2, which is zero. Let ⇢12

and ⇢13,2 be the corresponding correlation coefficient
and partial correlation coefficient in the presence of
measurement error. We also let ⇢̃12 = ⇢̃23 = ⇢̃ to make
the result simpler. So we have ⇢13 = ⇢̃13 = ⇢̃12⇢̃23 = ⇢̃

2.
Let � = Std(E2)

Std(X̃2)
. For the data with measurement error,

⇢12 =
Cov(X1, X2)

Var1/2(X1)Var1/2(X2)

=
Cov(X̃1, X̃2)

Var1/2(X̃1)(Var(X̃2) + Var(E2))1/2

=
⇢̃

(1 + �2)1/2
;

⇢13,2 =
⇢13 � ⇢12⇢23
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1/2(1� ⇢223)
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=
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.

As the variance of the measurement error in X2 in-
creases, � become larger, and ⇢12 decreases and finally
goes to zero; in contrast, ⇢13,2, which is zero for the
measurement-error-free variables, is increasing and fi-
nally converges to ⇢̃

2. See Figure 2 for an illustration.
In other words, in this example as the variance of the
measurement error in X2 increases, X1 and X2 be-
come more and more independent, while X1 and X3

are conditionally more and more dependent given X2.
However, for the measurement-error-free variables, X̃1

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.
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Figure 2: The correlation coefficient ⇢12 between X1

and X2 and partial correlation coefficient ⇢13,2 between
X1 and X3 given X2 as functions of �, the ratio of the
standard deviation of measurement error to the that of
X̃2. We have assumed that the correlation coefficient
between X̃1 and X̃2 and that between X̃2 and X̃3 are
the same (denoted by ⇢̃), and that there is measurement
error only in X2.

3 Canonical Representation of Causal
Models with Measurement Error

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.

Ẽ2Ẽ1 Ẽ3

E1 E2 E3

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.
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and X2 and partial correlation coefficient ⇢13,2 between
X1 and X3 given X2 as functions of �, the ratio of the
standard deviation of measurement error to the that of
X̃2. We have assumed that the correlation coefficient
between X̃1 and X̃2 and that between X̃2 and X̃3 are
the same (denoted by ⇢̃), and that there is measurement
error only in X2.

3 Canonical Representation of Causal
Models with Measurement Error

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.

In this paper, we aim to estimate the causal model
underlying the measurement-error-free variables X̃i

from their observed values Xi contaminated by random
measurement error. We assume linearity of the causal
model and causal sufficiency relative to {X̃i}ni=1. We
particularly focus on the case where the causal structure
for X̃i is represented by a Directed Acyclic Graph
(DAG), although this condition can be weakened. In
order to develop principled causal discovery methods
to recover the causal model for {X̃i}ni=1 from observed
values of {Xi}ni=1, we have to address theoretical issues
include

• whether the causal model of interest is completely
or partially identifiable from the contaminated
observations,

• what are the precise identifiability conditions, and

• what information in the measured data is essential
for estimating the identifiable causal knowledge.

We make an attempt to answer the above questions on
both theoretical and methodological sides.

One of the main difficulties in dealing with causal dis-
covery in the presence of measurement error is because
the variances of the measurement errors are unknown.
Otherwise, if they are known, one can readily calculate
the covariance matrix of the measurement-error-free
variables X̃i and apply traditional causal discovery
methods such as the PC (Spirtes et al., 2001) or
GES (Chickering, 2002)) algorithm. It is worth noting
that there exist causal discovery methods to deal with
confounders, i.e., hidden direct common causes, such
as the Fast Causal Inference (FCI) algorithm (Spirtes
et al., 2001). However, they cannot estimate the causal
structure over the latent variables, which is what we aim
to recover in this paper. (Silva et al., 2006) and (Kum-
merfeld et al.) have provided algorithms for recovering
latent variables and their causal relations when each
latent variable has multiple measured effects. Their
problem is different from the measurement error set-
ting we consider, where clustering for latent common
causes is not required and each measured variable is the
direct effect of a single "true" variable. Furthermore,
as shown in next section, their models can be seen as
special cases of our setting.

2 Effect of Measurement Error on
Conditional Independence /
Dependence

We use an example to demonstrate how measurement
error changes the (conditional) independence and de-
pendence relationships in the data. More precisely,

we will see how the (conditional) independence and
independence relations between the observed variables
Xi are different from those between the measurement-
error-free variables X̃i. Suppose we observe X1, X2,
and X3, which are generated from measurement-error-
free variables according to the structure given in Fig-
ure 1. Clearly X̃1 is dependent on X̃2, while X̃1 and
X̃3 are conditionally independent given X̃2. One may
consider general settings for the variances of the mea-
surement errors. For simplicity, here let us assume that
there is only measurement error in X2, i.e., X1 = X̃1,
X2 = X̃2 + E2, and X3 = X̃3.

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME to demonstrate the effect
of measurement error on conditional independence and
dependence relationships. For simplicity, we consider
the special case where there is measurement error only
in X2, i.e., X2 = X̃2 +E2, but X1 = X̃1 and X3 = X̃3.

Let ⇢̃12 be the correlation coefficient between X̃1 and
X̃2 and ⇢̃13,2 be the partial correlation coefficient be-
tween X̃1 and X̃3 given X̃2, which is zero. Let ⇢12

and ⇢13,2 be the corresponding correlation coefficient
and partial correlation coefficient in the presence of
measurement error. We also let ⇢̃12 = ⇢̃23 = ⇢̃ to make
the result simpler. So we have ⇢13 = ⇢̃13 = ⇢̃12⇢̃23 = ⇢̃

2.
Let � = Std(E2)

Std(X̃2)
. For the data with measurement error,

⇢12 =
Cov(X1, X2)

Var1/2(X1)Var1/2(X2)

=
Cov(X̃1, X̃2)

Var1/2(X̃1)(Var(X̃2) + Var(E2))1/2

=
⇢̃

(1 + �2)1/2
;

⇢13,2 =
⇢13 � ⇢12⇢23
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As the variance of the measurement error in X2 in-
creases, � become larger, and ⇢12 decreases and finally
goes to zero; in contrast, ⇢13,2, which is zero for the
measurement-error-free variables, is increasing and fi-
nally converges to ⇢̃

2. See Figure 2 for an illustration.
In other words, in this example as the variance of the
measurement error in X2 increases, X1 and X2 be-
come more and more independent, while X1 and X3

are conditionally more and more dependent given X2.
However, for the measurement-error-free variables, X̃1

E⇤
1 E⇤

2 E⇤
3
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Equation (3) can be rewritten as

X̃ = ANLẼNL +ALẼL = X̃⇤ +ALẼL
, (4)

where X̃⇤ , ANLẼNL, ANL and AL are n ⇥ (n � l)
and n ⇥ l matrices, respectively. Here both A

L and
ANL have specific structures. All entries of AL are 0
or 1; for each column of AL, there is only one non-zero
entry. In contrast, each column of ANL has at least
two non-zero entries, representing the influences from
the corresponding non-leaf noise term.

Further consider the generating process of observed
variables Xi. Combining (1) and (4) gives

X = X̃⇤ +ALẼL +E = ANLẼNL + (ALẼL +E)

= ANLẼNL +E⇤ (5)

=
⇥
ANL I

⇤
·
"

ẼNL

E⇤

#
, (6)

where E⇤ = ALẼL + E and I denotes the identity
matrix. To make it more explicit, we give how X

⇤
i and

E
⇤
i are related to the original CAMME process:

X̃
⇤
i =

(
X̃i, if X̃i is not a leaf node in G̃;

X̃i � Ẽi, otherwise;
, and

(7)

E
⇤
i =

(
Ei, if X̃i is not a leaf node in G̃;

Ei + Ẽi, otherwise.

Clearly E
⇤
i s are independent across i, and as we shall

see in Section 4, the information shared by difference
Xi is still captured by X̃⇤.
Proposition 1. For each CAMME specified by (2) and

(1), there always exists an observationally equivalent

representation in the form of (5) or (6),

The proof was actually given in the construction proce-
dure of the representation (5) or (6) from the original
CAMME. We call the representation (5) or (6) the
canonical representation of the underlying CAMME
(CR-CAMME).

Example Set 1 Consider the following example with
three observed variables Xi, i = 1, 2, 3, for which X̃1 !
X̃2  X̃3, with causal relations X̃2 = aX̃1 + bX̃3 + Ẽ2.
That is,

B =

2

4
0 0 0
a 0 b

0 0 0

3

5 ,

and according to (3),

A =

2
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a 1 b
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5 .

Therefore,

X = X̃+E = X̃⇤ +E⇤

=
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In causal discovery from observations in the presence
of measurement error, we aim to recover information
of the measurement-error-free causal model G̃. Let us
define a new graphical model, G̃⇤. It is obtained by
replacing variables X̃i in G̃ with variables X̃⇤

i . In other
words, it has the same causal structure and causal
parameters (given by the B matrix) as G̃, but its nodes
correspond to variables X̃

⇤
i . If we manage to estimate

the structure of and involved causal parameters in
G̃

⇤, then G̃, the causal model of interest, is recovered.
Comparing with G̃, G̃

⇤ involves some deterministic
causal relations because each leaf node is a deterministic
function of its parents (the noise in leaf nodes has been
removed; see (7)). We defined the graphical model G̃⇤

because we cannot fully estimate the distribution of
measurement-error-free variables X̃, but might be able
to estimate that of X̃⇤, under proper assumptions.

In what follows, most of the time we assume

A0. The causal Markov condition holds for G̃ and the
distribution of X̃⇤

i is non-deterministically faithful

w.r.t. G̃
⇤, in the sense that if there exists S, a

subset of {X̃⇤
k : k 6= i, k 6= j}, such that neither

of X̃⇤
i and X̃

⇤
j is a deterministic function of S and

X̃
⇤
i ?? X̃

⇤
j |S holds, then X̃

⇤
i and X̃

⇤
j (or X̃i and

X̃j) are d-separated by S in G̃
⇤.

This non-deterministically faithfulness assumption ex-
cludes a particular type of parameter coupling in the
causal model for X̃i. in Figure 4 we give a causal
model in which the causal coefficients are carefully
chosen so that this assumption is violated: because
X̃

⇤
3 = aX̃

⇤
1 + bX̃

⇤
2 and X̃

⇤
4 = 2aX̃⇤

1 + 2bX̃⇤
2 + E

⇤
4 , we

have X̃
⇤
4 = 2X̃⇤

3 + E
⇤
4 , implying X̃

⇤
4 ?? X̃

⇤
1 | X̃⇤

3 and
X̃

⇤
4 ?? X̃

⇤
2 | X̃⇤

3 , which are not given by the causal
Markov condition on G̃. We note that this non-
deterministic faithfulness is defined for the distribution
of the constructed variables X̃

⇤
i , not the measurement-

error-free variables X̃i. (Bear in mind their relationship
given in (7).) This assumption is generally stronger
than the faithfulness assumption for the distribution of
X̃i. In particular, in the causal model given in Figure 4,

Factor analysis model: X = X⇤ +E⇤

= ANLẼNL +E⇤

Alternatively: X

˜
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Example of  CR-CAMME

ANL (of size n⇥ (n� l))

In this paper, we aim to estimate the causal model
underlying the measurement-error-free variables X̃i

from their observed values Xi contaminated by random
measurement error. We assume linearity of the causal
model and causal sufficiency relative to {X̃i}ni=1. We
particularly focus on the case where the causal structure
for X̃i is represented by a Directed Acyclic Graph
(DAG), although this condition can be weakened. In
order to develop principled causal discovery methods
to recover the causal model for {X̃i}ni=1 from observed
values of {Xi}ni=1, we have to address theoretical issues
include

• whether the causal model of interest is completely
or partially identifiable from the contaminated
observations,

• what are the precise identifiability conditions, and

• what information in the measured data is essential
for estimating the identifiable causal knowledge.

We make an attempt to answer the above questions on
both theoretical and methodological sides.

One of the main difficulties in dealing with causal dis-
covery in the presence of measurement error is because
the variances of the measurement errors are unknown.
Otherwise, if they are known, one can readily calculate
the covariance matrix of the measurement-error-free
variables X̃i and apply traditional causal discovery
methods such as the PC (Spirtes et al., 2001) or
GES (Chickering, 2002)) algorithm. It is worth noting
that there exist causal discovery methods to deal with
confounders, i.e., hidden direct common causes, such
as the Fast Causal Inference (FCI) algorithm (Spirtes
et al., 2001). However, they cannot estimate the causal
structure over the latent variables, which is what we aim
to recover in this paper. (Silva et al., 2006) and (Kum-
merfeld et al.) have provided algorithms for recovering
latent variables and their causal relations when each
latent variable has multiple measured effects. Their
problem is different from the measurement error set-
ting we consider, where clustering for latent common
causes is not required and each measured variable is the
direct effect of a single "true" variable. Furthermore,
as shown in next section, their models can be seen as
special cases of our setting.

2 Effect of Measurement Error on
Conditional Independence /
Dependence

We use an example to demonstrate how measurement
error changes the (conditional) independence and de-
pendence relationships in the data. More precisely,

we will see how the (conditional) independence and
independence relations between the observed variables
Xi are different from those between the measurement-
error-free variables X̃i. Suppose we observe X1, X2,
and X3, which are generated from measurement-error-
free variables according to the structure given in Fig-
ure 1. Clearly X̃1 is dependent on X̃2, while X̃1 and
X̃3 are conditionally independent given X̃2. One may
consider general settings for the variances of the mea-
surement errors. For simplicity, here let us assume that
there is only measurement error in X2, i.e., X1 = X̃1,
X2 = X̃2 + E2, and X3 = X̃3.

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME to demonstrate the effect
of measurement error on conditional independence and
dependence relationships. For simplicity, we consider
the special case where there is measurement error only
in X2, i.e., X2 = X̃2 +E2, but X1 = X̃1 and X3 = X̃3.

Let ⇢̃12 be the correlation coefficient between X̃1 and
X̃2 and ⇢̃13,2 be the partial correlation coefficient be-
tween X̃1 and X̃3 given X̃2, which is zero. Let ⇢12

and ⇢13,2 be the corresponding correlation coefficient
and partial correlation coefficient in the presence of
measurement error. We also let ⇢̃12 = ⇢̃23 = ⇢̃ to make
the result simpler. So we have ⇢13 = ⇢̃13 = ⇢̃12⇢̃23 = ⇢̃

2.
Let � = Std(E2)

Std(X̃2)
. For the data with measurement error,

⇢12 =
Cov(X1, X2)

Var1/2(X1)Var1/2(X2)

=
Cov(X̃1, X̃2)

Var1/2(X̃1)(Var(X̃2) + Var(E2))1/2

=
⇢̃

(1 + �2)1/2
;

⇢13,2 =
⇢13 � ⇢12⇢23
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1/2(1� ⇢223)

1/2

=
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=
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2
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2
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.

As the variance of the measurement error in X2 in-
creases, � become larger, and ⇢12 decreases and finally
goes to zero; in contrast, ⇢13,2, which is zero for the
measurement-error-free variables, is increasing and fi-
nally converges to ⇢̃

2. See Figure 2 for an illustration.
In other words, in this example as the variance of the
measurement error in X2 increases, X1 and X2 be-
come more and more independent, while X1 and X3

are conditionally more and more dependent given X2.
However, for the measurement-error-free variables, X̃1

E⇤
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2 E⇤
3
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Equation (3) can be rewritten as

X̃ = ANLẼNL +ALẼL = X̃⇤ +ALẼL
, (4)

where X̃⇤ , ANLẼNL, ANL and AL are n ⇥ (n � l)
and n ⇥ l matrices, respectively. Here both A

L and
ANL have specific structures. All entries of AL are 0
or 1; for each column of AL, there is only one non-zero
entry. In contrast, each column of ANL has at least
two non-zero entries, representing the influences from
the corresponding non-leaf noise term.

Further consider the generating process of observed
variables Xi. Combining (1) and (4) gives

X = X̃⇤ +ALẼL +E = ANLẼNL + (ALẼL +E)

= ANLẼNL +E⇤ (5)

=
⇥
ANL I

⇤
·
"

ẼNL

E⇤

#
, (6)

where E⇤ = ALẼL + E and I denotes the identity
matrix. To make it more explicit, we give how X

⇤
i and

E
⇤
i are related to the original CAMME process:

X̃
⇤
i =

(
X̃i, if X̃i is not a leaf node in G̃;

X̃i � Ẽi, otherwise;
, and

(7)

E
⇤
i =

(
Ei, if X̃i is not a leaf node in G̃;

Ei + Ẽi, otherwise.

Clearly E
⇤
i s are independent across i, and as we shall

see in Section 4, the information shared by difference
Xi is still captured by X̃⇤.
Proposition 1. For each CAMME specified by (2) and

(1), there always exists an observationally equivalent

representation in the form of (5) or (6),

The proof was actually given in the construction proce-
dure of the representation (5) or (6) from the original
CAMME. We call the representation (5) or (6) the
canonical representation of the underlying CAMME
(CR-CAMME).

Example Set 1 Consider the following example with
three observed variables Xi, i = 1, 2, 3, for which X̃1 !
X̃2  X̃3, with causal relations X̃2 = aX̃1 + bX̃3 + Ẽ2.
That is,

B =

2

4
0 0 0
a 0 b

0 0 0

3

5 ,

and according to (3),

A =
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1 0 0
a 1 b

0 0 1
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Therefore,

X = X̃+E = X̃⇤ +E⇤
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In causal discovery from observations in the presence
of measurement error, we aim to recover information
of the measurement-error-free causal model G̃. Let us
define a new graphical model, G̃⇤. It is obtained by
replacing variables X̃i in G̃ with variables X̃⇤

i . In other
words, it has the same causal structure and causal
parameters (given by the B matrix) as G̃, but its nodes
correspond to variables X̃

⇤
i . If we manage to estimate

the structure of and involved causal parameters in
G̃

⇤, then G̃, the causal model of interest, is recovered.
Comparing with G̃, G̃

⇤ involves some deterministic
causal relations because each leaf node is a deterministic
function of its parents (the noise in leaf nodes has been
removed; see (7)). We defined the graphical model G̃⇤

because we cannot fully estimate the distribution of
measurement-error-free variables X̃, but might be able
to estimate that of X̃⇤, under proper assumptions.

In what follows, most of the time we assume

A0. The causal Markov condition holds for G̃ and the
distribution of X̃⇤

i is non-deterministically faithful

w.r.t. G̃
⇤, in the sense that if there exists S, a

subset of {X̃⇤
k : k 6= i, k 6= j}, such that neither

of X̃⇤
i and X̃

⇤
j is a deterministic function of S and

X̃
⇤
i ?? X̃

⇤
j |S holds, then X̃

⇤
i and X̃

⇤
j (or X̃i and

X̃j) are d-separated by S in G̃
⇤.

This non-deterministically faithfulness assumption ex-
cludes a particular type of parameter coupling in the
causal model for X̃i. in Figure 4 we give a causal
model in which the causal coefficients are carefully
chosen so that this assumption is violated: because
X̃

⇤
3 = aX̃

⇤
1 + bX̃

⇤
2 and X̃

⇤
4 = 2aX̃⇤

1 + 2bX̃⇤
2 + E

⇤
4 , we

have X̃
⇤
4 = 2X̃⇤

3 + E
⇤
4 , implying X̃

⇤
4 ?? X̃

⇤
1 | X̃⇤

3 and
X̃

⇤
4 ?? X̃

⇤
2 | X̃⇤

3 , which are not given by the causal
Markov condition on G̃. We note that this non-
deterministic faithfulness is defined for the distribution
of the constructed variables X̃

⇤
i , not the measurement-

error-free variables X̃i. (Bear in mind their relationship
given in (7).) This assumption is generally stronger
than the faithfulness assumption for the distribution of
X̃i. In particular, in the causal model given in Figure 4,

Factor analysis model: X = X⇤ +E⇤

= ANLẼNL +E⇤

Alternatively: X

˜

Suppose we have Xi, i = 1, 2, 3, for which X̃1 ! X̃2  X̃3, with causal
relations X̃2 = aX̃1 + bX̃3 + Ẽ2.

So X̃ = BX̃+ Ẽ, with B =
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Ẽ3

E1
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Suppose G̃ is :

*



Identifiability of  CR-CAMME: Second-Order Statistics

Factor analysis model: X = X⇤ +E⇤

= ANLẼNL +E⇤

In this paper, we aim to estimate the causal model
underlying the measurement-error-free variables X̃i

from their observed values Xi contaminated by random
measurement error. We assume linearity of the causal
model and causal sufficiency relative to {X̃i}ni=1. We
particularly focus on the case where the causal structure
for X̃i is represented by a Directed Acyclic Graph
(DAG), although this condition can be weakened. In
order to develop principled causal discovery methods
to recover the causal model for {X̃i}ni=1 from observed
values of {Xi}ni=1, we have to address theoretical issues
include

• whether the causal model of interest is completely
or partially identifiable from the contaminated
observations,

• what are the precise identifiability conditions, and

• what information in the measured data is essential
for estimating the identifiable causal knowledge.

We make an attempt to answer the above questions on
both theoretical and methodological sides.

One of the main difficulties in dealing with causal dis-
covery in the presence of measurement error is because
the variances of the measurement errors are unknown.
Otherwise, if they are known, one can readily calculate
the covariance matrix of the measurement-error-free
variables X̃i and apply traditional causal discovery
methods such as the PC (Spirtes et al., 2001) or
GES (Chickering, 2002)) algorithm. It is worth noting
that there exist causal discovery methods to deal with
confounders, i.e., hidden direct common causes, such
as the Fast Causal Inference (FCI) algorithm (Spirtes
et al., 2001). However, they cannot estimate the causal
structure over the latent variables, which is what we aim
to recover in this paper. (Silva et al., 2006) and (Kum-
merfeld et al.) have provided algorithms for recovering
latent variables and their causal relations when each
latent variable has multiple measured effects. Their
problem is different from the measurement error set-
ting we consider, where clustering for latent common
causes is not required and each measured variable is the
direct effect of a single "true" variable. Furthermore,
as shown in next section, their models can be seen as
special cases of our setting.

2 Effect of Measurement Error on
Conditional Independence /
Dependence

We use an example to demonstrate how measurement
error changes the (conditional) independence and de-
pendence relationships in the data. More precisely,

we will see how the (conditional) independence and
independence relations between the observed variables
Xi are different from those between the measurement-
error-free variables X̃i. Suppose we observe X1, X2,
and X3, which are generated from measurement-error-
free variables according to the structure given in Fig-
ure 1. Clearly X̃1 is dependent on X̃2, while X̃1 and
X̃3 are conditionally independent given X̃2. One may
consider general settings for the variances of the mea-
surement errors. For simplicity, here let us assume that
there is only measurement error in X2, i.e., X1 = X̃1,
X2 = X̃2 + E2, and X3 = X̃3.

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME to demonstrate the effect
of measurement error on conditional independence and
dependence relationships. For simplicity, we consider
the special case where there is measurement error only
in X2, i.e., X2 = X̃2 +E2, but X1 = X̃1 and X3 = X̃3.

Let ⇢̃12 be the correlation coefficient between X̃1 and
X̃2 and ⇢̃13,2 be the partial correlation coefficient be-
tween X̃1 and X̃3 given X̃2, which is zero. Let ⇢12

and ⇢13,2 be the corresponding correlation coefficient
and partial correlation coefficient in the presence of
measurement error. We also let ⇢̃12 = ⇢̃23 = ⇢̃ to make
the result simpler. So we have ⇢13 = ⇢̃13 = ⇢̃12⇢̃23 = ⇢̃

2.
Let � = Std(E2)

Std(X̃2)
. For the data with measurement error,

⇢12 =
Cov(X1, X2)

Var1/2(X1)Var1/2(X2)

=
Cov(X̃1, X̃2)

Var1/2(X̃1)(Var(X̃2) + Var(E2))1/2

=
⇢̃

(1 + �2)1/2
;

⇢13,2 =
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As the variance of the measurement error in X2 in-
creases, � become larger, and ⇢12 decreases and finally
goes to zero; in contrast, ⇢13,2, which is zero for the
measurement-error-free variables, is increasing and fi-
nally converges to ⇢̃

2. See Figure 2 for an illustration.
In other words, in this example as the variance of the
measurement error in X2 increases, X1 and X2 be-
come more and more independent, while X1 and X3

are conditionally more and more dependent given X2.
However, for the measurement-error-free variables, X̃1
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ẼNL
2

In this paper, we aim to estimate the causal model
underlying the measurement-error-free variables X̃i

from their observed values Xi contaminated by random
measurement error. We assume linearity of the causal
model and causal sufficiency relative to {X̃i}ni=1. We
particularly focus on the case where the causal structure
for X̃i is represented by a Directed Acyclic Graph
(DAG), although this condition can be weakened. In
order to develop principled causal discovery methods
to recover the causal model for {X̃i}ni=1 from observed
values of {Xi}ni=1, we have to address theoretical issues
include

• whether the causal model of interest is completely
or partially identifiable from the contaminated
observations,

• what are the precise identifiability conditions, and

• what information in the measured data is essential
for estimating the identifiable causal knowledge.

We make an attempt to answer the above questions on
both theoretical and methodological sides.

One of the main difficulties in dealing with causal dis-
covery in the presence of measurement error is because
the variances of the measurement errors are unknown.
Otherwise, if they are known, one can readily calculate
the covariance matrix of the measurement-error-free
variables X̃i and apply traditional causal discovery
methods such as the PC (Spirtes et al., 2001) or
GES (Chickering, 2002)) algorithm. It is worth noting
that there exist causal discovery methods to deal with
confounders, i.e., hidden direct common causes, such
as the Fast Causal Inference (FCI) algorithm (Spirtes
et al., 2001). However, they cannot estimate the causal
structure over the latent variables, which is what we aim
to recover in this paper. (Silva et al., 2006) and (Kum-
merfeld et al.) have provided algorithms for recovering
latent variables and their causal relations when each
latent variable has multiple measured effects. Their
problem is different from the measurement error set-
ting we consider, where clustering for latent common
causes is not required and each measured variable is the
direct effect of a single "true" variable. Furthermore,
as shown in next section, their models can be seen as
special cases of our setting.

2 Effect of Measurement Error on
Conditional Independence /
Dependence

We use an example to demonstrate how measurement
error changes the (conditional) independence and de-
pendence relationships in the data. More precisely,

we will see how the (conditional) independence and
independence relations between the observed variables
Xi are different from those between the measurement-
error-free variables X̃i. Suppose we observe X1, X2,
and X3, which are generated from measurement-error-
free variables according to the structure given in Fig-
ure 1. Clearly X̃1 is dependent on X̃2, while X̃1 and
X̃3 are conditionally independent given X̃2. One may
consider general settings for the variances of the mea-
surement errors. For simplicity, here let us assume that
there is only measurement error in X2, i.e., X1 = X̃1,
X2 = X̃2 + E2, and X3 = X̃3.
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X1 X2 X3

X̃⇤
1 X̃⇤
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Figure 1: A linear CAMME to demonstrate the effect
of measurement error on conditional independence and
dependence relationships. For simplicity, we consider
the special case where there is measurement error only
in X2, i.e., X2 = X̃2 +E2, but X1 = X̃1 and X3 = X̃3.

Let ⇢̃12 be the correlation coefficient between X̃1 and
X̃2 and ⇢̃13,2 be the partial correlation coefficient be-
tween X̃1 and X̃3 given X̃2, which is zero. Let ⇢12

and ⇢13,2 be the corresponding correlation coefficient
and partial correlation coefficient in the presence of
measurement error. We also let ⇢̃12 = ⇢̃23 = ⇢̃ to make
the result simpler. So we have ⇢13 = ⇢̃13 = ⇢̃12⇢̃23 = ⇢̃
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Std(X̃2)
. For the data with measurement error,
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As the variance of the measurement error in X2 in-
creases, � become larger, and ⇢12 decreases and finally
goes to zero; in contrast, ⇢13,2, which is zero for the
measurement-error-free variables, is increasing and fi-
nally converges to ⇢̃

2. See Figure 2 for an illustration.
In other words, in this example as the variance of the
measurement error in X2 increases, X1 and X2 be-
come more and more independent, while X1 and X3
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and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.
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Figure 2: The correlation coefficient ⇢12 between X1

and X2 and partial correlation coefficient ⇢13,2 between
X1 and X3 given X2 as functions of �, the ratio of the
standard deviation of measurement error to the that of
X̃2. We have assumed that the correlation coefficient
between X̃1 and X̃2 and that between X̃2 and X̃3 are
the same (denoted by ⇢̃), and that there is measurement
error only in X2.

3 Canonical Representation of Causal
Models with Measurement Error

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.

• Identifiability conditions derived based on the factor analysis 
model: the number of  non-leaf  nodes has to be small 

• Conditions improved if  measurement errors have the same 
variance 

• Heuristic correction method: use a small significance level 
when doing CI tests

p value

P(p value)

0 1
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Non-Gaussian Case: Thanks to Over-Complete ICA

• ANL is identifiable up to permutation and scaling of  columns under 
assumption (Eriksson and Koivunen, 2004): 

• In original LiNGAM, causal direction can be determined by testing 
independence between regression residual & predictors 

• We cannot estimate the noise terms because it is overcomplete 

• Ordered group decomposition is identifiable by analyzing ANL

Equation (3) can be rewritten as

X̃ = ANLẼNL +ALẼL = X̃⇤ +ALẼL
, (4)

where X̃⇤ , ANLẼNL, ANL and AL are n ⇥ (n � l)
and n ⇥ l matrices, respectively. Here both A

L and
ANL have specific structures. All entries of AL are 0
or 1; for each column of AL, there is only one non-zero
entry. In contrast, each column of ANL has at least
two non-zero entries, representing the influences from
the corresponding non-leaf noise term.

Further consider the generating process of observed
variables Xi. Combining (1) and (4) gives

X = X̃⇤ +ALẼL +E = ANLẼNL + (ALẼL +E)

= ANLẼNL +E⇤ (5)

=
⇥
ANL I

⇤
·
"

ẼNL

E⇤

#
, (6)

where E⇤ = ALẼL + E and I denotes the identity
matrix. To make it more explicit, we give how X

⇤
i and

E
⇤
i are related to the original CAMME process:

X̃
⇤
i =

(
X̃i, if X̃i is not a leaf node in G̃;

X̃i � Ẽi, otherwise;
, and

(7)

E
⇤
i =

(
Ei, if X̃i is not a leaf node in G̃;

Ei + Ẽi, otherwise.

Clearly E
⇤
i s are independent across i, and as we shall

see in Section 4, the information shared by difference
Xi is still captured by X̃⇤.
Proposition 1. For each CAMME specified by (2) and

(1), there always exists an observationally equivalent

representation in the form of (5) or (6),

The proof was actually given in the construction proce-
dure of the representation (5) or (6) from the original
CAMME. We call the representation (5) or (6) the
canonical representation of the underlying CAMME
(CR-CAMME).

Example Set 1 Consider the following example with
three observed variables Xi, i = 1, 2, 3, for which X̃1 !
X̃2  X̃3, with causal relations X̃2 = aX̃1 + bX̃3 + Ẽ2.
That is,

B =

2

4
0 0 0
a 0 b

0 0 0

3

5 ,

and according to (3),

A =

2

4
1 0 0
a 1 b

0 0 1

3

5 .

Therefore,

X = X̃+E = X̃⇤ +E⇤

=

2

4
1 0
a b

0 1

3

5 ·

Ẽ1

Ẽ3

�
+

2

4
E1

Ẽ2 + E2

E3

3

5

=

2

4
1 0 1 0 0
a b 0 1 0
0 1 0 0 1

3

5 ·

2

66664

Ẽ1

Ẽ3

E1

Ẽ2 + E2

E3

3

77775
.

In causal discovery from observations in the presence
of measurement error, we aim to recover information
of the measurement-error-free causal model G̃. Let us
define a new graphical model, G̃⇤. It is obtained by
replacing variables X̃i in G̃ with variables X̃⇤

i . In other
words, it has the same causal structure and causal
parameters (given by the B matrix) as G̃, but its nodes
correspond to variables X̃

⇤
i . If we manage to estimate

the structure of and involved causal parameters in
G̃

⇤, then G̃, the causal model of interest, is recovered.
Comparing with G̃, G̃

⇤ involves some deterministic
causal relations because each leaf node is a deterministic
function of its parents (the noise in leaf nodes has been
removed; see (7)). We defined the graphical model G̃⇤

because we cannot fully estimate the distribution of
measurement-error-free variables X̃, but might be able
to estimate that of X̃⇤, under proper assumptions.

In what follows, most of the time we assume

A0. The causal Markov condition holds for G̃ and the
distribution of X̃⇤

i is non-deterministically faithful

w.r.t. G̃
⇤, in the sense that if there exists S, a

subset of {X̃⇤
k : k 6= i, k 6= j}, such that neither

of X̃⇤
i and X̃

⇤
j is a deterministic function of S and

X̃
⇤
i ?? X̃

⇤
j |S holds, then X̃

⇤
i and X̃

⇤
j (or X̃i and

X̃j) are d-separated by S in G̃
⇤.

This non-deterministically faithfulness assumption ex-
cludes a particular type of parameter coupling in the
causal model for X̃i. in Figure 4 we give a causal
model in which the causal coefficients are carefully
chosen so that this assumption is violated: because
X̃

⇤
3 = aX̃

⇤
1 + bX̃

⇤
2 and X̃

⇤
4 = 2aX̃⇤

1 + 2bX̃⇤
2 + E

⇤
4 , we

have X̃
⇤
4 = 2X̃⇤

3 + E
⇤
4 , implying X̃

⇤
4 ?? X̃

⇤
1 | X̃⇤

3 and
X̃

⇤
4 ?? X̃

⇤
2 | X̃⇤

3 , which are not given by the causal
Markov condition on G̃. We note that this non-
deterministic faithfulness is defined for the distribution
of the constructed variables X̃

⇤
i , not the measurement-

error-free variables X̃i. (Bear in mind their relationship
given in (7).) This assumption is generally stronger
than the faithfulness assumption for the distribution of
X̃i. In particular, in the causal model given in Figure 4,

Factor analysis model: X = X⇤ +E⇤

= ANLẼNL +E⇤

In this paper, we aim to estimate the causal model
underlying the measurement-error-free variables X̃i

from their observed values Xi contaminated by random
measurement error. We assume linearity of the causal
model and causal sufficiency relative to {X̃i}ni=1. We
particularly focus on the case where the causal structure
for X̃i is represented by a Directed Acyclic Graph
(DAG), although this condition can be weakened. In
order to develop principled causal discovery methods
to recover the causal model for {X̃i}ni=1 from observed
values of {Xi}ni=1, we have to address theoretical issues
include

• whether the causal model of interest is completely
or partially identifiable from the contaminated
observations,

• what are the precise identifiability conditions, and

• what information in the measured data is essential
for estimating the identifiable causal knowledge.

We make an attempt to answer the above questions on
both theoretical and methodological sides.

One of the main difficulties in dealing with causal dis-
covery in the presence of measurement error is because
the variances of the measurement errors are unknown.
Otherwise, if they are known, one can readily calculate
the covariance matrix of the measurement-error-free
variables X̃i and apply traditional causal discovery
methods such as the PC (Spirtes et al., 2001) or
GES (Chickering, 2002)) algorithm. It is worth noting
that there exist causal discovery methods to deal with
confounders, i.e., hidden direct common causes, such
as the Fast Causal Inference (FCI) algorithm (Spirtes
et al., 2001). However, they cannot estimate the causal
structure over the latent variables, which is what we aim
to recover in this paper. (Silva et al., 2006) and (Kum-
merfeld et al.) have provided algorithms for recovering
latent variables and their causal relations when each
latent variable has multiple measured effects. Their
problem is different from the measurement error set-
ting we consider, where clustering for latent common
causes is not required and each measured variable is the
direct effect of a single "true" variable. Furthermore,
as shown in next section, their models can be seen as
special cases of our setting.

2 Effect of Measurement Error on
Conditional Independence /
Dependence

We use an example to demonstrate how measurement
error changes the (conditional) independence and de-
pendence relationships in the data. More precisely,

we will see how the (conditional) independence and
independence relations between the observed variables
Xi are different from those between the measurement-
error-free variables X̃i. Suppose we observe X1, X2,
and X3, which are generated from measurement-error-
free variables according to the structure given in Fig-
ure 1. Clearly X̃1 is dependent on X̃2, while X̃1 and
X̃3 are conditionally independent given X̃2. One may
consider general settings for the variances of the mea-
surement errors. For simplicity, here let us assume that
there is only measurement error in X2, i.e., X1 = X̃1,
X2 = X̃2 + E2, and X3 = X̃3.

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME to demonstrate the effect
of measurement error on conditional independence and
dependence relationships. For simplicity, we consider
the special case where there is measurement error only
in X2, i.e., X2 = X̃2 +E2, but X1 = X̃1 and X3 = X̃3.

Let ⇢̃12 be the correlation coefficient between X̃1 and
X̃2 and ⇢̃13,2 be the partial correlation coefficient be-
tween X̃1 and X̃3 given X̃2, which is zero. Let ⇢12

and ⇢13,2 be the corresponding correlation coefficient
and partial correlation coefficient in the presence of
measurement error. We also let ⇢̃12 = ⇢̃23 = ⇢̃ to make
the result simpler. So we have ⇢13 = ⇢̃13 = ⇢̃12⇢̃23 = ⇢̃

2.
Let � = Std(E2)

Std(X̃2)
. For the data with measurement error,
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As the variance of the measurement error in X2 in-
creases, � become larger, and ⇢12 decreases and finally
goes to zero; in contrast, ⇢13,2, which is zero for the
measurement-error-free variables, is increasing and fi-
nally converges to ⇢̃

2. See Figure 2 for an illustration.
In other words, in this example as the variance of the
measurement error in X2 increases, X1 and X2 be-
come more and more independent, while X1 and X3

are conditionally more and more dependent given X2.
However, for the measurement-error-free variables, X̃1
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ẼNL
2

In this paper, we aim to estimate the causal model
underlying the measurement-error-free variables X̃i

from their observed values Xi contaminated by random
measurement error. We assume linearity of the causal
model and causal sufficiency relative to {X̃i}ni=1. We
particularly focus on the case where the causal structure
for X̃i is represented by a Directed Acyclic Graph
(DAG), although this condition can be weakened. In
order to develop principled causal discovery methods
to recover the causal model for {X̃i}ni=1 from observed
values of {Xi}ni=1, we have to address theoretical issues
include

• whether the causal model of interest is completely
or partially identifiable from the contaminated
observations,

• what are the precise identifiability conditions, and

• what information in the measured data is essential
for estimating the identifiable causal knowledge.

We make an attempt to answer the above questions on
both theoretical and methodological sides.

One of the main difficulties in dealing with causal dis-
covery in the presence of measurement error is because
the variances of the measurement errors are unknown.
Otherwise, if they are known, one can readily calculate
the covariance matrix of the measurement-error-free
variables X̃i and apply traditional causal discovery
methods such as the PC (Spirtes et al., 2001) or
GES (Chickering, 2002)) algorithm. It is worth noting
that there exist causal discovery methods to deal with
confounders, i.e., hidden direct common causes, such
as the Fast Causal Inference (FCI) algorithm (Spirtes
et al., 2001). However, they cannot estimate the causal
structure over the latent variables, which is what we aim
to recover in this paper. (Silva et al., 2006) and (Kum-
merfeld et al.) have provided algorithms for recovering
latent variables and their causal relations when each
latent variable has multiple measured effects. Their
problem is different from the measurement error set-
ting we consider, where clustering for latent common
causes is not required and each measured variable is the
direct effect of a single "true" variable. Furthermore,
as shown in next section, their models can be seen as
special cases of our setting.

2 Effect of Measurement Error on
Conditional Independence /
Dependence

We use an example to demonstrate how measurement
error changes the (conditional) independence and de-
pendence relationships in the data. More precisely,

we will see how the (conditional) independence and
independence relations between the observed variables
Xi are different from those between the measurement-
error-free variables X̃i. Suppose we observe X1, X2,
and X3, which are generated from measurement-error-
free variables according to the structure given in Fig-
ure 1. Clearly X̃1 is dependent on X̃2, while X̃1 and
X̃3 are conditionally independent given X̃2. One may
consider general settings for the variances of the mea-
surement errors. For simplicity, here let us assume that
there is only measurement error in X2, i.e., X1 = X̃1,
X2 = X̃2 + E2, and X3 = X̃3.
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Figure 1: A linear CAMME to demonstrate the effect
of measurement error on conditional independence and
dependence relationships. For simplicity, we consider
the special case where there is measurement error only
in X2, i.e., X2 = X̃2 +E2, but X1 = X̃1 and X3 = X̃3.

Let ⇢̃12 be the correlation coefficient between X̃1 and
X̃2 and ⇢̃13,2 be the partial correlation coefficient be-
tween X̃1 and X̃3 given X̃2, which is zero. Let ⇢12

and ⇢13,2 be the corresponding correlation coefficient
and partial correlation coefficient in the presence of
measurement error. We also let ⇢̃12 = ⇢̃23 = ⇢̃ to make
the result simpler. So we have ⇢13 = ⇢̃13 = ⇢̃12⇢̃23 = ⇢̃
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As the variance of the measurement error in X2 in-
creases, � become larger, and ⇢12 decreases and finally
goes to zero; in contrast, ⇢13,2, which is zero for the
measurement-error-free variables, is increasing and fi-
nally converges to ⇢̃

2. See Figure 2 for an illustration.
In other words, in this example as the variance of the
measurement error in X2 increases, X1 and X2 be-
come more and more independent, while X1 and X3
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=Ẽ1 + E1

E⇤
3
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mental tool in data analysis. Accordingly, one can
study the identifiability for CAMME by making use
of the identifiability of FA, as reported by Zhang et al.
(2017). The identifiability of FA, however, replies heav-
ily on the assumption that there are a relatively large
number of leaf variables in the causal graph G̃ (Bekker
& ten Berge, 1997), which seems rather strong. More-
over, it has been shown that second-order statistics
usually is not informative enough to recover a unique
causal model (Spirtes et al., 2001). Interestingly, we
show that the identifiability results can greatly benefit
from the non-Gaussianity assumption on the data. In
this paper we make the following assumption on the
distribution of Ẽi:

A1. All Ẽi are non-Gaussian.

We note that under the above assumption, ANL in (8)
can be estimated up to the permutation and scaling
indeterminacies (including the sign indeterminacy) of
the columns, as given in the following lemma. This
can be achieved by using overcomplete Independent
Component Analysis (ICA) (Hyvärinen et al., 2001).
Lemma 1. Suppose assumption A1 holds. Given X
which is generated according to (8), ANL is identifiable
up to permutation and scaling of columns as the sample
size N ! 1.

Proof. This lemma is implied by Theorem 10.3.1 in
(Kagan et al., 1973) or Theorem 1 in (Eriksson &
Koivunen, 2004).

What information of the causal structure G̃ can we re-
cover? Can we apply existing methods for causal discov-
ery based on LiNGAM, such as ICA-LiNGAM (Shimizu
et al., 2006) and Direct-LiNGAM (Shimizu et al.,
2011b), to recover it? LiNGAM assumes that the
system is non-deterministic: each variable is generated
as a linear combination of its direct causes plus a non-
degenerate noise term. As a consequence, the linear
transformation from the vector of observed variables to
the vector of independent noise terms is a square ma-
trix; ICA-LiNGAM applies certain operations to this
matrix to find the causal model, and Direct-LiNGAM
estimates the causal ordering by enforcing the property
that the residual of regressing the effect on the root
cause is always independent from the root cause.

In our case, ANL, the essential part of the mixing
matrix in (8), is n ⇥ r, where r < n. In other words,
for some of the variables X̃

⇤
i , the causal relations are

deterministic. (In fact, if X̃k is a leaf node in G̃, X̃⇤
k is

a deterministic function of X̃k’s direct causes.) As a
consequence, unfortunately, the above causal analysis
methods based on LiNGAM, including ICA-LiNGAM

and Direct-LiNGAM, do not apply. We will see how to
recover information of G̃ by analyzing the estimated
ANL.

We will show that some group structure and the group-
wise causal ordering in G̃ can always be recovered.
Before presenting the results, let us define the follow-
ing ordered group decomposition according to causal
structure G̃.
Definition 2 (ordered group decomposition).
Consider the causal model G̃⇤. Decompose all involved
nodes into disjoint groups in the following way. First
put all leaf nodes which share the same direct-and-only-
direct cause in the same group; further incorporate the
corresponding direct-and-only-direct cause in the same
group. Here we say a node X̃

⇤
i is the “direct-and-only-

direct" cause of X̃⇤
j if and only if X̃⇤

i is a direct cause
of X̃⇤

j and there is no other directed path from X̃
⇤
i to

X̃
⇤
j . After forming all groups each of which involves at

least one leaf node, each of the remaining nodes forms a
separate group. Each node is guaranteed to be in
one and only one group. We call the set of all such
groups ordered according to the causal ordering
of the non-leaf nodes in DAG G̃

⇤ an ordered group
decomposition of G̃⇤, denoted by GG̃⇤ .

X̃1 X̃2 X̃3 X̃4

X̃5 X̃6 X̃7

X̃8
G̃A :

(a)

X̃1X̃2 X̃3

X̃4

G̃B :

(b)

X̃4X̃2 X̃5

X̃6

X̃1

X̃3

G̃C (solid lines as its edges):
G̃D (all lines as its edges):

(c)

X̃3X̃2 X̃6

X̃7

X̃8X̃1

X̃5

X̃4
G̃E :

(d)

Figure 5: A set of causal DAGs G̃ as illustrative exam-
ples. (a) DAG G̃A. (b) G̃B. (c) Two DAGs G̃C and
G̃D. (d) G̃E .

Example Set 2 As seen from the process of ordered
group decomposition, each non-leaf node is in one and
only one ordered group, and it is possible for multi-
ple leaf nodes to be in the same group. Therefore,
in total there are (n � l) ordered groups. For ex-
ample, for G̃A given in Figure 5(a), a corresponding
group structure for the corresponding G̃

⇤ is GG̃⇤
A

=

({X̃⇤
1} ! {X̃⇤

2 , X̃
⇤
5} ! {X̃⇤

3 , X̃
⇤
6} ! {X̃⇤

4 , X̃
⇤
7 , X̃

⇤
8}),

and for G̃B in Figure 5(b), there is only one group:

*



Ordered Group Decomposition is Identifiable

corrected identified. Furthermore, the whole graph of G̃

is identifiable up to its equivalence class if the following

assumption further holds:

A3. For each pair of leaf nodes X̃j and X̃k, there ex-

ists X̃p 2 PA(X̃j) and X̃q 2 PA(X̃k) that are

d-separated in G̃ by a variable set S1, which may

be the empty set. Moreover, for each leaf node X̃j

and each non-leaf node X̃i which are not adjacent,

there exists X̃r 2 PA(X̃j) which is d-separated

from X̃i in G̃ by a variable set S2, which may be

the empty set.

Example Set 2 and Discussion Suppose assump-
tion A0 holds.

• G̃A, given in Figure 6(a), follows assumptions A1
and A3. According to Proposition 5, the equiva-
lence class of this causal DAG can be asymptoti-
cally estimated from observations with measure-
ment error.

• Assumptions A0, A1, and A3 are sufficient condi-
tions for G̃ to be recovered up to its equivalence
class and, they, especially A3, may not be nec-
essary. For instance, consider the causal graph
G̃B given in Figure 6(b), for which assumption A3
does not hold. If assumption A2 holds, G̃B can
be uniquely estimated from contaminated data.
Other constraints may also guarantee the iden-
tifiability of the underlying graph. For example,
suppose all coefficients in the causal model are
smaller than one in absolute value, then G̃B can
also be uniquely estimated from noisy data. Re-
laxation of assumption A3 which still guarantees
that G̃ is identifiable up to its equivalence class is
a future line of research.

• The causal graphs G̃C and G̃D, shown in Fig-
ure 6(c), do not follow A1, so generally speaking,
they are not identifiable from contaminated obser-
vations with second-order statistics. This is also
the case for G̃E , shown in Figure 6(d).

5 Identifiability with Higher Order
Statistics

The method based on second-order statistics exploits
FA and deterministic causal discovery, both of which
are computationally relatively efficient. However, if
the number of leaf-nodes is so small that the condition
in Proposition 3 is violated (roughly speaking, usually
this does not happen when n is big, say, bigger than
50, but is likely to be the case when n is very small,

X̃1 X̃2 X̃3 X̃4

X̃5 X̃6 X̃7

X̃8
G̃A :

(a)

X̃1X̃2 X̃3

X̃4

G̃B :

(b)

X̃4X̃2 X̃5

X̃6

X̃1

X̃3

G̃C (solid lines as its edges):

G̃D (all lines as its edges):

(c)

X̃3X̃2 X̃6

X̃7

X̃8X̃1

X̃5

X̃4
G̃E :

(d)

Figure 6: (a) G̃A: a causal DAG G̃ which follows
assumptions A1 and A3. (b) G̃B : a DAG which follows
assumption A1, but not A3; however, the structure is
still identifiable if either assumption A2 holds or we
know that all causal coefficients are smaller than one
in absolute value. (c) Two DAGs that do not follow
assumption A1; G̃C has only the solid lines as its edges,
and G̃D also includes the dashed line. (d) G̃E : another
DAG that does not follow assumption A1.

say, smaller than 10), the underlying causal model is
not guaranteed to be identifiable from contaminated
observations. Another issue is that with second-order
statistics, the causal model for X̃ is usually not uniquely
identifiable; in the best case it can be recovered up to
its equivalence class (and leaf nodes). To tackle these
issues, below we show that we can benefit from higher-
order statistics of the noise terms.

In this section we further make the following assump-
tion on the distribution of Ẽi:

A4. All Ẽi are non-Gaussian.

We note that under the above assumption, ANL in (6)
can be estimated up to the permutation and scaling
indeterminacies (including the sign indeterminacy) of
the columns, as given in the following lemma.

Lemma 6. Suppose assumption A4 holds. Given X
which is generated according to (6), ANL

is identifiable

up to permutation and scaling of columns as the sample

size N ! 1.

Proof. This lemma is implied by Theorem 10.3.1 in
(Kagan et al., 1973) or Theorem 1 in (Eriksson &
Koivunen, 2004).

5.1 Non-Gaussian CAMME with the Same
Variance For Measurement Errors

We first note that under certain assumptions the un-
derlying graph G̃ is fully identifiable, as shown in the
following proposition.
Proposition 7. Suppose the assumptions in Corol-

lary 4 hold, and further suppose assumption A4 holds.

Then as N ! 1, the underlying causal graph G̃ is fully

identifiable from observed values of Xi.

5.2 Non-Gaussian CAMME: More General
Cases

In the general case, what information of the causal
structure G̃ can we recover? Can we apply exist-
ing methods for causal discovery based on LiNGAM,
such as ICA-LiNGAM (Shimizu et al., 2006) and
Direct-LiNGAM (Shimizu et al., 2011), to recover it?
LiNGAM assumes that the system is non-deterministic:
each variable is generated as a linear combination of its
direct causes plus a non-degenerate noise term. As a
consequence, the linear transformation from the vector
of observed variables to the vector of independent noise
terms is a square matrix; ICA-LiNGAM applies cer-
tain operations to this matrix to find the causal model,
and Direct-LiNGAM estimates the causal ordering by
enforcing the property that the residual of regressing
the effect on the root cause is always independent from
the root cause.

In our case, ANL, the essential part of the mixing
matrix in (6), is n ⇥ r, where r < n. In other words,
for some of the variables X̃

⇤
i , the causal relations are

deterministic. (In fact, if X̃k is a leaf node in G̃, X̃⇤
k is

a deterministic function of X̃k’s direct causes.) As a
consequence, unfortunately, the above causal analysis
methods based on LiNGAM, including ICA-LiNGAM
and Direct-LiNGAM, do not apply. We will see how to
recover information of G̃ by analyzing the estimated
ANL.

We will show that some group structure and the group-
wise causal ordering in G̃ can always be recovered.
Before presenting the results, let us define the follow-
ing recursive group decomposition according to causal
structure G̃.
Definition 8 (Recursive group decomposition).
Consider the causal model G̃

⇤
. Put all leaf nodes which

share the same direct-and-only-direct node in the same

group; further incorporate the corresponding direct-and-

only-direct node in the same group. Here we say a

node X̃
⇤
i is the “direct-and-only-direct" node of X̃

⇤
j if

and only if X̃
⇤
i is a direct cause of X̃

⇤
j and there is no

other directed path from X̃
⇤
i to X̃

⇤
j . For those nodes

which are not a direct-and-only-direct node of any leaf

node, each of them forms a separate group. We call the

set of all such groups ordered according to the causal

ordering of the non-leaf nodes in DAG G̃
⇤

a recursive

group decomposition of G̃
⇤
, denoted by GG̃⇤ .

Example Set 3 As seen from the process of recur-
sive group decomposition, each non-leaf node is in one
and only one recursive group, and it is possible for
multiple leaf nodes to be in the same group. There-
fore, in total there are (n � l) recursive groups. For
example, for G̃A given in Figure 6(a), a corresponding
group structure for the corresponding G̃

⇤ is GG̃⇤
A

=

({X̃⇤
1} ! {X̃⇤

2 , X̃
⇤
5} ! {X̃⇤

3 , X̃
⇤
6} ! {X̃⇤

4 , X̃
⇤
7 , X̃

⇤
8}),

and for G̃B in Figure 6(b), there is only one group:
GG̃⇤

B
= ({X̃⇤

1 , X̃
⇤
2 , X̃

⇤
3 , X̃

⇤
4}). For both G̃C and G̃D,

given in Figure 6(c), a recursive group decomposition
is ({X̃⇤

1} ! {X̃⇤
2 , X̃

⇤
3} ! {X̃⇤

4} ! {X̃⇤
5 , X̃

⇤
6}).

Note that the causal ordering and the recursive group
decomposition of given variables according to the graph-
ical model G̃

⇤ may not be unique. For instance, if
G̃

⇤ has only two variables X̃
⇤
1 and X̃

⇤
2 which are

not adjacent, both decompositions (X̃⇤
1 ! X̃

⇤
2 ) and

(X̃⇤
2 ! X̃

⇤
1 ) are correct. Consider G̃

⇤ over three vari-
ables, X̃⇤

1 , X̃
⇤
2 , X̃

⇤
3 , where X̃

⇤
1 and X̃

⇤
2 are not adjacent

and are both causes of X̃⇤
3 ; then both (X̃⇤

1 ! {X̃⇤
2 , X̃

⇤
3})

and (X̃⇤
2 ! {X̃⇤

1 , X̃
⇤
3}) are valid recursive group decom-

positions.

We first present a procedure to construct the recursive
group decomposition and the causal ordering among
the groups from the estimated ANL. We will further
show that the recovered recursive group decomposition
is always asymptotically correct under assumption A4.

5.2.1 Construction and Identifiability of
Recursive Group Decomposition

First of all, Lemma 7 tells us that ÂNL in (6) is identi-
fiable up to permutation and scaling columns. Let us
start with the asymptotic case, where the columns of
the estimated ANL from values of Xi are a permuted
and rescaled version of the columns of ANL. In what
follows the permutation and rescaling of the columns
of ANL does not change the result, so below we just
work with the true ANL, instead of its estimate.

X̃
⇤
i and X̃i follow the same causal DAG, G̃, and X̃

⇤
i are

causally sufficient, although some variables among them
(corresponding to leaf nodes in G̃

⇤) are determined by
their direct causes. Let us find the causal ordering
of X̃

⇤
i . If there are no deterministic relations and

the values of X̃
⇤
i are given, the causal ordering can

be estimated by recursively performing regression and
checking independence between the regression residual
and the predictor (Shimizu et al., 2011). Specifically,
if one regresses all the remaining variables on the root

Ordered group decomposition:
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Motivation & Objective

• In many cases the measured variables are not identical to the variables we intend
to measure because of measurement error. E.g., the measured brain signals may
contain error introduced by instruments; in social sciences many variables are not
directly measurable and one usually resorts to proxies.

•Measurement error in the observed values of the variables can greatly change the
output of various causal discovery methods.

•We aim to answer a fundamental question: Under what conditions, what in-
formation of the underlying “true” causal structure can be estimated from
observed values with measurement error?

Traditional Methods for Causal Discovery

Constraint-based causal discovery:

• (Conditional) independence constraints are often used.

•Rely on two assumptions: Causal Markov condition & Faithfulness assumption.

• Solution bounded by the (independence) equivalence class.

•Widely-used algorithms include PC and SGS [1]; two steps: adjacency search +
orientation determination (finding v-structures followed by orientation propagation)

Functional causal model-based causal discovery:

•A functional causal model represents the e↵ect (say, Y ) as a function of the cause
(say, X) and independent noise: Y = f (X, ✏), where ✏ ?? X .

•E.g., the linear, non-Gaussian cyclic model (LiNGAM).

• Identifiability: Under proper assumptions, the full causal structure is identifiable
because the independent noise condition is violated with wrong structures.

E↵ect of Measurement Error on Causal Discovery

•As an illustration, suppose the observed dataXi were
generated according this CAusal Model with Mea-
surement Error ( CAMME):

• ⇢̃12: correlation coe�cient between X̃1 and X̃2 (as-
suming ⇢̃12 = ⇢̃23 = ⇢̃); ⇢̃13,2: partial correlation
between X̃1 and X̃3 given X̃2, which is zero. How
are ⇢12 and ⇢13,2, the counterparts in the presence of
measurement error, sensitive to measurement error in
X2? (See Figure 2.)

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME.
For simplicity, we consider the
special case where there is
measurement error only in X2,
i.e., X2 = X̃2 +E2, but X1 =
X̃1 and X3 = X̃3.

•The regression residual from X2 to X1 is not independent from the predictor any
more because of the measurement error. (See Figure 3.)

0 2 4 6 8 10
� = S td(E 2)/S td(X̃2)

 

 

⇢ 12

⇢ 13,2

⇢̃ 2

⇢ 12

⇢ 13,2

⇢̃ 2

⇢̃

Figure 2: ⇢12 and ⇢13,2 as functions of the level of
the measurement error in X2.
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X 1

 

 Data points
Linear regression line

Figure 3: Scatter plot of X2 and X1, to illus-
trate how measurement error leads to depen-
dence between regression residual and contami-
nated cause.

Canonical Representation of CAMME

•Notation: observable variables Xi; measurement-error-free variables X̃i;
measurement-error-free causal model G̃ (a DAG over X̃i), with adjacency matrix
B.

•Causal relations X̃ = BX̃ + Ẽ implies X̃ = (I�B)�1| {z }
,A

Ẽ.

• Suppose there are l leaf nodes in G̃; the remaining (n� l) are non-leaf nodes. The
noise terms have distinct behaviors:

X̃ = A
NL
Ẽ

NL +A
L
Ẽ

L = X̃
⇤ +A

L
Ẽ

L
,

where all entries of AL are 0 or 1, and each column of it contains only one non-zero
entry. In contrast, each column of ANL has at least two non-zero entries.

•Observed variables X admit canonical representation of CAMME (CR-CAMME):

X = X̃
⇤ +A

L
Ẽ

L + E = A
NL
Ẽ

NL + (AL
Ẽ

L + E) = A
NL
Ẽ

NL + E
⇤ (1)

=
⇥
A

NL
I
⇤
·

2

4
Ẽ

NL

E
⇤

3

5 , (2)

where E⇤ = A
L
Ẽ

L + E. More explicitly, X̃⇤
i
are related to X̃i according to:

X̃
⇤
i
=

(
X̃i, if X̃i is not a leaf node in G̃;

X̃i � Ẽi, otherwise. (X̃⇤
i
deterministically depends on its parents!)

. (3)

Example: Suppose we have Xi, i = 1, 2, 3, for which X̃1 ! X̃2  X̃3, with causal relations

X̃2 = aX̃1 + bX̃3 + Ẽ2. That is, B =

2

4
0 0 0
a 0 b

0 0 0

3

5, A = (I�B)�1 =

2

4
1 0 0
a 1 b

0 0 1

3

5. Therefore,

X = X̃ + E = X̃
⇤ + E

⇤ =

2

4
1 0
a b

0 1

3

5 ·

Ẽ1
Ẽ3

�
+

2

4
E1

Ẽ2 + E2
E3

3

5 =

2

4
1 0 1 0 0
a b 0 1 0
0 1 0 0 1

3

5 ·

2

666664

Ẽ1
Ẽ3
E1

Ẽ2 + E2
E3

3

777775
.

Non-deterministic faithfulness assumption: We assume

A0. The causal Markov condition holds for
G̃ and the distribution of X̃

⇤
i

is non-
deterministically faithful w.r.t. G̃⇤, in the
sense that if there exists S, a subset of
{X̃⇤

k
: k 6= i, k 6= j}, such that neither

of X̃⇤
i
and X̃

⇤
j
is a deterministic function of

S and X̃
⇤
i
?? X̃

⇤
j
|S holds, then X̃

⇤
i
and X̃

⇤
j

(or X̃i and X̃j) are d-separated by S in G̃
⇤.

X̃4X̃2 X̃5X̃1

X̃3

2b dc

a b

2a

Figure 4: A0 is violated because of pa-
rameter coupling. Here X̃

⇤
4 ?? X̃

⇤
1 | X̃

⇤
3

and X̃
⇤
4 ?? X̃

⇤
2 | X̃

⇤
3 are not implied by

the causal Markov condition on G̃.

Identifiability Results of Factor Analysis and Overcomplete

Independent Component Analysis Underlying Our Results

•For the FA model (1), when # factors r <
2n+1�(8n+1)1/2

2 , the model is generically
globally identifiable, in the sense that the noise covariance matrix is identifiable.

•Assume A4 (All Ẽi are non-Gaussian). Given X generated according to overcom-
plete ICA model (2), ANL is identifiable up to permutation and scaling of columns
as the sample size N !1.

Summary of Identifiability Results for CAMME

Figure 5: Summary of the identifiability results (with second-order statistics or higher-order statistics).
Proposition # Assumptions What information of G̃ is identifiable?

Prop. 4 (G) A0, A1, and A2 up to the equivalence class; leaf nodes identifiable
Prop. 5 (G) A0, A1, and A3 up to the equivalence class

Prop. 7 (NG) A0, A1, A2, and A4 Fully identifiable

Prop. 10 (NG) A0 and A4
Recursive group decomposition (including causal
ordering between the groups)

Prop. 11 (NG) A0, A4, and A5 or A6 for
some leaf nodes in G̃

⇤ Recursive group decomposition; the leaf nodes

Prop. 12 (NG) A0, A4, and A7 for some leaf
nodes in G̃

⇤ Recursive group decomposition; the leaf nodes

Prop. 13 (NG) A0, A4, and A5 or A6 or A7
for each leaf node

Fully identifiable

Involved assumptions:

A1. The number of leaf variables l in G satisfies l

n
> c(n) , (8n+1)1/2�1

2n .

A2. The measurement errors Ei in all observed variables have the same variance.

A3. (A particular type of “sparsity”) For each pair of leaf nodes X̃j and X̃k, there exists X̃p 2 PA(X̃j)
and X̃q 2 PA(X̃k) that are d-separated in G̃ by a variable set S1 (may be the empty set). Moreover,
for each leaf node X̃j and each non-leaf node X̃i which are not adjacent, there exists X̃r 2 PA(X̃j)
which is d-separated from X̃i in G̃ by a variable set S2 (may be the empty set).

A4. All Ẽi are non-Gaussian.

A5. (A particular constraint on the structure) According to G̃⇤, leaf node O in the considered recursive
group, g(k), has a parent which is not a parent of the non-leaf node in g

(k).

A6. According to G̃
⇤, leaf nodes O and Q in the considered recursive group, g

(k), are non-
deterministically conditionally independent given some subset of the nodes in g

(1)
, g

(2)
, ..., g

(k).

A7. For leaf node U in g
(k), there exists at least one node causally following g

(k) that 1) is d-separated
from U by a subset of variables in g

(1)
, ..., g

(k�1)
, g

(k) which does not include all parents of U and
2) is a child of the non-leaf node in g

(k) .

Definition (Recursive group decomposition) Consider causal structure G̃⇤.

• Put all leaf nodes which share the same direct-and-only-direct node in the same group; further
incorporate the corresponding direct-and-only-direct node in the same group.

• For those nodes which are not a direct-and-only-direct node of any leaf node, each of them forms a
separate group.

We call the set of all such groups ordered according to the causal ordering of the non-leaf nodes in
DAG G̃

⇤ a recursive group decomposition of G̃⇤, denoted by G
G̃⇤
.

Examples of “Recursive group decomposition”:

• For G̃A given in Figure 6, a corresponding group structure for the corresponding G̃
⇤ is G

G̃⇤
A

=

({X̃⇤1}! {X̃⇤2 , X̃
⇤
5}! {X̃⇤3 , X̃

⇤
6}! {X̃⇤4 , X̃

⇤
7 , X̃

⇤
8})

• For G̃B in Figure 6, there is only one group: G
G̃⇤

B

= ({X̃⇤1 , X̃
⇤
2 , X̃

⇤
3 , X̃

⇤
4}), and a group decompo-

sition for both G̃C and G̃D: ({X̃⇤1}! {X̃⇤2 , X̃
⇤
3}! {X̃⇤4}! {X̃⇤5 , X̃

⇤
6}).

Examples to illustrate the identifiability conditions:

X̃1 X̃2 X̃3 X̃4

X̃5 X̃6 X̃7

X̃8
G̃A :

X̃1X̃2 X̃3

X̃4

G̃B :

X̃4X̃2 X̃5

X̃6

X̃1

X̃3

G̃C (solid lines as its edges):

G̃D (all lines as its edges):

(a) (b) (c)

Figure 6: (a) G̃A: a causal DAG G̃ which follows assumptions A1 and A3. (b) G̃B: a DAG which
follows assumption A1, but not A3, so it is generally non-identifiable; however, the structure is still
identifiable if either assumption A2 holds or we know that all causal coe�cients are smaller than one
in absolute value. (c) Two DAGs that do not follow assumption A1; G̃C has only the solid lines as
its edges, and G̃D also includes the dashed line. Generally speaking, they are not identifiable from
contaminated observations with second-order statistics.

Conclusion
- We provide a set of su�cient identifiability conditions for CAMME, under
which CAMME is partially or fully identifiable.
- Inspired methods for causal discovery in the presence of measure error.
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Motivation & Objective

• In many cases the measured variables are not identical to the variables we intend
to measure because of measurement error. E.g., the measured brain signals may
contain error introduced by instruments; in social sciences many variables are not
directly measurable and one usually resorts to proxies.

•Measurement error in the observed values of the variables can greatly change the
output of various causal discovery methods.

•We aim to answer a fundamental question: Under what conditions, what in-
formation of the underlying “true” causal structure can be estimated from
observed values with measurement error?

Traditional Methods for Causal Discovery

Constraint-based causal discovery:

• (Conditional) independence constraints are often used.

•Rely on two assumptions: Causal Markov condition & Faithfulness assumption.

• Solution bounded by the (independence) equivalence class.

•Widely-used algorithms include PC and SGS [1]; two steps: adjacency search +
orientation determination (finding v-structures followed by orientation propagation)

Functional causal model-based causal discovery:

•A functional causal model represents the e↵ect (say, Y ) as a function of the cause
(say, X) and independent noise: Y = f (X, ✏), where ✏ ?? X .

•E.g., the linear, non-Gaussian cyclic model (LiNGAM).

• Identifiability: Under proper assumptions, the full causal structure is identifiable
because the independent noise condition is violated with wrong structures.

E↵ect of Measurement Error on Causal Discovery

•As an illustration, suppose the observed dataXi were
generated according this CAusal Model with Mea-
surement Error ( CAMME):

• ⇢̃12: correlation coe�cient between X̃1 and X̃2 (as-
suming ⇢̃12 = ⇢̃23 = ⇢̃); ⇢̃13,2: partial correlation
between X̃1 and X̃3 given X̃2, which is zero. How
are ⇢12 and ⇢13,2, the counterparts in the presence of
measurement error, sensitive to measurement error in
X2? (See Figure 2.)

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME.
For simplicity, we consider the
special case where there is
measurement error only in X2,
i.e., X2 = X̃2 +E2, but X1 =
X̃1 and X3 = X̃3.

•The regression residual from X2 to X1 is not independent from the predictor any
more because of the measurement error. (See Figure 3.)
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Figure 2: ⇢12 and ⇢13,2 as functions of the level of
the measurement error in X2.

−5 0 5
−2.5

0

2.5

X2

X 1

 

 Data points
Linear regression line

Figure 3: Scatter plot of X2 and X1, to illus-
trate how measurement error leads to depen-
dence between regression residual and contami-
nated cause.

Canonical Representation of CAMME

•Notation: observable variables Xi; measurement-error-free variables X̃i;
measurement-error-free causal model G̃ (a DAG over X̃i), with adjacency matrix
B.

•Causal relations X̃ = BX̃ + Ẽ implies X̃ = (I�B)�1| {z }
,A

Ẽ.

• Suppose there are l leaf nodes in G̃; the remaining (n� l) are non-leaf nodes. The
noise terms have distinct behaviors:

X̃ = A
NL
Ẽ

NL +A
L
Ẽ

L = X̃
⇤ +A

L
Ẽ

L
,

where all entries of AL are 0 or 1, and each column of it contains only one non-zero
entry. In contrast, each column of ANL has at least two non-zero entries.

•Observed variables X admit canonical representation of CAMME (CR-CAMME):

X = X̃
⇤ +A

L
Ẽ

L + E = A
NL
Ẽ

NL + (AL
Ẽ

L + E) = A
NL
Ẽ

NL + E
⇤ (1)

=
⇥
A

NL
I
⇤
·

2

4
Ẽ

NL

E
⇤

3

5 , (2)

where E⇤ = A
L
Ẽ

L + E. More explicitly, X̃⇤
i
are related to X̃i according to:

X̃
⇤
i
=

(
X̃i, if X̃i is not a leaf node in G̃;

X̃i � Ẽi, otherwise. (X̃⇤
i
deterministically depends on its parents!)

. (3)

Example: Suppose we have Xi, i = 1, 2, 3, for which X̃1 ! X̃2  X̃3, with causal relations

X̃2 = aX̃1 + bX̃3 + Ẽ2. That is, B =

2

4
0 0 0
a 0 b

0 0 0

3

5, A = (I�B)�1 =

2

4
1 0 0
a 1 b

0 0 1

3

5. Therefore,

X = X̃ + E = X̃
⇤ + E

⇤ =

2

4
1 0
a b

0 1

3

5 ·

Ẽ1
Ẽ3

�
+

2

4
E1

Ẽ2 + E2
E3

3

5 =

2

4
1 0 1 0 0
a b 0 1 0
0 1 0 0 1

3

5 ·

2

666664

Ẽ1
Ẽ3
E1

Ẽ2 + E2
E3
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777775
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Non-deterministic faithfulness assumption: We assume

A0. The causal Markov condition holds for
G̃ and the distribution of X̃

⇤
i

is non-
deterministically faithful w.r.t. G̃⇤, in the
sense that if there exists S, a subset of
{X̃⇤

k
: k 6= i, k 6= j}, such that neither

of X̃⇤
i
and X̃

⇤
j
is a deterministic function of

S and X̃
⇤
i
?? X̃

⇤
j
|S holds, then X̃

⇤
i
and X̃

⇤
j

(or X̃i and X̃j) are d-separated by S in G̃
⇤.

X̃4X̃2 X̃5X̃1

X̃3

2b dc

a b

2a

Figure 4: A0 is violated because of pa-
rameter coupling. Here X̃

⇤
4 ?? X̃

⇤
1 | X̃

⇤
3

and X̃
⇤
4 ?? X̃

⇤
2 | X̃

⇤
3 are not implied by

the causal Markov condition on G̃.

Identifiability Results of Factor Analysis and Overcomplete

Independent Component Analysis Underlying Our Results

•For the FA model (1), when # factors r <
2n+1�(8n+1)1/2

2 , the model is generically
globally identifiable, in the sense that the noise covariance matrix is identifiable.

•Assume A4 (All Ẽi are non-Gaussian). Given X generated according to overcom-
plete ICA model (2), ANL is identifiable up to permutation and scaling of columns
as the sample size N !1.

Summary of Identifiability Results for CAMME

Figure 5: Summary of the identifiability results (with second-order statistics or higher-order statistics).
Proposition # Assumptions What information of G̃ is identifiable?

Prop. 4 (G) A0, A1, and A2 up to the equivalence class; leaf nodes identifiable
Prop. 5 (G) A0, A1, and A3 up to the equivalence class

Prop. 7 (NG) A0, A1, A2, and A4 Fully identifiable

Prop. 10 (NG) A0 and A4
Recursive group decomposition (including causal
ordering between the groups)

Prop. 11 (NG) A0, A4, and A5 or A6 for
some leaf nodes in G̃

⇤ Recursive group decomposition; the leaf nodes

Prop. 12 (NG) A0, A4, and A7 for some leaf
nodes in G̃

⇤ Recursive group decomposition; the leaf nodes

Prop. 13 (NG) A0, A4, and A5 or A6 or A7
for each leaf node

Fully identifiable

Involved assumptions:

A1. The number of leaf variables l in G satisfies l

n
> c(n) , (8n+1)1/2�1

2n .

A2. The measurement errors Ei in all observed variables have the same variance.

A3. (A particular type of “sparsity”) For each pair of leaf nodes X̃j and X̃k, there exists X̃p 2 PA(X̃j)
and X̃q 2 PA(X̃k) that are d-separated in G̃ by a variable set S1 (may be the empty set). Moreover,
for each leaf node X̃j and each non-leaf node X̃i which are not adjacent, there exists X̃r 2 PA(X̃j)
which is d-separated from X̃i in G̃ by a variable set S2 (may be the empty set).

A4. All Ẽi are non-Gaussian.

A5. (A particular constraint on the structure) According to G̃⇤, leaf node O in the considered recursive
group, g(k), has a parent which is not a parent of the non-leaf node in g

(k).

A6. According to G̃
⇤, leaf nodes O and Q in the considered recursive group, g

(k), are non-
deterministically conditionally independent given some subset of the nodes in g

(1)
, g

(2)
, ..., g

(k).

A7. For leaf node U in g
(k), there exists at least one node causally following g

(k) that 1) is d-separated
from U by a subset of variables in g

(1)
, ..., g

(k�1)
, g

(k) which does not include all parents of U and
2) is a child of the non-leaf node in g

(k) .

Definition (Recursive group decomposition) Consider causal structure G̃⇤.

• Put all leaf nodes which share the same direct-and-only-direct node in the same group; further
incorporate the corresponding direct-and-only-direct node in the same group.

• For those nodes which are not a direct-and-only-direct node of any leaf node, each of them forms a
separate group.

We call the set of all such groups ordered according to the causal ordering of the non-leaf nodes in
DAG G̃

⇤ a recursive group decomposition of G̃⇤, denoted by G
G̃⇤
.

Examples of “Recursive group decomposition”:

• For G̃A given in Figure 6, a corresponding group structure for the corresponding G̃
⇤ is G

G̃⇤
A

=

({X̃⇤1}! {X̃⇤2 , X̃
⇤
5}! {X̃⇤3 , X̃

⇤
6}! {X̃⇤4 , X̃

⇤
7 , X̃

⇤
8})

• For G̃B in Figure 6, there is only one group: G
G̃⇤

B

= ({X̃⇤1 , X̃
⇤
2 , X̃

⇤
3 , X̃

⇤
4}), and a group decompo-

sition for both G̃C and G̃D: ({X̃⇤1}! {X̃⇤2 , X̃
⇤
3}! {X̃⇤4}! {X̃⇤5 , X̃

⇤
6}).

Examples to illustrate the identifiability conditions:

X̃1 X̃2 X̃3 X̃4

X̃5 X̃6 X̃7

X̃8
G̃A :

X̃1X̃2 X̃3

X̃4

G̃B :

X̃4X̃2 X̃5

X̃6

X̃1

X̃3

G̃C (solid lines as its edges):

G̃D (all lines as its edges):

(a) (b) (c)

Figure 6: (a) G̃A: a causal DAG G̃ which follows assumptions A1 and A3. (b) G̃B: a DAG which
follows assumption A1, but not A3, so it is generally non-identifiable; however, the structure is still
identifiable if either assumption A2 holds or we know that all causal coe�cients are smaller than one
in absolute value. (c) Two DAGs that do not follow assumption A1; G̃C has only the solid lines as
its edges, and G̃D also includes the dashed line. Generally speaking, they are not identifiable from
contaminated observations with second-order statistics.

Conclusion
- We provide a set of su�cient identifiability conditions for CAMME, under
which CAMME is partially or fully identifiable.
- Inspired methods for causal discovery in the presence of measure error.
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Motivation & Objective

• In many cases the measured variables are not identical to the variables we intend
to measure because of measurement error. E.g., the measured brain signals may
contain error introduced by instruments; in social sciences many variables are not
directly measurable and one usually resorts to proxies.

•Measurement error in the observed values of the variables can greatly change the
output of various causal discovery methods.

•We aim to answer a fundamental question: Under what conditions, what in-
formation of the underlying “true” causal structure can be estimated from
observed values with measurement error?

Traditional Methods for Causal Discovery

Constraint-based causal discovery:

• (Conditional) independence constraints are often used.

•Rely on two assumptions: Causal Markov condition & Faithfulness assumption.

• Solution bounded by the (independence) equivalence class.

•Widely-used algorithms include PC and SGS [1]; two steps: adjacency search +
orientation determination (finding v-structures followed by orientation propagation)

Functional causal model-based causal discovery:

•A functional causal model represents the e↵ect (say, Y ) as a function of the cause
(say, X) and independent noise: Y = f (X, ✏), where ✏ ?? X .

•E.g., the linear, non-Gaussian cyclic model (LiNGAM).

• Identifiability: Under proper assumptions, the full causal structure is identifiable
because the independent noise condition is violated with wrong structures.

E↵ect of Measurement Error on Causal Discovery

•As an illustration, suppose the observed dataXi were
generated according this CAusal Model with Mea-
surement Error ( CAMME):

• ⇢̃12: correlation coe�cient between X̃1 and X̃2 (as-
suming ⇢̃12 = ⇢̃23 = ⇢̃); ⇢̃13,2: partial correlation
between X̃1 and X̃3 given X̃2, which is zero. How
are ⇢12 and ⇢13,2, the counterparts in the presence of
measurement error, sensitive to measurement error in
X2? (See Figure 2.)

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME.
For simplicity, we consider the
special case where there is
measurement error only in X2,
i.e., X2 = X̃2 +E2, but X1 =
X̃1 and X3 = X̃3.

•The regression residual from X2 to X1 is not independent from the predictor any
more because of the measurement error. (See Figure 3.)
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Figure 2: ⇢12 and ⇢13,2 as functions of the level of
the measurement error in X2.
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Figure 3: Scatter plot of X2 and X1, to illus-
trate how measurement error leads to depen-
dence between regression residual and contami-
nated cause.

Canonical Representation of CAMME

•Notation: observable variables Xi; measurement-error-free variables X̃i;
measurement-error-free causal model G̃ (a DAG over X̃i), with adjacency matrix
B.

•Causal relations X̃ = BX̃ + Ẽ implies X̃ = (I�B)�1| {z }
,A

Ẽ.

• Suppose there are l leaf nodes in G̃; the remaining (n� l) are non-leaf nodes. The
noise terms have distinct behaviors:

X̃ = A
NL
Ẽ

NL +A
L
Ẽ

L = X̃
⇤ +A

L
Ẽ

L
,

where all entries of AL are 0 or 1, and each column of it contains only one non-zero
entry. In contrast, each column of ANL has at least two non-zero entries.

•Observed variables X admit canonical representation of CAMME (CR-CAMME):

X = X̃
⇤ +A

L
Ẽ

L + E = A
NL
Ẽ

NL + (AL
Ẽ

L + E) = A
NL
Ẽ

NL + E
⇤ (1)

=
⇥
A

NL
I
⇤
·

2

4
Ẽ

NL

E
⇤

3

5 , (2)

where E⇤ = A
L
Ẽ

L + E. More explicitly, X̃⇤
i
are related to X̃i according to:

X̃
⇤
i
=

(
X̃i, if X̃i is not a leaf node in G̃;

X̃i � Ẽi, otherwise. (X̃⇤
i
deterministically depends on its parents!)

. (3)

Example: Suppose we have Xi, i = 1, 2, 3, for which X̃1 ! X̃2  X̃3, with causal relations

X̃2 = aX̃1 + bX̃3 + Ẽ2. That is, B =

2

4
0 0 0
a 0 b

0 0 0

3

5, A = (I�B)�1 =

2

4
1 0 0
a 1 b

0 0 1

3

5. Therefore,

X = X̃ + E = X̃
⇤ + E

⇤ =

2

4
1 0
a b

0 1

3

5 ·

Ẽ1
Ẽ3

�
+

2

4
E1

Ẽ2 + E2
E3

3

5 =
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a b 0 1 0
0 1 0 0 1
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5 ·

2

666664

Ẽ1
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Non-deterministic faithfulness assumption: We assume

A0. The causal Markov condition holds for
G̃ and the distribution of X̃

⇤
i

is non-
deterministically faithful w.r.t. G̃⇤, in the
sense that if there exists S, a subset of
{X̃⇤

k
: k 6= i, k 6= j}, such that neither

of X̃⇤
i
and X̃

⇤
j
is a deterministic function of

S and X̃
⇤
i
?? X̃

⇤
j
|S holds, then X̃

⇤
i
and X̃

⇤
j

(or X̃i and X̃j) are d-separated by S in G̃
⇤.
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X̃3

2b dc

a b

2a

Figure 4: A0 is violated because of pa-
rameter coupling. Here X̃

⇤
4 ?? X̃

⇤
1 | X̃

⇤
3

and X̃
⇤
4 ?? X̃

⇤
2 | X̃

⇤
3 are not implied by

the causal Markov condition on G̃.

Identifiability Results of Factor Analysis and Overcomplete

Independent Component Analysis Underlying Our Results

•For the FA model (1), when # factors r <
2n+1�(8n+1)1/2

2 , the model is generically
globally identifiable, in the sense that the noise covariance matrix is identifiable.

•Assume A4 (All Ẽi are non-Gaussian). Given X generated according to overcom-
plete ICA model (2), ANL is identifiable up to permutation and scaling of columns
as the sample size N !1.

Summary of Identifiability Results for CAMME

Figure 5: Summary of the identifiability results (with second-order statistics or higher-order statistics).
Proposition # Assumptions What information of G̃ is identifiable?

Prop. 4 (G) A0, A1, and A2 up to the equivalence class; leaf nodes identifiable
Prop. 5 (G) A0, A1, and A3 up to the equivalence class

Prop. 7 (NG) A0, A1, A2, and A4 Fully identifiable

Prop. 10 (NG) A0 and A4
Recursive group decomposition (including causal
ordering between the groups)

Prop. 11 (NG) A0, A4, and A5 or A6 for
some leaf nodes in G̃

⇤ Recursive group decomposition; the leaf nodes

Prop. 12 (NG) A0, A4, and A7 for some leaf
nodes in G̃

⇤ Recursive group decomposition; the leaf nodes

Prop. 13 (NG) A0, A4, and A5 or A6 or A7
for each leaf node

Fully identifiable

Involved assumptions:

A1. The number of leaf variables l in G satisfies l

n
> c(n) , (8n+1)1/2�1

2n .

A2. The measurement errors Ei in all observed variables have the same variance.

A3. (A particular type of “sparsity”) For each pair of leaf nodes X̃j and X̃k, there exists X̃p 2 PA(X̃j)
and X̃q 2 PA(X̃k) that are d-separated in G̃ by a variable set S1 (may be the empty set). Moreover,
for each leaf node X̃j and each non-leaf node X̃i which are not adjacent, there exists X̃r 2 PA(X̃j)
which is d-separated from X̃i in G̃ by a variable set S2 (may be the empty set).

A4. All Ẽi are non-Gaussian.

A5. (A particular constraint on the structure) According to G̃⇤, leaf node O in the considered recursive
group, g(k), has a parent which is not a parent of the non-leaf node in g

(k).

A6. According to G̃
⇤, leaf nodes O and Q in the considered recursive group, g

(k), are non-
deterministically conditionally independent given some subset of the nodes in g

(1)
, g

(2)
, ..., g

(k).

A7. For leaf node U in g
(k), there exists at least one node causally following g

(k) that 1) is d-separated
from U by a subset of variables in g

(1)
, ..., g

(k�1)
, g

(k) which does not include all parents of U and
2) is a child of the non-leaf node in g

(k) .

Definition (Recursive group decomposition) Consider causal structure G̃⇤.

• Put all leaf nodes which share the same direct-and-only-direct node in the same group; further
incorporate the corresponding direct-and-only-direct node in the same group.

• For those nodes which are not a direct-and-only-direct node of any leaf node, each of them forms a
separate group.

We call the set of all such groups ordered according to the causal ordering of the non-leaf nodes in
DAG G̃

⇤ a recursive group decomposition of G̃⇤, denoted by G
G̃⇤
.

Examples of “Recursive group decomposition”:

• For G̃A given in Figure 6, a corresponding group structure for the corresponding G̃
⇤ is G

G̃⇤
A

=

({X̃⇤1}! {X̃⇤2 , X̃
⇤
5}! {X̃⇤3 , X̃

⇤
6}! {X̃⇤4 , X̃

⇤
7 , X̃

⇤
8})

• For G̃B in Figure 6, there is only one group: G
G̃⇤

B

= ({X̃⇤1 , X̃
⇤
2 , X̃

⇤
3 , X̃

⇤
4}), and a group decompo-

sition for both G̃C and G̃D: ({X̃⇤1}! {X̃⇤2 , X̃
⇤
3}! {X̃⇤4}! {X̃⇤5 , X̃

⇤
6}).

Examples to illustrate the identifiability conditions:

X̃1 X̃2 X̃3 X̃4

X̃5 X̃6 X̃7

X̃8
G̃A :

X̃1X̃2 X̃3

X̃4

G̃B :

X̃4X̃2 X̃5

X̃6

X̃1

X̃3

G̃C (solid lines as its edges):

G̃D (all lines as its edges):

(a) (b) (c)

Figure 6: (a) G̃A: a causal DAG G̃ which follows assumptions A1 and A3. (b) G̃B: a DAG which
follows assumption A1, but not A3, so it is generally non-identifiable; however, the structure is still
identifiable if either assumption A2 holds or we know that all causal coe�cients are smaller than one
in absolute value. (c) Two DAGs that do not follow assumption A1; G̃C has only the solid lines as
its edges, and G̃D also includes the dashed line. Generally speaking, they are not identifiable from
contaminated observations with second-order statistics.

Conclusion
- We provide a set of su�cient identifiability conditions for CAMME, under
which CAMME is partially or fully identifiable.
- Inspired methods for causal discovery in the presence of measure error.

Causal Discovery in the Presence of Measurement Error: Identifiability Conditions

Kun Zhang⇤, Mingming Gong⇤], Joseph Ramsey⇤, Kayhan Batmanghelich], Peter Spirtes⇤, Clark Glymour⇤

⇤ Dept. philosophy, Carnegie Mellon University ‡ Department of Biomedical Informatics, University of Pittsburgh

Motivation & Objective

• In many cases the measured variables are not identical to the variables we intend
to measure because of measurement error. E.g., the measured brain signals may
contain error introduced by instruments; in social sciences many variables are not
directly measurable and one usually resorts to proxies.

•Measurement error in the observed values of the variables can greatly change the
output of various causal discovery methods.

•We aim to answer a fundamental question: Under what conditions, what in-
formation of the underlying “true” causal structure can be estimated from
observed values with measurement error?

Traditional Methods for Causal Discovery

Constraint-based causal discovery:

• (Conditional) independence constraints are often used.

•Rely on two assumptions: Causal Markov condition & Faithfulness assumption.

• Solution bounded by the (independence) equivalence class.

•Widely-used algorithms include PC and SGS [1]; two steps: adjacency search +
orientation determination (finding v-structures followed by orientation propagation)

Functional causal model-based causal discovery:

•A functional causal model represents the e↵ect (say, Y ) as a function of the cause
(say, X) and independent noise: Y = f (X, ✏), where ✏ ?? X .

•E.g., the linear, non-Gaussian cyclic model (LiNGAM).

• Identifiability: Under proper assumptions, the full causal structure is identifiable
because the independent noise condition is violated with wrong structures.

E↵ect of Measurement Error on Causal Discovery

•As an illustration, suppose the observed dataXi were
generated according this CAusal Model with Mea-
surement Error ( CAMME):

• ⇢̃12: correlation coe�cient between X̃1 and X̃2 (as-
suming ⇢̃12 = ⇢̃23 = ⇢̃); ⇢̃13,2: partial correlation
between X̃1 and X̃3 given X̃2, which is zero. How
are ⇢12 and ⇢13,2, the counterparts in the presence of
measurement error, sensitive to measurement error in
X2? (See Figure 2.)

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME.
For simplicity, we consider the
special case where there is
measurement error only in X2,
i.e., X2 = X̃2 +E2, but X1 =
X̃1 and X3 = X̃3.

•The regression residual from X2 to X1 is not independent from the predictor any
more because of the measurement error. (See Figure 3.)
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Figure 2: ⇢12 and ⇢13,2 as functions of the level of
the measurement error in X2.
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Figure 3: Scatter plot of X2 and X1, to illus-
trate how measurement error leads to depen-
dence between regression residual and contami-
nated cause.

Canonical Representation of CAMME

•Notation: observable variables Xi; measurement-error-free variables X̃i;
measurement-error-free causal model G̃ (a DAG over X̃i), with adjacency matrix
B.

•Causal relations X̃ = BX̃ + Ẽ implies X̃ = (I�B)�1| {z }
,A

Ẽ.

• Suppose there are l leaf nodes in G̃; the remaining (n� l) are non-leaf nodes. The
noise terms have distinct behaviors:

X̃ = A
NL
Ẽ

NL +A
L
Ẽ

L = X̃
⇤ +A

L
Ẽ

L
,

where all entries of AL are 0 or 1, and each column of it contains only one non-zero
entry. In contrast, each column of ANL has at least two non-zero entries.

•Observed variables X admit canonical representation of CAMME (CR-CAMME):

X = X̃
⇤ +A

L
Ẽ

L + E = A
NL
Ẽ

NL + (AL
Ẽ

L + E) = A
NL
Ẽ

NL + E
⇤ (1)

=
⇥
A

NL
I
⇤
·

2

4
Ẽ

NL

E
⇤

3

5 , (2)

where E⇤ = A
L
Ẽ

L + E. More explicitly, X̃⇤
i
are related to X̃i according to:

X̃
⇤
i
=

(
X̃i, if X̃i is not a leaf node in G̃;

X̃i � Ẽi, otherwise. (X̃⇤
i
deterministically depends on its parents!)

. (3)

Example: Suppose we have Xi, i = 1, 2, 3, for which X̃1 ! X̃2  X̃3, with causal relations

X̃2 = aX̃1 + bX̃3 + Ẽ2. That is, B =

2

4
0 0 0
a 0 b

0 0 0

3

5, A = (I�B)�1 =

2

4
1 0 0
a 1 b

0 0 1

3

5. Therefore,

X = X̃ + E = X̃
⇤ + E

⇤ =

2

4
1 0
a b

0 1

3

5 ·

Ẽ1
Ẽ3

�
+

2

4
E1

Ẽ2 + E2
E3

3

5 =

2

4
1 0 1 0 0
a b 0 1 0
0 1 0 0 1

3

5 ·

2

666664

Ẽ1
Ẽ3
E1

Ẽ2 + E2
E3

3

777775
.

Non-deterministic faithfulness assumption: We assume

A0. The causal Markov condition holds for
G̃ and the distribution of X̃

⇤
i

is non-
deterministically faithful w.r.t. G̃⇤, in the
sense that if there exists S, a subset of
{X̃⇤

k
: k 6= i, k 6= j}, such that neither

of X̃⇤
i
and X̃

⇤
j
is a deterministic function of

S and X̃
⇤
i
?? X̃

⇤
j
|S holds, then X̃

⇤
i
and X̃

⇤
j

(or X̃i and X̃j) are d-separated by S in G̃
⇤.

X̃4X̃2 X̃5X̃1

X̃3

2b dc

a b

2a

Figure 4: A0 is violated because of pa-
rameter coupling. Here X̃

⇤
4 ?? X̃

⇤
1 | X̃

⇤
3

and X̃
⇤
4 ?? X̃

⇤
2 | X̃

⇤
3 are not implied by

the causal Markov condition on G̃.

Identifiability Results of Factor Analysis and Overcomplete

Independent Component Analysis Underlying Our Results

•For the FA model (1), when # factors r <
2n+1�(8n+1)1/2

2 , the model is generically
globally identifiable, in the sense that the noise covariance matrix is identifiable.

•Assume A4 (All Ẽi are non-Gaussian). Given X generated according to overcom-
plete ICA model (2), ANL is identifiable up to permutation and scaling of columns
as the sample size N !1.

Summary of Identifiability Results for CAMME

Figure 5: Summary of the identifiability results (with second-order statistics or higher-order statistics).
Proposition # Assumptions What information of G̃ is identifiable?

Prop. 4 (G) A0, A1, and A2 up to the equivalence class; leaf nodes identifiable
Prop. 5 (G) A0, A1, and A3 up to the equivalence class

Prop. 7 (NG) A0, A1, A2, and A4 Fully identifiable

Prop. 10 (NG) A0 and A4
Recursive group decomposition (including causal
ordering between the groups)

Prop. 11 (NG) A0, A4, and A5 or A6 for
some leaf nodes in G̃

⇤ Recursive group decomposition; the leaf nodes

Prop. 12 (NG) A0, A4, and A7 for some leaf
nodes in G̃

⇤ Recursive group decomposition; the leaf nodes

Prop. 13 (NG) A0, A4, and A5 or A6 or A7
for each leaf node

Fully identifiable

Involved assumptions:

A1. The number of leaf variables l in G satisfies l

n
> c(n) , (8n+1)1/2�1

2n .

A2. The measurement errors Ei in all observed variables have the same variance.

A3. (A particular type of “sparsity”) For each pair of leaf nodes X̃j and X̃k, there exists X̃p 2 PA(X̃j)
and X̃q 2 PA(X̃k) that are d-separated in G̃ by a variable set S1 (may be the empty set). Moreover,
for each leaf node X̃j and each non-leaf node X̃i which are not adjacent, there exists X̃r 2 PA(X̃j)
which is d-separated from X̃i in G̃ by a variable set S2 (may be the empty set).

A4. All Ẽi are non-Gaussian.

A5. (A particular constraint on the structure) According to G̃⇤, leaf node O in the considered recursive
group, g(k), has a parent which is not a parent of the non-leaf node in g

(k).

A6. According to G̃
⇤, leaf nodes O and Q in the considered recursive group, g

(k), are non-
deterministically conditionally independent given some subset of the nodes in g

(1)
, g

(2)
, ..., g

(k).

A7. For leaf node U in g
(k), there exists at least one node causally following g

(k) that 1) is d-separated
from U by a subset of variables in g

(1)
, ..., g

(k�1)
, g

(k) which does not include all parents of U and
2) is a child of the non-leaf node in g

(k) .

Definition (Recursive group decomposition) Consider causal structure G̃⇤.

• Put all leaf nodes which share the same direct-and-only-direct node in the same group; further
incorporate the corresponding direct-and-only-direct node in the same group.

• For those nodes which are not a direct-and-only-direct node of any leaf node, each of them forms a
separate group.

We call the set of all such groups ordered according to the causal ordering of the non-leaf nodes in
DAG G̃

⇤ a recursive group decomposition of G̃⇤, denoted by G
G̃⇤
.

Examples of “Recursive group decomposition”:

• For G̃A given in Figure 6, a corresponding group structure for the corresponding G̃
⇤ is G

G̃⇤
A

=

({X̃⇤1}! {X̃⇤2 , X̃
⇤
5}! {X̃⇤3 , X̃

⇤
6}! {X̃⇤4 , X̃

⇤
7 , X̃

⇤
8})

• For G̃B in Figure 6, there is only one group: G
G̃⇤

B

= ({X̃⇤1 , X̃
⇤
2 , X̃

⇤
3 , X̃

⇤
4}), and a group decompo-

sition for both G̃C and G̃D: ({X̃⇤1}! {X̃⇤2 , X̃
⇤
3}! {X̃⇤4}! {X̃⇤5 , X̃

⇤
6}).

Examples to illustrate the identifiability conditions:

X̃1 X̃2 X̃3 X̃4

X̃5 X̃6 X̃7

X̃8
G̃A :

X̃1X̃2 X̃3

X̃4

G̃B :

X̃4X̃2 X̃5

X̃6

X̃1

X̃3

G̃C (solid lines as its edges):

G̃D (all lines as its edges):

(a) (b) (c)

Figure 6: (a) G̃A: a causal DAG G̃ which follows assumptions A1 and A3. (b) G̃B: a DAG which
follows assumption A1, but not A3, so it is generally non-identifiable; however, the structure is still
identifiable if either assumption A2 holds or we know that all causal coe�cients are smaller than one
in absolute value. (c) Two DAGs that do not follow assumption A1; G̃C has only the solid lines as
its edges, and G̃D also includes the dashed line. Generally speaking, they are not identifiable from
contaminated observations with second-order statistics.

Conclusion
- We provide a set of su�cient identifiability conditions for CAMME, under
which CAMME is partially or fully identifiable.
- Inspired methods for causal discovery in the presence of measure error.

• Decompose all nodes in     into disjoint groups  

• Each group contains a single non-leaf  node + its “direct-
and-only-direct” effect leaf  nodes 

• Causal ordering of  such groups is identifiable

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.
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Figure 2: The correlation coefficient ⇢12 between X1

and X2 and partial correlation coefficient ⇢13,2 between
X1 and X3 given X2 as functions of �, the ratio of the
standard deviation of measurement error to the that of
X̃2. We have assumed that the correlation coefficient
between X̃1 and X̃2 and that between X̃2 and X̃3 are
the same (denoted by ⇢̃), and that there is measurement
error only in X2.

3 Canonical Representation of Causal
Models with Measurement Error

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be

−5 0 5
−2.5

0

2.5

X2

X
1

 

 Data points
Linear regression line

(a)

−4 −2 0 2 4

−2

0

2

X2

R
es

id
ua

l o
f r

eg
re

ss
in

g 
X

1 o
n 

X
2

(b)

Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.



Simulation

• Development of  statistically efficient estimation procedures is 
non-trivial 

• Data were generated by the underlying true graph + 
measurement errors with different variances

Causal Discovery in the Presence of Measurement Error: Identifiability Conditions
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Motivation & Objective

•Measurement error is ubiquitous due to imperfect data collection methodology.
E.g., the measured brain signals may contain error introduced by instruments; in
social sciences many variables are not directly measurable and one usually resorts
to proxies.

•Measurement error in the observed values of the variables can greatly change the
output of various causal discovery methods.

•A fundamental question: Under what conditions, what information of the un-
derlying “true” causal structure can be estimated from observed values with
measurement error?

Traditional Methods for Causal Discovery

Constraint-based causal discovery:

•Two assumptions: Causal Markov condition & Faithfulness assumption.

• (Conditional) independence constraint-based search.

• Solution bounded by the (independence) equivalence class.

•PC and SGS algorithms [1]; two steps: adjacency search + orientation determina-
tion (finding v-structures followed by orientation propagation)

Functional causal model-based causal discovery:

•A functional causal model represents the e↵ect (Y ) as a function of the cause (X)
and independent noise: Y = f (X, ✏), where ✏ ?? X . E.g., the linear, non-Gaussian
cyclic model (LiNGAM).

• Identifiability: Under proper assumptions, the full causal structure is identifiable
because the independent noise condition is violated with wrong structures.

E↵ect of Measurement Error on Causal Discovery

• Suppose the observed dataXi were generated accord-
ing this CAusal Model with Measurement Error (
CAMME): Xi = X̃i + Ei.

• – ⇢̃12: correlation between X̃1 and X̃2 (⇢̃12 = ⇢̃23 = ⇢̃).

– ⇢̃13,2: partial correlation between X̃1 and X̃3 given
X̃2, which is zero.

– ⇢12 and ⇢13,2: the counterparts in the presence of
measurement error. (Figure 2)

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME.
X2 = X̃2 + E2, but X1 = X̃1
and X3 = X̃3.

•The regression residual from X2 to X1 is not independent from the predictor any
more because of the measurement error. (Figure 3)
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Figure 2: ⇢12 and ⇢13,2 as functions of the level of
the measurement error in X2.
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Figure 3: Scatter plot of X2 and X1, to illus-
trate how measurement error leads to depen-
dence between regression residual and contami-
nated cause.

Canonical Representation of CAMME

•Measurement-error-free causal model G̃ over X̃i, with adjacency matrix B.

•Causal relations X̃ = BX̃ + Ẽ implies X̃ = (I�B)�1| {z }
,A

Ẽ.

• Separate leaf and non-leaf nodes:

X̃ = A
NL
Ẽ

NL +A
L
Ẽ

L = X̃
⇤ +A

L
Ẽ

L,

where all entries of AL are 0 or 1, and each column of it contains only one non-zero
entry. In contrast, each column of ANL has at least two non-zero entries.

•Observed variables X admit canonical representation of CAMME (CR-CAMME):

X = X̃ + E = X̃
⇤ + E

⇤ = A
NL
Ẽ

NL + (AL
Ẽ

L + E) (1)

X̃⇤i are related to X̃i according to:

X̃⇤i =

(
X̃i, if X̃i is not a leaf node in G̃;

X̃i � Ẽi, otherwise. (X̃⇤i deterministically depends on its parents!)
. (2)

Example: Suppose we have Xi, i = 1, 2, 3, for which X̃1 ! X̃2  X̃3, with causal relations

X̃2 = aX̃1 + bX̃3 + Ẽ2. That is, B =

2

4
0 0 0
a 0 b
0 0 0

3

5, A = (I�B)�1 =

2

4
1 0 0
a 1 b
0 0 1

3

5. Therefore,

X = X̃ + E = X̃
⇤ + E

⇤ =

2

4
1 0
a b
0 1

3

5 ·

Ẽ1
Ẽ3

�
+

2

4
E1

Ẽ2 + E2
E3

3

5 =

2

4
1 0 1 0 0
a b 0 1 0
0 1 0 0 1

3

5 ·

2

666664

Ẽ1
Ẽ3
E1

Ẽ2 + E2
E3

3

777775
.

Non-deterministic faithfulness assumption:

A0. The causal Markov condition holds for
G̃ and the distribution of X̃⇤i is non-
deterministically faithful w.r.t. G̃⇤, in the
sense that if there exists S, a subset of
{X̃⇤k : k 6= i, k 6= j}, such that neither
of X̃⇤i and X̃⇤j is a deterministic function of

S and X̃⇤i ?? X̃⇤j |S holds, then X̃⇤i and X̃⇤j
(or X̃i and X̃j) are d-separated by S in G̃⇤.

X̃4X̃2 X̃5X̃1

X̃3

2b dc

a b

2a

Figure 4: A0 is violated because of pa-
rameter coupling. Here X̃⇤4 ?? X̃⇤1 | X̃

⇤
3

and X̃⇤4 ?? X̃⇤2 | X̃
⇤
3 are not implied by

the causal Markov condition on G̃.

Identifiability in the Linear, Non-Gaussian Case

A1. All Ẽi are non-Gaussian.

Lemma 1 Suppose assumption A1 holds. Given X which is generated according
to (1), A

NL is identifiable up to permutation and scaling of columns as the
sample size N !1.

Definition (Ordered group decomposition) Consider causal structure G̃⇤.
• Put all leaf nodes which share the same direct-and-only-direct cause in the same group; further
incorporate the corresponding direct-and-only-direct cause in the same group.

• For those nodes which are not a direct-and-only-direct cause of any leaf node, each of them forms
a separate group.

Such groups ordered according to the causal ordering of the non-leaf nodes in DAG
G̃⇤ is called an ordered group decomposition of G̃⇤, denoted by GG̃⇤.

Examples of “Ordered group decomposition”:

• For G̃A given in Figure 5, a corresponding group structure for the corresponding G̃⇤ is GG̃⇤A =

({X̃⇤1}! {X̃⇤2 , X̃
⇤
5}! {X̃⇤3 , X̃

⇤
6}! {X̃⇤4 , X̃

⇤
7 , X̃

⇤
8})

• For G̃B in Figure 5, there is only one group: GG̃⇤B = ({X̃⇤1 , X̃
⇤
2 , X̃

⇤
3 , X̃

⇤
4}), and a group decompo-

sition for both G̃⇤C and G̃⇤D: ({X̃
⇤
1}! {X̃⇤2 , X̃

⇤
3}! {X̃⇤4}! {X̃⇤5 , X̃

⇤
6}).

X̃1 X̃2 X̃3 X̃4

X̃5 X̃6 X̃7

X̃8
G̃A :

X̃1X̃2 X̃3

X̃4

G̃B :

X̃4X̃2 X̃5

X̃6

X̃1

X̃3

G̃C (solid lines as its edges):

G̃D (all lines as its edges):

(a) (b) (c)

Figure 5: (a) DAG G̃A. (b) G̃B. (c) Two DAGs G̃C and G̃D.

Identifiability of ordered Group Decomposition

•Recursively perform regression and check independence between the residual and the predictor

• The values of X̃⇤ is unknown. Test for independence between regression residuals and the predictor
by making use of ANL. The regression residual of X̃⇤i on X̃⇤j can be written as

Rj i =
�
A

NL
j· �A

NL
j· A

NL|
i· A

NL
i· /||ANL

i· ||2
�

| {z }
,↵j i

Ẽ
NL. (3)

Proposition 2 Suppose assumption A1 holds. For variables X̃
⇤ generated by (1), regression

residual Rj i given in (3) is independent from variable X̃⇤i if and only if

���
���↵j i �ANL

i·

���
���
2
= 0. (4)

Proposition 3 (Identifiable ordered group decomposition) The ordered group decompo-
sition constructed by the above procedure is asymptotically correct, in the sense that as the
sample size N !1, if non-leaf node X̃i is a cause of non-leaf node X̃j, then the ordered group
which X̃i is in precedes the group which X̃j belongs to.

Identifiability of Leaf Nodes and Individual Causal Edges

A2. According to G̃⇤, for a leaf node U in the considered ordered group g(k), at least one of its parents
is not a parent of the non-leaf node in g(k) or some other leaf node in g(k).

A3. For leaf node U in g(k), there exists at least one node causally following g(k) that 1) is d-separated
from U by a subset of variables in g(1) [ g(2)... [ g(k) \ {U} which does not include all parents of
U and 2) is a child of the non-leaf node in g(k) .

Proposition 4 (Leaf node determination by “looking backward or forward”) Suppose
the observed data were generated by the CAMME where Assumptions A0 and A1 hold. Let the
sample size N ! 1. Then if assumption A2 or A3 holds, leaf node U is correctly identified
from observations of X.

Simulation

Figure 6: (a) The true graph. (b)Estimated graph by our method. (c)Estimated graph by LiNGAM.

Conclusion
- We provide a set of su�cient identifiability conditions for CAMME, under
which CAMME is partially or fully identifiable.
- Inspired methods for causal discovery in the presence of measure error.
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Motivation & Objective

•Measurement error is ubiquitous due to imperfect data collection methodology.
E.g., the measured brain signals may contain error introduced by instruments; in
social sciences many variables are not directly measurable and one usually resorts
to proxies.

•Measurement error in the observed values of the variables can greatly change the
output of various causal discovery methods.

•A fundamental question: Under what conditions, what information of the un-
derlying “true” causal structure can be estimated from observed values with
measurement error?

Traditional Methods for Causal Discovery

Constraint-based causal discovery:

•Two assumptions: Causal Markov condition & Faithfulness assumption.

• (Conditional) independence constraint-based search.

• Solution bounded by the (independence) equivalence class.

•PC and SGS algorithms [1]; two steps: adjacency search + orientation determina-
tion (finding v-structures followed by orientation propagation)

Functional causal model-based causal discovery:

•A functional causal model represents the e↵ect (Y ) as a function of the cause (X)
and independent noise: Y = f (X, ✏), where ✏ ?? X . E.g., the linear, non-Gaussian
cyclic model (LiNGAM).

• Identifiability: Under proper assumptions, the full causal structure is identifiable
because the independent noise condition is violated with wrong structures.

E↵ect of Measurement Error on Causal Discovery

• Suppose the observed dataXi were generated accord-
ing this CAusal Model with Measurement Error (
CAMME): Xi = X̃i + Ei.

• – ⇢̃12: correlation between X̃1 and X̃2 (⇢̃12 = ⇢̃23 = ⇢̃).

– ⇢̃13,2: partial correlation between X̃1 and X̃3 given
X̃2, which is zero.

– ⇢12 and ⇢13,2: the counterparts in the presence of
measurement error. (Figure 2)

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME.
X2 = X̃2 + E2, but X1 = X̃1
and X3 = X̃3.

•The regression residual from X2 to X1 is not independent from the predictor any
more because of the measurement error. (Figure 3)
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Figure 2: ⇢12 and ⇢13,2 as functions of the level of
the measurement error in X2.
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Figure 3: Scatter plot of X2 and X1, to illus-
trate how measurement error leads to depen-
dence between regression residual and contami-
nated cause.

Canonical Representation of CAMME

•Measurement-error-free causal model G̃ over X̃i, with adjacency matrix B.

•Causal relations X̃ = BX̃ + Ẽ implies X̃ = (I�B)�1| {z }
,A

Ẽ.

• Separate leaf and non-leaf nodes:

X̃ = A
NL
Ẽ

NL +A
L
Ẽ

L = X̃
⇤ +A

L
Ẽ

L,

where all entries of AL are 0 or 1, and each column of it contains only one non-zero
entry. In contrast, each column of ANL has at least two non-zero entries.

•Observed variables X admit canonical representation of CAMME (CR-CAMME):

X = X̃ + E = X̃
⇤ + E

⇤ = A
NL
Ẽ

NL + (AL
Ẽ

L + E) (1)

X̃⇤i are related to X̃i according to:

X̃⇤i =

(
X̃i, if X̃i is not a leaf node in G̃;

X̃i � Ẽi, otherwise. (X̃⇤i deterministically depends on its parents!)
. (2)

Example: Suppose we have Xi, i = 1, 2, 3, for which X̃1 ! X̃2  X̃3, with causal relations

X̃2 = aX̃1 + bX̃3 + Ẽ2. That is, B =
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Ẽ3
E1
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Non-deterministic faithfulness assumption:

A0. The causal Markov condition holds for
G̃ and the distribution of X̃⇤i is non-
deterministically faithful w.r.t. G̃⇤, in the
sense that if there exists S, a subset of
{X̃⇤k : k 6= i, k 6= j}, such that neither
of X̃⇤i and X̃⇤j is a deterministic function of

S and X̃⇤i ?? X̃⇤j |S holds, then X̃⇤i and X̃⇤j
(or X̃i and X̃j) are d-separated by S in G̃⇤.
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X̃3

2b dc
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2a

Figure 4: A0 is violated because of pa-
rameter coupling. Here X̃⇤4 ?? X̃⇤1 | X̃

⇤
3

and X̃⇤4 ?? X̃⇤2 | X̃
⇤
3 are not implied by

the causal Markov condition on G̃.

Identifiability in the Linear, Non-Gaussian Case

A1. All Ẽi are non-Gaussian.

Lemma 1 Suppose assumption A1 holds. Given X which is generated according
to (1), A

NL is identifiable up to permutation and scaling of columns as the
sample size N !1.

Definition (Ordered group decomposition) Consider causal structure G̃⇤.
• Put all leaf nodes which share the same direct-and-only-direct cause in the same group; further
incorporate the corresponding direct-and-only-direct cause in the same group.

• For those nodes which are not a direct-and-only-direct cause of any leaf node, each of them forms
a separate group.

Such groups ordered according to the causal ordering of the non-leaf nodes in DAG
G̃⇤ is called an ordered group decomposition of G̃⇤, denoted by GG̃⇤.

Examples of “Ordered group decomposition”:

• For G̃A given in Figure 5, a corresponding group structure for the corresponding G̃⇤ is GG̃⇤A =

({X̃⇤1}! {X̃⇤2 , X̃
⇤
5}! {X̃⇤3 , X̃

⇤
6}! {X̃⇤4 , X̃

⇤
7 , X̃

⇤
8})

• For G̃B in Figure 5, there is only one group: GG̃⇤B = ({X̃⇤1 , X̃
⇤
2 , X̃

⇤
3 , X̃

⇤
4}), and a group decompo-

sition for both G̃⇤C and G̃⇤D: ({X̃
⇤
1}! {X̃⇤2 , X̃

⇤
3}! {X̃⇤4}! {X̃⇤5 , X̃

⇤
6}).
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Figure 5: (a) DAG G̃A. (b) G̃B. (c) Two DAGs G̃C and G̃D.

Identifiability of ordered Group Decomposition

•Recursively perform regression and check independence between the residual and the predictor

• The values of X̃⇤ is unknown. Test for independence between regression residuals and the predictor
by making use of ANL. The regression residual of X̃⇤i on X̃⇤j can be written as
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�
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NL
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NL|
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,↵j i
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Proposition 2 Suppose assumption A1 holds. For variables X̃
⇤ generated by (1), regression

residual Rj i given in (3) is independent from variable X̃⇤i if and only if
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���↵j i �ANL

i·

���
���
2
= 0. (4)

Proposition 3 (Identifiable ordered group decomposition) The ordered group decompo-
sition constructed by the above procedure is asymptotically correct, in the sense that as the
sample size N !1, if non-leaf node X̃i is a cause of non-leaf node X̃j, then the ordered group
which X̃i is in precedes the group which X̃j belongs to.

Identifiability of Leaf Nodes and Individual Causal Edges

A2. According to G̃⇤, for a leaf node U in the considered ordered group g(k), at least one of its parents
is not a parent of the non-leaf node in g(k) or some other leaf node in g(k).

A3. For leaf node U in g(k), there exists at least one node causally following g(k) that 1) is d-separated
from U by a subset of variables in g(1) [ g(2)... [ g(k) \ {U} which does not include all parents of
U and 2) is a child of the non-leaf node in g(k) .

Proposition 4 (Leaf node determination by “looking backward or forward”) Suppose
the observed data were generated by the CAMME where Assumptions A0 and A1 hold. Let the
sample size N ! 1. Then if assumption A2 or A3 holds, leaf node U is correctly identified
from observations of X.

Simulation

Figure 6: (a) The true graph. (b)Estimated graph by our method. (c)Estimated graph by LiNGAM.

Conclusion
- We provide a set of su�cient identifiability conditions for CAMME, under
which CAMME is partially or fully identifiable.
- Inspired methods for causal discovery in the presence of measure error.

Causal Discovery in the Presence of Measurement Error: Identifiability Conditions
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Motivation & Objective

•Measurement error is ubiquitous due to imperfect data collection methodology.
E.g., the measured brain signals may contain error introduced by instruments; in
social sciences many variables are not directly measurable and one usually resorts
to proxies.

•Measurement error in the observed values of the variables can greatly change the
output of various causal discovery methods.

•A fundamental question: Under what conditions, what information of the un-
derlying “true” causal structure can be estimated from observed values with
measurement error?

Traditional Methods for Causal Discovery

Constraint-based causal discovery:

•Two assumptions: Causal Markov condition & Faithfulness assumption.

• (Conditional) independence constraint-based search.

• Solution bounded by the (independence) equivalence class.

•PC and SGS algorithms [1]; two steps: adjacency search + orientation determina-
tion (finding v-structures followed by orientation propagation)

Functional causal model-based causal discovery:

•A functional causal model represents the e↵ect (Y ) as a function of the cause (X)
and independent noise: Y = f (X, ✏), where ✏ ?? X . E.g., the linear, non-Gaussian
cyclic model (LiNGAM).

• Identifiability: Under proper assumptions, the full causal structure is identifiable
because the independent noise condition is violated with wrong structures.

E↵ect of Measurement Error on Causal Discovery

• Suppose the observed dataXi were generated accord-
ing this CAusal Model with Measurement Error (
CAMME): Xi = X̃i + Ei.

• – ⇢̃12: correlation between X̃1 and X̃2 (⇢̃12 = ⇢̃23 = ⇢̃).

– ⇢̃13,2: partial correlation between X̃1 and X̃3 given
X̃2, which is zero.

– ⇢12 and ⇢13,2: the counterparts in the presence of
measurement error. (Figure 2)

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME.
X2 = X̃2 + E2, but X1 = X̃1
and X3 = X̃3.

•The regression residual from X2 to X1 is not independent from the predictor any
more because of the measurement error. (Figure 3)
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Figure 2: ⇢12 and ⇢13,2 as functions of the level of
the measurement error in X2.
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Figure 3: Scatter plot of X2 and X1, to illus-
trate how measurement error leads to depen-
dence between regression residual and contami-
nated cause.

Canonical Representation of CAMME

•Measurement-error-free causal model G̃ over X̃i, with adjacency matrix B.

•Causal relations X̃ = BX̃ + Ẽ implies X̃ = (I�B)�1| {z }
,A

Ẽ.

• Separate leaf and non-leaf nodes:

X̃ = A
NL
Ẽ

NL +A
L
Ẽ

L = X̃
⇤ +A

L
Ẽ

L,

where all entries of AL are 0 or 1, and each column of it contains only one non-zero
entry. In contrast, each column of ANL has at least two non-zero entries.

•Observed variables X admit canonical representation of CAMME (CR-CAMME):

X = X̃ + E = X̃
⇤ + E

⇤ = A
NL
Ẽ

NL + (AL
Ẽ

L + E) (1)

X̃⇤i are related to X̃i according to:

X̃⇤i =

(
X̃i, if X̃i is not a leaf node in G̃;

X̃i � Ẽi, otherwise. (X̃⇤i deterministically depends on its parents!)
. (2)

Example: Suppose we have Xi, i = 1, 2, 3, for which X̃1 ! X̃2  X̃3, with causal relations

X̃2 = aX̃1 + bX̃3 + Ẽ2. That is, B =
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Non-deterministic faithfulness assumption:

A0. The causal Markov condition holds for
G̃ and the distribution of X̃⇤i is non-
deterministically faithful w.r.t. G̃⇤, in the
sense that if there exists S, a subset of
{X̃⇤k : k 6= i, k 6= j}, such that neither
of X̃⇤i and X̃⇤j is a deterministic function of

S and X̃⇤i ?? X̃⇤j |S holds, then X̃⇤i and X̃⇤j
(or X̃i and X̃j) are d-separated by S in G̃⇤.
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Figure 4: A0 is violated because of pa-
rameter coupling. Here X̃⇤4 ?? X̃⇤1 | X̃

⇤
3

and X̃⇤4 ?? X̃⇤2 | X̃
⇤
3 are not implied by

the causal Markov condition on G̃.

Identifiability in the Linear, Non-Gaussian Case

A1. All Ẽi are non-Gaussian.

Lemma 1 Suppose assumption A1 holds. Given X which is generated according
to (1), A

NL is identifiable up to permutation and scaling of columns as the
sample size N !1.

Definition (Ordered group decomposition) Consider causal structure G̃⇤.
• Put all leaf nodes which share the same direct-and-only-direct cause in the same group; further
incorporate the corresponding direct-and-only-direct cause in the same group.

• For those nodes which are not a direct-and-only-direct cause of any leaf node, each of them forms
a separate group.

Such groups ordered according to the causal ordering of the non-leaf nodes in DAG
G̃⇤ is called an ordered group decomposition of G̃⇤, denoted by GG̃⇤.

Examples of “Ordered group decomposition”:

• For G̃A given in Figure 5, a corresponding group structure for the corresponding G̃⇤ is GG̃⇤A =

({X̃⇤1}! {X̃⇤2 , X̃
⇤
5}! {X̃⇤3 , X̃

⇤
6}! {X̃⇤4 , X̃

⇤
7 , X̃

⇤
8})

• For G̃B in Figure 5, there is only one group: GG̃⇤B = ({X̃⇤1 , X̃
⇤
2 , X̃

⇤
3 , X̃

⇤
4}), and a group decompo-

sition for both G̃⇤C and G̃⇤D: ({X̃
⇤
1}! {X̃⇤2 , X̃

⇤
3}! {X̃⇤4}! {X̃⇤5 , X̃

⇤
6}).
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Figure 5: (a) DAG G̃A. (b) G̃B. (c) Two DAGs G̃C and G̃D.

Identifiability of ordered Group Decomposition

•Recursively perform regression and check independence between the residual and the predictor

• The values of X̃⇤ is unknown. Test for independence between regression residuals and the predictor
by making use of ANL. The regression residual of X̃⇤i on X̃⇤j can be written as
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Proposition 2 Suppose assumption A1 holds. For variables X̃
⇤ generated by (1), regression

residual Rj i given in (3) is independent from variable X̃⇤i if and only if
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Proposition 3 (Identifiable ordered group decomposition) The ordered group decompo-
sition constructed by the above procedure is asymptotically correct, in the sense that as the
sample size N !1, if non-leaf node X̃i is a cause of non-leaf node X̃j, then the ordered group
which X̃i is in precedes the group which X̃j belongs to.

Identifiability of Leaf Nodes and Individual Causal Edges

A2. According to G̃⇤, for a leaf node U in the considered ordered group g(k), at least one of its parents
is not a parent of the non-leaf node in g(k) or some other leaf node in g(k).

A3. For leaf node U in g(k), there exists at least one node causally following g(k) that 1) is d-separated
from U by a subset of variables in g(1) [ g(2)... [ g(k) \ {U} which does not include all parents of
U and 2) is a child of the non-leaf node in g(k) .

Proposition 4 (Leaf node determination by “looking backward or forward”) Suppose
the observed data were generated by the CAMME where Assumptions A0 and A1 hold. Let the
sample size N ! 1. Then if assumption A2 or A3 holds, leaf node U is correctly identified
from observations of X.

Simulation

Figure 6: (a) The true graph. (b)Estimated graph by our method. (c)Estimated graph by LiNGAM.

Conclusion
- We provide a set of su�cient identifiability conditions for CAMME, under
which CAMME is partially or fully identifiable.
- Inspired methods for causal discovery in the presence of measure error.
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Issue 3: Causal Discovery in the 
Presence of  Missing Data

• Conditional independence relations in the data are sensitive to 
the missingness mechanism 

• Key issue: Recover conditional independence relations in the 
original population from incomplete data

R. Tu, C. Zhang, P. Ackermann, K. Mohan, H. Kjellström, C. Glymour, K. Zhang, “Causal discovery in the presence 
of missing data,” AISTATS 2019
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Figure 1: Exemplar missingness graphs in MCAR, MAR, and MNAR. X , Y , Z and W are random variables. In the m-graph,
gray nodes denote partially observed variables, and white nodes are fully observed variables. Ry and Rw are the missingness
indicators for Y and W .

considering the missingness procedure as a particular type
of selection bias, it is shown that FCI combined with test-
wise deletion for CI tests is still sound when one aims to
estimate the PAG for the variables including the effect of
missingness (a particular type of selection bias). It is usually
different from the causal graph for generating the variables
we are concerned with. Data missingness is usually differ-
ent from selection bias, because in the selection bias case
we have only the distribution of the selected sample but
no clue about the population. While in the missing data
case, we may be able to check the (conditional) indepen-
dence relation between two variables by making use of the
available data on other variables. In the case where the
missingness mechanisms are known, this problem is closely
related to the recoverability of models with missing data
[Mohan et al., 2013].

3 Behavior of the deletion-based PC

In this section, we discuss the influence of missing data
on the deletion-based PC algorthm. Primarily, we provide
theoretical analysis to identify the particular structures that
errors occur due to missingness. Firstly, we utilize the m-
graph and summarize assumptions of our work. We then
provide naive extensions of test-wise deletion based and
list-wise deletion based method on the PC algorithm. Our
analysis focuses on properties of the results produced by
these algorithms in the presence of missing values, and
provides the conditions, under which CI tests produce wrong
edges in the causal graph result from incomplete data.

Missingness graph. In our work, we utilize the nota-
tion of the m-graph [Mohan et al., 2013] to represent the
missingness mechanisms of variables and their causal re-
lations. In the original definition in [Mohan et al., 2013],
an m-graph is a causal DAG over the variable set V =
V[U[V

⇤ [R. U is the set of unobserved variables; in this
paper, we assume causal sufficiency, so U is an empty set.
V is a substantive variable set which is the set of observable
variables containing Vo and Vm. Vo ✓ V is the set of fully
observed variables, denoted as white nodes in our graphi-
cal representation. Vm ✓ V is the set of partially observed
variables that are missing in at least one record, which is
shadowed in gray. R denotes missingness indicators, and

Ry 2 R is the corresponding missingness indicator for Y .
Here, Ry = 1 presents that the corresponding value is miss-
ing, and Ry = 0 indicates that the corresponding value for the
variable Y is observed. The proxy variable Y ⇤ is introduced
as an auxiliary variable for the convenience of derivation. It
takes the value of Y if Ry = 0, and corresponds to a missing
entry if Ry = 1. In this paper, proxy variables are not shown
in the m-graph for clarity [Mohan et al., 2018]. In this work
we adopt the CI based definitions of missingness categories
as stated in [Mohan et al., 2013]. We denote independent
relation in a data set as ?? and d-separation in a m-graph as
??d . Data are MCAR if (Vm,Vo) ??dR holds in the m-graph
( e.g., Figure 1a), MAR if Vm ??dR | Vo holds (e.g., Figure
1b) and MNAR otherwise (e.g., Figure 1c).

Assumptions about dealing with missingness. Let
{X ,Y} 2 V denote random variables of interest, and Z ✓
V\{X ,Y}. The CI relation between X and Y given Z is de-
noted by X ?? Y | Z. Apart from the basic assumptions for
the PC algorithm with fully observed data, in this paper, we
make the following additional assumptions for all methods
that address missing data entries:

• Faithful observability: We assume that X ?? Y |
{Z,RK = 0}() X ?? Y | {Z,RK}. Here, RK is the
superset of {Rx,Ry,Rz} and the subset of R. Con-
ditioning on RK = 0 means conditioning on all the
missingness indicators in RK taking the value zero.
According to the faithfulness assumption of the distri-
bution relative to the m-graph [Glymour et al., 2001],
all d-separation relations in the graph correspond to
CI relations in the distribution, such as X ?? Y |
{Z,RK} () X ??dY | {Z,RK}. In the presence of
missing data, for each variable we only observe its
value when the corresponding missingness indicator is
zero. In principle, X ?? Y | {Z,RK} may be stronger
than X ?? Y | {Z,RK = 0}. Roughly speaking, this as-
sumption states that the missingness mechanism does
not deceive us in the sense that although the observed
data and the unobserved data may have different distri-
butions, they will have the same CI relations.

• No causal interactions between missingness indicators:
We assume that a missingness indicator cannot be de-
terministically related to other missingness indicators
or be the cause of variables in V.



Causal Discovery in the Presence of  
Missing Data

• R is the set of missingness indicators that represent the status of 
missingness 

• If RX is 1, the corresponding value of X is missing; if it is 0, it is 
observed 

• Missingness graph
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Figure 1: Exemplar missingness graphs in MCAR, MAR, and MNAR. X , Y , Z and W are random variables. In the m-graph,
gray nodes denote partially observed variables, and white nodes are fully observed variables. Ry and Rw are the missingness
indicators for Y and W .

considering the missingness procedure as a particular type
of selection bias, it is shown that FCI combined with test-
wise deletion for CI tests is still sound when one aims to
estimate the PAG for the variables including the effect of
missingness (a particular type of selection bias). It is usually
different from the causal graph for generating the variables
we are concerned with. Data missingness is usually differ-
ent from selection bias, because in the selection bias case
we have only the distribution of the selected sample but
no clue about the population. While in the missing data
case, we may be able to check the (conditional) indepen-
dence relation between two variables by making use of the
available data on other variables. In the case where the
missingness mechanisms are known, this problem is closely
related to the recoverability of models with missing data
[Mohan et al., 2013].

3 Behavior of the deletion-based PC

In this section, we discuss the influence of missing data
on the deletion-based PC algorthm. Primarily, we provide
theoretical analysis to identify the particular structures that
errors occur due to missingness. Firstly, we utilize the m-
graph and summarize assumptions of our work. We then
provide naive extensions of test-wise deletion based and
list-wise deletion based method on the PC algorithm. Our
analysis focuses on properties of the results produced by
these algorithms in the presence of missing values, and
provides the conditions, under which CI tests produce wrong
edges in the causal graph result from incomplete data.

Missingness graph. In our work, we utilize the nota-
tion of the m-graph [Mohan et al., 2013] to represent the
missingness mechanisms of variables and their causal re-
lations. In the original definition in [Mohan et al., 2013],
an m-graph is a causal DAG over the variable set V =
V[U[V

⇤ [R. U is the set of unobserved variables; in this
paper, we assume causal sufficiency, so U is an empty set.
V is a substantive variable set which is the set of observable
variables containing Vo and Vm. Vo ✓ V is the set of fully
observed variables, denoted as white nodes in our graphi-
cal representation. Vm ✓ V is the set of partially observed
variables that are missing in at least one record, which is
shadowed in gray. R denotes missingness indicators, and

Ry 2 R is the corresponding missingness indicator for Y .
Here, Ry = 1 presents that the corresponding value is miss-
ing, and Ry = 0 indicates that the corresponding value for the
variable Y is observed. The proxy variable Y ⇤ is introduced
as an auxiliary variable for the convenience of derivation. It
takes the value of Y if Ry = 0, and corresponds to a missing
entry if Ry = 1. In this paper, proxy variables are not shown
in the m-graph for clarity [Mohan et al., 2018]. In this work
we adopt the CI based definitions of missingness categories
as stated in [Mohan et al., 2013]. We denote independent
relation in a data set as ?? and d-separation in a m-graph as
??d . Data are MCAR if (Vm,Vo) ??dR holds in the m-graph
( e.g., Figure 1a), MAR if Vm ??dR | Vo holds (e.g., Figure
1b) and MNAR otherwise (e.g., Figure 1c).

Assumptions about dealing with missingness. Let
{X ,Y} 2 V denote random variables of interest, and Z ✓
V\{X ,Y}. The CI relation between X and Y given Z is de-
noted by X ?? Y | Z. Apart from the basic assumptions for
the PC algorithm with fully observed data, in this paper, we
make the following additional assumptions for all methods
that address missing data entries:

• Faithful observability: We assume that X ?? Y |
{Z,RK = 0}() X ?? Y | {Z,RK}. Here, RK is the
superset of {Rx,Ry,Rz} and the subset of R. Con-
ditioning on RK = 0 means conditioning on all the
missingness indicators in RK taking the value zero.
According to the faithfulness assumption of the distri-
bution relative to the m-graph [Glymour et al., 2001],
all d-separation relations in the graph correspond to
CI relations in the distribution, such as X ?? Y |
{Z,RK} () X ??dY | {Z,RK}. In the presence of
missing data, for each variable we only observe its
value when the corresponding missingness indicator is
zero. In principle, X ?? Y | {Z,RK} may be stronger
than X ?? Y | {Z,RK = 0}. Roughly speaking, this as-
sumption states that the missingness mechanism does
not deceive us in the sense that although the observed
data and the unobserved data may have different distri-
butions, they will have the same CI relations.

• No causal interactions between missingness indicators:
We assume that a missingness indicator cannot be de-
terministically related to other missingness indicators
or be the cause of variables in V.



Categories of  Missing Data Mechanism

• All missing data mechanisms fall into one of the following three 
categories (Rubin, 1976):  

• Data are Missing Missing Completely At Random (MCAR) if the 
cause of missingness is purely random. 

• Data are Missing At Random (MAR) when the direct cause of 
missingness is fully observed.  

• Data that are neither MAR nor MCAR fall under the Missing Not 
At Random (MNAR) category.



Assumptions for the Method
• Assumption 1 (Missingness indicators are not causes): No 

missingness indicator can be a cause of any substantive 
(observed) variable.

• Assumption 2 (Faithful observability): Any conditional 
independence relation in the observed data also holds in the 
unobserved data.

• Assumption 3 (No deterministic relation between missingness 
indicators): No missingness indicator can be a deterministic 
function of any other missingness indicators. 

• Assumption 4 (No self-masking missingness): Self-masking 
missingness refers to missingness in a variable that is caused by 
itself.

*



Observations

• Trust the testwise deletion conditional independence relations for 
causal discovery?

• Given Assumptions 1-4, we can prove:

• If X ⫫ Y | Z in the testwise-deleted data, then X⫫Y | Z in the full 
data. 

• If testwise deletion gives extra dependence X⫫Y | Z, compared to 
the population, then for at least one variable in {X}∪{Y}∪Z, its 
missingness indicator is either the direct common effect or a 
descendant of the direct common effect of X and Y.

X

Z

Y

Ry

(a) An MCAR graph

X YZ

W Ry

(b) An MAR graph

X

W

YZ

RyRw

(c) An MNAR graph

Figure 1: Exemplar missingness graphs in MCAR, MAR, and MNAR. X , Y , Z and W are random variables. In the m-graph,
gray nodes denote partially observed variables, and white nodes are fully observed variables. Ry and Rw are the missingness
indicators for Y and W .

considering the missingness procedure as a particular type
of selection bias, it is shown that FCI combined with test-
wise deletion for CI tests is still sound when one aims to
estimate the PAG for the variables including the effect of
missingness (a particular type of selection bias). It is usually
different from the causal graph for generating the variables
we are concerned with. Data missingness is usually differ-
ent from selection bias, because in the selection bias case
we have only the distribution of the selected sample but
no clue about the population. While in the missing data
case, we may be able to check the (conditional) indepen-
dence relation between two variables by making use of the
available data on other variables. In the case where the
missingness mechanisms are known, this problem is closely
related to the recoverability of models with missing data
[Mohan et al., 2013].

3 Behavior of the deletion-based PC

In this section, we discuss the influence of missing data
on the deletion-based PC algorthm. Primarily, we provide
theoretical analysis to identify the particular structures that
errors occur due to missingness. Firstly, we utilize the m-
graph and summarize assumptions of our work. We then
provide naive extensions of test-wise deletion based and
list-wise deletion based method on the PC algorithm. Our
analysis focuses on properties of the results produced by
these algorithms in the presence of missing values, and
provides the conditions, under which CI tests produce wrong
edges in the causal graph result from incomplete data.

Missingness graph. In our work, we utilize the nota-
tion of the m-graph [Mohan et al., 2013] to represent the
missingness mechanisms of variables and their causal re-
lations. In the original definition in [Mohan et al., 2013],
an m-graph is a causal DAG over the variable set V =
V[U[V

⇤ [R. U is the set of unobserved variables; in this
paper, we assume causal sufficiency, so U is an empty set.
V is a substantive variable set which is the set of observable
variables containing Vo and Vm. Vo ✓ V is the set of fully
observed variables, denoted as white nodes in our graphi-
cal representation. Vm ✓ V is the set of partially observed
variables that are missing in at least one record, which is
shadowed in gray. R denotes missingness indicators, and

Ry 2 R is the corresponding missingness indicator for Y .
Here, Ry = 1 presents that the corresponding value is miss-
ing, and Ry = 0 indicates that the corresponding value for the
variable Y is observed. The proxy variable Y ⇤ is introduced
as an auxiliary variable for the convenience of derivation. It
takes the value of Y if Ry = 0, and corresponds to a missing
entry if Ry = 1. In this paper, proxy variables are not shown
in the m-graph for clarity [Mohan et al., 2018]. In this work
we adopt the CI based definitions of missingness categories
as stated in [Mohan et al., 2013]. We denote independent
relation in a data set as ?? and d-separation in a m-graph as
??d . Data are MCAR if (Vm,Vo) ??dR holds in the m-graph
( e.g., Figure 1a), MAR if Vm ??dR | Vo holds (e.g., Figure
1b) and MNAR otherwise (e.g., Figure 1c).

Assumptions about dealing with missingness. Let
{X ,Y} 2 V denote random variables of interest, and Z ✓
V\{X ,Y}. The CI relation between X and Y given Z is de-
noted by X ?? Y | Z. Apart from the basic assumptions for
the PC algorithm with fully observed data, in this paper, we
make the following additional assumptions for all methods
that address missing data entries:

• Faithful observability: We assume that X ?? Y |
{Z,RK = 0}() X ?? Y | {Z,RK}. Here, RK is the
superset of {Rx,Ry,Rz} and the subset of R. Con-
ditioning on RK = 0 means conditioning on all the
missingness indicators in RK taking the value zero.
According to the faithfulness assumption of the distri-
bution relative to the m-graph [Glymour et al., 2001],
all d-separation relations in the graph correspond to
CI relations in the distribution, such as X ?? Y |
{Z,RK} () X ??dY | {Z,RK}. In the presence of
missing data, for each variable we only observe its
value when the corresponding missingness indicator is
zero. In principle, X ?? Y | {Z,RK} may be stronger
than X ?? Y | {Z,RK = 0}. Roughly speaking, this as-
sumption states that the missingness mechanism does
not deceive us in the sense that although the observed
data and the unobserved data may have different distri-
butions, they will have the same CI relations.

• No causal interactions between missingness indicators:
We assume that a missingness indicator cannot be de-
terministically related to other missingness indicators
or be the cause of variables in V.

*



Missing-Value PC (MVPC)

• Add missingness variables R to the dataset with measured variables V

• Create knowledge that R variables do not cause V variables

• Run PC adjacency search over V∪R

• Identify adjacencies over V in triangles over V∪R-–these might be 
false positives!

• Try to remove these extra adjacencies using correction…

• Finally, do collider orientation and apply the Meek rules to graph G 
over V



Essential Step in Missing Value PC

• Goal: see whether X⫫Y | Z by analyzing data with missing values

• Can we recover p(X,Y, Z) when Y has missing values? 

• In the linear-Gaussian or discrete case, permutation test:

TU, ZHANG, ACKERMANN, BERTILSON, GLYMOUR, KJELLSTRÖM AND ZHANG

4.3 Recovery of the true causal skeleton

As shown in Section 3, TD-PC produces extraneous edges in the causal skeleton, resulting in the
situations of Proposition 2. In this section, we introduce our correction methods to remove the
extraneous edges. We first introduce Permutation-based Correction (PermC) with an example. We
then show that PermC handles most of the missingness cases. Next, we propose an alternative
solution, named Density Ratio Weighted correction (DRW), for the cases which PermC does not
cover.

4.3.1 PERMUTATION-BASED CORRECTION

PermC in continuous cases. We use an example in continuous cases to demonstrate how to re-
move the extraneous edges with PermC. For example, suppose that we have a dataset with missing
values of which the underlying missingness graph is shown in Figure 1b. As discussed in Section
3, when applying TD-PC to this dataset, we produce an extraneous edge between X and Y in the
output of TD-PC. The problem is that data samples from joint distribution P(X ,Y,Z) are not avail-
able in the observed dataset. In this case, we test the CI relations in the test-wise deleted data from
P(X ,Y ∗

,Z | Ry = 0), producing the extraneous edge.
PermC solves this problem by testing the CI relations in the reconstructed virtual dataset utiliz-

ing the observed data concerning

P(X ,Y,Z) =
∫

W
P(X ,Y,Z |W )P(W )dW

=
∫

W
P(X ,Y ∗

,Z |W,Ry = 0)P(W )dW, (1)

such that reconstructed data follow the joint distribution P(X ,Y,Z). As shown in the first step of
Equation 1, we introduce a random variable W which is the direct cause of Ry in Figure 1b to
reconstruct the dataset and then marginalize it out. With W , the joint distribution P(X ,Y,Z) is
estimated by 1) learning the model for P(X ,Y,Z | W ) from test-wise deleted data, 2) plugging in
the values of W in the dataset, as data samples from P(W ), and 3) disregarding the input W and
keeping the generated virtual data for {X ,Y,Z} to marginalize W out. Given virtual data of X , Y ,
and Z that follow the joint distribution P(X ,Y,Z), one can test CI relations in the complete data.

Now the issue is that the data samples from P(X ,Y,Z | W ) are not directly available. Never-
theless, we learn a model for P(X ,Y ∗

,Z |W,Ry = 0) to generate virtual data of X , Y , and Z from
W , as shown in the second step of Equation 1. Under Assumptions 1∼4 we have P(X ,Y,Z |W ) =
P(X ,Y ∗

,Z | W,Ry = 0) because Ry ⊥⊥d{X ,Y,Z} | W ; moreover, data samples from P(X ,Y ∗
,Z |

W,Ry = 0) can be constructed by test-wise deletion. For simplicity, under the linear Gaussian
assumption we apply linear regression to learning the model for P(X ,Y ∗

,Z |W,Ry = 0) as :

X = α1W + ε1, Y = α2W + ε2, Z = α3W + ε3, (2)

where αi is the parameter of linear regression models and εi is the residual.
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Summary: Class 22 & 23

• Practical issues in causal discovery to be considered: They 
are part of  the data-generating process 

• Selection bias is ubiquitous 

• Where is it? Finding correct causal model in the 
presence of  selection bias? 

• Connection between measurement error and confounders 

• Missingness is a causal problem! 

• Missingness graph; causal discovery under missing values 


