

Causality and Machine Learning (80-816/516)

Classes 15 (March 11, 2025)

Nonlinearity, Nonstationarity & Other Types of "Independence" for Causal Discovery

Instructor:

Kun Zhang (kunzl@cmu.edu)

Zoom link: <u>https://cmu.zoom.us/j/8214572323</u>)

Office Hours: W 3:00-4:00PM (on Zoom or in person); other times by appointment

- Nonlinearities (Zhang & Chan, ICONIP'06; Hoyer et Hyvärinen, UAI'09; Huang et al., KDD'18)
- Categorical variables or mixed cases (Huang et al., KD
- Measurement error (Zhang et al., UAI'18; PSA'18)

- Nonlinearities (Zhang & Chan, ICONIP'06; Hoyer et al., NIPS'08; Zhang & Hyvärinen, UAI'09; Huang et al., KDD'18)
- Categorical variables or mixed cases (Huang et al., KDD'18; Cai et al., NIPS'18)
- Measurement error (Zhang et al., UAI'18; PSA'18)
- Selection bias (Zhang et al., UAI'16)

- Nonlinearities (Zhang & Chan, ICONIP'06; Hoyer et al., NIPS'08; Zhang & Hyvärinen, UAI'09; Huang et al., KDD'18)
- Categorical variables or mixed cases (Huang et al., KDD'18; Cai et al., NIPS'18)
- Measurement error (Zhang et al., UAI'18; PSA'18)
- Selection bias (Zhang et al., UAI'16)
- **Confounding** SGS 1993; Zhang et al., 2018c; Cai et al., NIPS'19; Ding et al., NIPS'19); latent causal representation learning (Silva et al., JMLR'06; Xie et al., NeurIPS'20; Cai et al., NeurIPS'19; Adams et al., NeurIPS'21)

- Nonlinearities (Zhang & Chan, ICONIP'06; Hoyer et al., NIPS'08; Zhang & Hyvärinen, UAI'09; Huang et al., KDD'18)
- Categorical variables or mixed cases (Huang et al., KDD'18; Cai et al., NIPS'18)
- Measurement error (Zhang et al., UAI'18; PSA'18)
- Selection bias (Zhang et al., UAI'16)
- Confounding (SGS 1993; Zhang et al., 2018c; Cai et al., NIPS'19; Ding et al., NIPS'19); latent causal representation learning (Silva et al., JMLR'06; Xie et al., NeurIPS'20; Cai et al., NeurIPS'19; Adams et al., NeurIPS'21)
- Missing values (Tu et al., AISTATS'19)

X1 X2 X3 X4	X5 X6				
-9.4653403e-01	6.6703495e-01	8.2886922e-01	-1.3695521e+00	-3.2675465e-02	1.8634806e-01
-9.4895568e-01			-4.6381657e-01	-1.8280031e+00	
	5.1435422e-01	6.7338326e-01	4.3403559e-01	9.4535076e-01	7.5164028e-01
7.2489037e-01		5.1325341e-01	8.3567780e-01	2.9825903e-01	7.7796018e-02
		-1.3440612e+00			-7.3325009e-01
1.3261794e+00	-6.1971037e-01	-1.0498756e-01	1.4171149e+00	1.6251026e+00	3.7478050e-01
-2.1128404e+00	1.3359744e-02	-2.0209600e+00	-1.7172659e+00	-2.4746799e+00	-2.8026586e+00
1.5453163e+00	-5.3986972e-01	4.5157367e-01	1.5566262e+00	9.3882105e-01	-4.3382982e-01
6.5974086e-02	5.5826895e-01	6.5247930e-01	-5.7895322e-01	5.0062743e-01	1.0183537e+00
8,97728586-01	2.6752870e-01	-4.9204975e-01	7,7933358e-02	8.3467624e-01	9,2744311e-01
-1 12400170+00	2 51949720-01	-5 60616600-01	-4 92256090-01	-0.27474440-01	2 27620220-02

- Nonlinearities (Zhang & Chan, ICONIP'06; Hoyer et al., NIPS'08; Zhang & Hyvärinen, UAI'09; Huang et al., KDD'18)
- Categorical variables or mixed cases (Huang
- Measurement error (Zhang et al., UAI'18; PS
- Selection bias (Zhang et al., UAI'16)
- Confounding (SGS 1993; Zhang et al., 2018c; Cai et al., representation learning (Silva et al., JMLR'06; Xie et al., NeurIPS'21)
- Missing values (Tu et al., AISTATS'19)
- Causality in time series
 - Time-delayed + instantaneous relations (H ECML'09; Hyvarinen et al., JMLR'10)
 - Subsampling / temporally aggregation (Da ICML'15 & UAI'17)
 - From partially observable time series (Gei

- Nonlinearities (Zhang & Chan, ICONIP'06; Hoyer et al., NIPS'08; Zhang & Hyvärinen, UAI'09; Huang et al., KDD'18)
- Categorical variables or mixed cases (Huang et al., KDD'18; Cai et al., NIPS'18)
- Measurement error (Zhang et al., UAI'18; PSA'18)
- Selection bias (Spirtes 1995; Zhang et al., UAI'16)
- Confounding (SGS 1993; Zhang et al., 2018c; Cai et al., NIPS'19; Ding et al., NIPS'19); latent causal representation learning (Silva et al., JMLR'06; Xie et al., NeurIPS'20; Cai et al., NeurIPS'19; Adams et al., NeurIPS'21)
- Missing values (Tu et al., AISTATS'19)
- Causality in time series
 - Time-delayed + instantaneous relations (Hyvarinen ICMĽo8; Hyvarinen et al., JMLR'10)
 - Subsampling / temporally aggregation (Danks & Plis, NIPS W UAI'17)
 - From partially observable time series (Geiger et al., ICML'15)
- Nonstationary/heterogeneous data (Zhang et al., IJCAI'17; Huang et al, ICDM'17, Ghassami et al., NIPS'18; Huang et al., ICML'19 & NIPS'19; Huang et al., JMLR'20)

With Nonlinearities

- Model
- Identifiability
- Identification

Some Real Data Sets

Functional Causal Models

- Effect generated from cause with **independent noise** (Pearl et al.): Y = f(X, E)
 - A way to encode the intuition "the generating process for X is 'independent' from that generates Ŷ from X"
 P(Y|X) → P(X) → Y
- :-(Without constraints on *f*, one can find independent noise for both directions (Darmois, 1951; Zhang et al., 2015)
 - Given any X_1 and X_2 , E' := conditional CDF of $X_2 | X_1$ is always independent from X_1 and $X_2 = f(X_1, E')$
- :-) Structural constraints on *f* imply asymmetry

A Way to Construct Independent Error Term

• CDF(Y) is a random variable uniformly distributed over [0,1]

Zhang et al.(2015), On Estimation of Functional Causal Models: General Results and Application to Post-Nonlinear Causal Model, ACM Transactions on Intelligent Systems and Technology, Forthcoming

Then What Can We Do?

Y = f(X, E)

• The structure of *f* should be constrained & be able to approximate the true process...

FCMs with Which Causal Direction is Generally Identifiable

• Linear non-Gaussian acyclic causal model (Shimizu et al., '06)

$$Y = \mathbf{a} \cdot X + E$$

Additive noise model (Hoyer et al., '09; Zhang & Hyvärinen, '09b)

$$Y = f(X) + E$$

 Post-nonlinear causal model (Zhang & Chen, 2006; Zhang & Hyvärinen, '09a)

$$Y = f_2 \left(f_1(X) + E \right)$$

Causal Asymmetry with Nonlinear Additive Noise: Illustration

Y = f(X) + E with $E \perp X$

(Hoyer et al., 2009)

Three Effects usually encountered in a causal model (Zhang & Chan, 2006; Zhang & Hyvärinen, '09a)

- Without prior knowledge, the assumed model is expected to be
 - general enough: adapt to approximate the true generating process
 - identifiable: asymmetry in causes and effects

PNL Causal Model

Finished square feet

• Multiplicative noise models:

 $Y = X \cdot E = \exp\left(\log(X) + \log(E)\right)$

Independence test results on y_1 and y_2 with different assumed causal relations

±		· · · · / _		
Data Set	$x_1 \to x_2$ assumed		$x_2 \to x_1$ assumed	
	Threshold $(\alpha = 0.01)$	Statistic	Threshold $(\alpha = 0.01)$	Statistic
#1	2.3×10^{-3}	$1.7 imes 10^{-3}$	2.2×10^{-3}	$6.5 imes 10^{-3}$

- Two-variable case: if $X_1 \rightarrow X_2$, then $X_2 = f_{2,2}(f_{2,1}(X_1) + E_2)$
- Is the causal direction implied by the model unique?
- By a proof of contradiction
 - Assume both $X_1 \rightarrow X_2$ and $X_2 \rightarrow X_1$ satisfy PNL model
 - One can then find all non-identifiable cases

Identifiability Establishment: To Be Discussed

- Not Mysterious
- Will explain the basic idea with the identifiability of ICA as an example on March 18

Identifiability: A Mathematical Result

Theorem 1

• Assume
$$x_2 = f_2(f_1(x_1) + e_2),$$

 $x_1 = g_2(g_1(x_2) + e_1),$

Notation

$$t_1 \triangleq g_2^{-1}(x_1), \quad z_2 \triangleq f_2^{-1}(x_2), \\ h \triangleq f_1 \circ g_2, \qquad h_1 \triangleq g_1 \circ f_2. \\ \eta_1(t_1) \triangleq \log p_{t_1}(t_1), \quad \eta_2(e_2) \triangleq \log p_{e_2}(e_2).$$

- Further suppose that involved densities and nonlinear functions are third-order differentiable, and that p_{e2} is unbounded,
- For every point satisfying η_2 " $h' \neq 0$, we have

$$\eta_1''' - \frac{\eta_1''h''}{h'} = \left(\frac{\eta_2'\eta_2'''}{\eta_2''} - 2\eta_2''\right) \cdot h'h'' - \frac{\eta_2'''}{\eta_2''} \cdot h'\eta_1'' + \eta_2' \cdot \left(h''' - \frac{h''^2}{h'}\right).$$

- Obtained by using the fact that the Hessian of the logarithm of the joint density of independent variables is diagonal everywhere (Lin, 1998)
- It is not obvious if this theorem holds in practice...

List of All Non-Identifiable Cases

Transitivity of FCMs and Intermediate Causal Variable Recovery

• Transitivity of causal direction violated by FCMs: Intermediate causal variable determination?

Another Type of Method: "Independence" between p(X) and Complex *f*

- Nonlinear deterministic case:
 - $Y = f(X) \implies p(Y) = p(X) / |f'(X)|$
 - $\log f'(X)$ and p(X) uncorrlated w.r.t. a uniform reference; violated for the other direction

$$\int_0^1 \log f'(x) p(x) dx = \int_0^1 \log f'(x) \frac{p(x)}{p_0(x)} p_0(x) dx$$
$$= \int_0^1 \log f'(x) p_0(x) dx \cdot \int_0^1 p(x) dx = \int_0^1 \log f'(x) dx$$

• Asymmetry ?

Janzing et al. (2012), Information-geometric approach to inferring causal direction, Artificial Intelligence

"Independence" between p(X) and Complex f: Asymmetry

Given $\int_0^1 \log f'(x) p(x) dx = \int_0^1 \log f'(x) dx$, for the other direction

f(x)

Х

p(x)

Similarly, "Independence" in Linear Transformations

- Linear high-dimensional deterministic case:
 - Y = AX (causal direction) $\Rightarrow \operatorname{cov}(Y) = A \cdot \operatorname{cov}(X) \cdot A^T$
 - Reverse direction: $X = A^{-1}Y$
 - If A and the covariance matrix of **X** are chosen independently, then A⁻¹ and the covariance matrix of **Y** will be coupled (in the reverse direction)

• Asymmetry?

Janzing et al. (2012), Information-geometric approach to inferring causal direction, Artificial Intelligence

Nonstationary/Heterogeneous Data and Causal Modeling

- Ubiquity of nonstationary/heterogeneous data
 - Nonstationary time series (brain signals, climate data...)
 - Multiple data sets under different observational or experimental conditions
- Causal modeling & distribution shift heavily couple *P*(causal modeling & distribution shift heavily for the second s

Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, Schölkopf, "Causal Discovery from Heterogeneous/ Nonstationary Data," JMLR, 2020 Zhang, Huang, et al., Discovery and visualization of nonstationary causal models, arxiv 2015 Ghassami, et al., Multi-Domain Causal Structure Learning in Linear Systems, NIPS 2018

• Consider prediction (with regression) in different time periods

Data

- Population growth and food consumption:
 - data for 174 countries or areas, during the period from 1990-92 to 1995-97 (former 173 data points) and that from 1995-97 to 2000-02 (latter 174 points).
- X1: the average annual rate of change of population; X2: the average annual rate of change of total dietary consumption for total population (kcal/day)

-0.2

00		☐ pair0076.txt ▼
-1.1	1.0	
2.1	2.0	
3.1	4.2	
2.3	-0.6	
1.3	2.2	
-1.8	0.9	
1.1	0.7	
0.6	1.0	
1.2	1.4	
1.8	1.4	
2.0	1.7	
-0.3	-0.4	
-0.2	0.8	
2.9	2.8	
3.4	4.0	
0.5	0.4	
2.3	3.0	
-2.3	1.4	
2.6	2.2	
1.5	2.1	
2.7	3.5	
-1.1	-3.1	
2.8	3.4	
1 4	0 0	

10

- Invariance!

- More generally, independent changes

Causal Discovery from Nonstationary/ Heterogeneous Data

i.i.d. data?	Parametric constraints?	Latent confounders?	
Yes	No	No	
No	Yes	Yes	

• Task:

- Determine changing causal modules & estimate skeleton
- Causal orientation determination benefits from independent changes in *P*(cause) and *P*(effect | cause), including invariant mechanism/ cause as special cases
- Visualization of changing modules over time/ across data sets?
- Huang et al., "Causal Discovery from Heterogeneous/Nonstationary Data," JMLR, 2020
- Tian, Pearl, "Causal discovery from changes," UAI 2001
- Hoover, "The logic of causal inference" Economics and Philosophy, 6:207–234, 1990.

Kernel nonstationary driving force estimation Discovery & Visualization of Changing Causal Modules

* Questions to answer for causal discovery:

With our proposed approach:

- Identify variables with changing causal modules & recover causal skeleton?
- Identify causal directions by using distribution shifts?
- Visualize the change in causal modules?

 V_1 V_2 V_3 V_4

Kernel nonstationarity visualization (KNV)

- Incorporate time/domain index *C* as a surrogate + apply constraint-based causal discovery methods
- Independent changes in P(cause) and P(effect | cause)
- Find a mapping of *P(V_i* | *PAⁱ*) to capture its variability

Method and Its Theoretical Guarantee: Assumptions

- Pseudo causal sufficiency: Confounders as smooth functions of C
 - C: domain or time index; as a surrogate
- Structural equation model:

 $V_i = f_i(PA^i, \mathbf{g}^i(C), \theta_i(C), \epsilon_i)$

• Causal Markov condition and faithfulness on augmented graph

Finding Causal Skeleton and Changing Modules

 V_1

- Incorporate *C* into the variable set as a surrogate + apply constraint-based causal discovery
 - Detecting changing causal modules
 - "Robust" causal skeleton discovery
- We can find the correct causal skeleton asymptotically correctly, **as if** the confounders were known

g(C)

 V_3

Crucial to use nonparametric conditional independence test !

Theorem 1. Given the previous assumptions, for every $V_i, V_j \in \mathbf{V}$, V_i and V_j are not adjacent in the original causal DAG G if and only if they are independent conditional on some subset of $\{V_k \mid k \neq i, k \neq j\} \cup \{C\}$.

Nonstationarity Helps **Determine** Causal Direction

- $\theta_2(C)$
- **Independent changes** in *P*(cause) and *P*(effect | cause): generalization of invariance; generally violated for wrong directions
- Special cases: if $C V_k V_l$, since $C \rightarrow V_k$, we known
- $C \rightarrow V_k \leftarrow V_l$, if $C \perp V_l$ given a variable set **excluding** V_k invariant cause $C \rightarrow V_k \leftarrow V_l$.
 - $C \rightarrow V_k \rightarrow V_l$, if $C \perp V_l$ given a variable set **including** V_k

Hoover. The logic of causal inference. Economics and Philosophy, 6:207-234, 1990.

Kernel Nonstationarity Visualization

• Capture the nonstationarity in causal module $PA^i \rightarrow V_i$:

 $\lambda_i(C) = h_i(P(V_i \mid PA^i, C)).$

- By maximizing the variability of $\lambda_i(C)$ for all values of C
- Kernel nonstationarity visualization (KNV):
 - Kernel embedding of conditional distributions to avoid explicitly estimating them
 - Then borrow the idea of kernel principal component analysis: EVD

Causal Analysis of Major Stocks in Hong Kong Market (10/09/2006 - 08/09/2010)

- 1. Cheng Kong Holdings,
- 2. Wharf (Holdings),
- 3. HSBC,
- 4.Hong Kong Electric Holdings,
- 5. Hang Seng Bank,
- 6. Henderson Land Dev.,
- 7. Sun Hung Kai Properties,
- 8. Swire Group,
- 9. Cathay Pacific Airways
- 10. Bank of China Hong Kong
- HSF and HSP usually have nonstationary confounders

Nonstationarity Driving Force

1. Cheng Kong Holdings,

2. Wharf (Holdings),

3. HSBC,

4.Hong Kong Electric Holdin

5. Hang Seng Bank,

- 6. Henderson Land Dev.,
- 7. Sun Hung Kai Properties,

8. Swire Group,

- 9. Cathay Pacific Airways
- 10. Bank of China Hong Kong

Causal Analysis of M NYSE (07/05/2006

- Huang, Zhang, Zhang, Romero, Glymour, Schölkopf, Behind Distribution Shift: Mining Driving Forces of Changes and Causal Arrows," ICDM 2017 44

Summary

- Nonlinear models with additive noise
 - Just like linear, non-Gaussian models
 - So some people say nonlinear or non-Gaussian methods for causal discovery can recover the DAG uniquely
- Other types of "independence" also help in causal discovery
- Nonstationarity facilitates causal discovery

• Next: Dealing with selection bias, measurement error, missing values, temporal constraints, etc.