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discretized values

In this paper, we aim to estimate the causal model
underlying the measurement-error-free variables X̃i

from their observed values Xi contaminated by random
measurement error. We assume linearity of the causal
model and causal sufficiency relative to {X̃i}ni=1. We
particularly focus on the case where the causal structure
for X̃i is represented by a Directed Acyclic Graph
(DAG), although this condition can be weakened. In
order to develop principled causal discovery methods
to recover the causal model for {X̃i}ni=1 from observed
values of {Xi}ni=1, we have to address theoretical issues
include

• whether the causal model of interest is completely
or partially identifiable from the contaminated
observations,

• what are the precise identifiability conditions, and

• what information in the measured data is essential
for estimating the identifiable causal knowledge.

We make an attempt to answer the above questions on
both theoretical and methodological sides.

One of the main difficulties in dealing with causal dis-
covery in the presence of measurement error is because
the variances of the measurement errors are unknown.
Otherwise, if they are known, one can readily calculate
the covariance matrix of the measurement-error-free
variables X̃i and apply traditional causal discovery
methods such as the PC (Spirtes et al., 2001) or
GES (Chickering, 2002)) algorithm. It is worth noting
that there exist causal discovery methods to deal with
confounders, i.e., hidden direct common causes, such
as the Fast Causal Inference (FCI) algorithm (Spirtes
et al., 2001). However, they cannot estimate the causal
structure over the latent variables, which is what we aim
to recover in this paper. (Silva et al., 2006) and (Kum-
merfeld et al.) have provided algorithms for recovering
latent variables and their causal relations when each
latent variable has multiple measured effects. Their
problem is different from the measurement error set-
ting we consider, where clustering for latent common
causes is not required and each measured variable is the
direct effect of a single "true" variable. Furthermore,
as shown in next section, their models can be seen as
special cases of our setting.

2 Effect of Measurement Error on
Conditional Independence /
Dependence

We use an example to demonstrate how measurement
error changes the (conditional) independence and de-
pendence relationships in the data. More precisely,

we will see how the (conditional) independence and
independence relations between the observed variables
Xi are different from those between the measurement-
error-free variables X̃i. Suppose we observe X1, X2,
and X3, which are generated from measurement-error-
free variables according to the structure given in Fig-
ure 1. Clearly X̃1 is dependent on X̃2, while X̃1 and
X̃3 are conditionally independent given X̃2. One may
consider general settings for the variances of the mea-
surement errors. For simplicity, here let us assume that
there is only measurement error in X2, i.e., X1 = X̃1,
X2 = X̃2 + E2, and X3 = X̃3.

X̃1 X̃2 X̃3

X1 X2 X3

Figure 1: A linear CAMME to demonstrate the effect
of measurement error on conditional independence and
dependence relationships. For simplicity, we consider
the special case where there is measurement error only
in X2, i.e., X2 = X̃2 +E2, but X1 = X̃1 and X3 = X̃3.

Let ⇢̃12 be the correlation coefficient between X̃1 and
X̃2 and ⇢̃13,2 be the partial correlation coefficient be-
tween X̃1 and X̃3 given X̃2, which is zero. Let ⇢12

and ⇢13,2 be the corresponding correlation coefficient
and partial correlation coefficient in the presence of
measurement error. We also let ⇢̃12 = ⇢̃23 = ⇢̃ to make
the result simpler. So we have ⇢13 = ⇢̃13 = ⇢̃12⇢̃23 = ⇢̃

2.
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As the variance of the measurement error in X2 in-
creases, � become larger, and ⇢12 decreases and finally
goes to zero; in contrast, ⇢13,2, which is zero for the
measurement-error-free variables, is increasing and fi-
nally converges to ⇢̃

2. See Figure 2 for an illustration.
In other words, in this example as the variance of the
measurement error in X2 increases, X1 and X2 be-
come more and more independent, while X1 and X3

are conditionally more and more dependent given X2.
However, for the measurement-error-free variables, X̃1

and X̃2 are dependent and X̃1 and X̃3 and condition-
ally independent given X̃2. Hence, the structure given
by constraint-based approaches to causal discovery on
the observed variables can be very different from the
causal structure over measurement-error-free variables.

One might apply other types of methods instead of the
constraint-based ones for causal discovery from data
with measurement error. In fact, as the measurement-
error-free variables are not observable, X̃2 in Figure 1
is actually a confounder for observed variables. As a
consequence, generally speaking, due to the effect of
the confounders, the independence noise assumption
underlying functional causal model-based approaches,
such as the method based on the linear, non-Gaussian,
acyclic model (Shimizu et al., 2006), will not hold for
the observed variables any more. Figure 3 gives an
illustration on this. Figure 3(a) shows the scatter plot
of X1 vs. X2 and the regression line from X2 to X1,
where X̃2, the noise in X̃1, and the measurement error
E2, are all uniformly distributed (⇢ = 0.4, and � = 1.4).
As seen from Figure 3(b), the residual of regressing
X1 on X2 is not independent from X2, although the
residual of regressing X̃1 on X̃2 is independent from
X̃2. As a result, the functional causal model-based
approaches to causal discovery may also fail to find the
causal structure of the measurement-error-free variables
from their contaminated observations.

0 2 4 6 8 10
� = S td(E 2)/S td(X̃2)
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Figure 2: The correlation coefficient ⇢12 between X1

and X2 and partial correlation coefficient ⇢13,2 between
X1 and X3 given X2 as functions of �, the ratio of the
standard deviation of measurement error to the that of
X̃2. We have assumed that the correlation coefficient
between X̃1 and X̃2 and that between X̃2 and X̃3 are
the same (denoted by ⇢̃), and that there is measurement
error only in X2.

3 Canonical Representation of Causal
Models with Measurement Error

Let G̃ be the acyclic causal model over X̃i. Here we
call it measurement-error-free causal model. Let B be
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Figure 3: Illustration on how measurement error leads
to dependence between regression residual and con-
taminated cause. (a) Scatter plot of X2 and X1 with
measurement error in X2 together with the regression
line. (b) Scatter plot of the regression residual and
X2. Note that if we regress X̃1 on X̃2, the residual is
independent from X̃2.

the corresponding causal adjacency matrix for X̃i, in
which Bij is the coefficient of the direct causal influence
from X̃j to X̃i and Bii = 0. We have,

X̃ = BX̃+ Ẽ, (2)

where the components of Ẽ, Ẽi, have non-zero, finite
variances. Then X̃ is actually a linear transformation
of the error terms in Ẽ because (2) implies

X̃ = (I�B)�1

| {z }
,A

Ẽ. (3)

Now let us consider two types of nodes of G̃, namely,
leaf nodes (i.e., those that do not influence any other
node) and non-leaf nodes. Accordingly, the noise term
in their structural equation models also has distinct
behaviors: If X̃i is a leaf node, then Ẽi influences only
X̃i, not any other; otherwise Ẽi influences X̃i and at
least one other variable, X̃j , j 6= i. Consequently, we
can decompose the noise vector into two groups: ẼL

consists of the l noise terms that influence only leaf
nodes, and ẼNL contains the remaining noise terms.

measurement error

missing values

data uncertainty
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causal interpretations), including intervention e↵ects.
In addition to the work on various selection models
in econometrics and social science (Heckman, 1979;
Winship & Mare, 1992), recent literature has seen in-
teresting work on the recoverability of causal param-
eters based on graphical models (Didelez et al., 2010;
Bareinboim & Pearl, 2012; Bareinboim et al., 2014;
Evans & Didelez, 2015). Much of this work, however,
deals with linear models or discrete variables, whereas
we are concerned in this paper with continous variables
that may bear a nonlinear relationship.

We will proceed as follows. In Section 2, we introduce
the general setup and briefly discuss several types of
selection, before focusing our attention on the situa-
tion where the selection depends on the e↵ect variable,
known as outcome-dependent selection. In Section 3,
we show that in the framework of post-nonlinear causal
models, once outcome-dependent selection is properly
modeled, the causal direction between two variables is
generically identifiable. In Section 4, we identify some
mild conditions under which an additive noise causal
model with outcome-dependent selection is to a large
extent identifiable. We then propose, in Section 5, two
methods for estimating an additive noise model from
data that are generated with outcome-dependent se-
lection. Some experiments are reported in Section 6.

2 Outcome-Dependent Selection Bias

A common way to represent selection bias is to use a
binary selection variable S encoding whether or not a
unit is included in the sample. Suppose we are inter-
ested in the relationship between X and Y , where X
has a causal influence on Y . Let pXY denote the joint
distribution of X and Y in the population. Thanks to
selection, the selected sample follows pXY |S=1 instead
of pXY . In general, pXY |S=1 6= pXY , and that is how
selection may distort statistical and causal inference.
However, di↵erent kinds of selection engender di↵er-
ent levels of di�culty. In general, S may depend on
any number of substantive variables, as illustrated in
Figure 1, where X = (X1, X2). 1

1
In this paper, we assume that we only know which vari-

ables the selection variable S depends on, but the selection

mechanism is unknown, i.e., the probability of S = 1 given

those variables is unknown. Notice that we do not have

access to the data points that were not selected. This is

very di↵erent from Heckman’s framework to correct the

bias caused by a censored sample (Heckman, 1979), which

assumes access to an i.i.d. sample from the whole popula-

tion, on which the Y values are observable only for the data

points that satisfy the selection criterion (implied by the

selection equation), but other attributes of the “censored”

points are still available, enabling one to directly identify

the selection mechanism.

W X1 X2 Y

S

W X1 X2 Y

S U

(a) (b)

W X1 X2 Y
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W X1 X2 Y
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(c) (d)

Figure 1: Illustration of di↵erent situations with sam-
ple selection bias. (a) S depends on X = (X1, X2) but
not on Y . (b) S depends on X and is also statistically
dependent on Y given X due to a confounder U . (c)
S directly depends solely on Y (outcome-dependent
selection). (d) S depends on both X and Y .

Selection Bias on the Cause For the purpose of
causal inference, the least problematic kind of situa-
tion is depicted in Figure 1(a), in which S is indepen-
dent of the e↵ect variable Y given the cause variable
X. It follows that pY |X,S=1 = pY |X . That is, the
selection bias does not distort the conditional distri-
bution of the e↵ect Y given the cause X or the struc-
tural equation model for the causal process. In such
a situation, causal inference can essentially proceed as
usual. However, if there is a (latent) confounder for
Y and S, as illustrated in Figure 1(b), S and Y are
not conditionally independent given X any more, that
is, pY |X,S=1 6= pY |X . Such a distortion may be cor-
rected under rather restrictive assumptions; see, e.g.,
Heckman’s correction (Heckman, 1979).

Selection Bias on the E↵ect If the selection de-
pends solely on the e↵ect, as depicted in Figure 1(c),
then pY |X,S=1 6= pY |X , and the selection bias, if not
corrected, will mislead inference. Consider, for exam-
ple, a standard assumption in functional causal mod-
eling that the e↵ect Y is a function of the cause vari-
able X and an noise variable E that is independent
of X. Suppose this assumption holds in the popula-
tion. With the outcome-dependent selection, X and
E are typically not independent in the selected sam-
ple, as they are typically not independent conditional
on S (which is a descendant of a collider between X
and E, i.e., Y ). Furthermore, even if one fits a regres-
sion model on selected sample, the estimated residual
(which is usually di↵erent from the true noise term in
the causal process) is usually not independent from X;
we will get back to this issue in Section 4.1.

This kind of selection is known as outcome-dependent

selection bias (OSB) (Didelez et al., 2010; Bareinboim
et al., 2014), and will be our focus in this paper. We
will show that although outcome-dependent selection
seriously complicates analysis, it can be handled in



Practical Issues in Causal Discovery…
• Nonlinearities (Zhang & Chan, ICONIP’06; Hoyer et al., NIPS’08; Zhang & 

Hyvärinen, UAI’09; Huang et al., KDD’18)

• Categorical variables or mixed cases (Huang et al., KDD’18; Cai et al., NIPS’18) 

• Measurement error (Zhang et al., UAI’18; PSA’18) 

• Selection bias (Zhang et al., UAI’16) 

• Confounding SGS 1993; Zhang et al., 2018c; Cai et al., NIPS’19; Ding et al., NIPS’19); latent 
causal representation learning (Silva et  al., JMLR’06; Xie et al., NeurIPS’20; Cai et al., 
NeurIPS’19; Adams et al., NeurIPS’21)

• (SGS 1993; Zhang et al., 2018c; Cai et al., NIPS’19; Ding et al., NIPS’19)

• Missing values (Tu et al., AISTATS’19)

• Causality in time series

• Time-delayed + instantaneous relations (Hyvarinen ICML’08; Zhang et al., 
ECML’09; Hyvarinen et al., JMLR’10)

• Subsampling / temporally aggregation (Danks & Plis, NIPS WS’14; Gong et al., 
ICML’15 & UAI’17)

• From partially observable time series (Geiger et al., ICML’15)

• Application in recommender systems (Wang et al., AAAI’18; Wang et al., NIPS’18)



Practical Issues in Causal Discovery…
• Nonlinearities (Zhang & Chan, ICONIP’06; Hoyer et al., NIPS’08; Zhang & 

Hyvärinen, UAI’09; Huang et al., KDD’18)

• Categorical variables or mixed cases (Huang et al., KDD’18; Cai et al., NIPS’18) 

• Measurement error (Zhang et al., UAI’18; PSA’18) 

• Selection bias (Zhang et al., UAI’16) 

• Confounding (SGS 1993; Zhang et al., 2018c; Cai et al., NIPS’19; Ding et al., NIPS’19); latent causal 
representation learning (Silva et  al., JMLR’06; Xie et al., NeurIPS’20; Cai et al., NeurIPS’19; Adams 
et al., NeurIPS’21)

• Missing values (Tu et al., AISTATS’19) 

• Causality in time series

• Time-delayed + instantaneous relations (Hyvarinen ICML’08; Zhang et al., 
ECML’09; Hyvarinen et al., JMLR’10)

• Subsampling / temporally aggregation (Danks & Plis, NIPS WS’14; Gong et al., 
ICML’15 & UAI’17)

• From partially observable time series (Geiger et al., ICML’15)

• Application in recommender systems (Wang et al., AAAI’18; Wang et al., NIPS’18)

• Nonstationary/heterogeneous data (Zhang et al., IJCAI’17; Huang et al, ICDM’17, 



Practical Issues in Causal Discovery…
• Nonlinearities (Zhang & Chan, ICONIP’06; Hoyer et al., NIPS’08; Zhang & 

Hyvärinen, UAI’09; Huang et al., KDD’18)

• Categorical variables or mixed cases (Huang et al., KDD’18; Cai et al., NIPS’18) 

• Measurement error (Zhang et al., UAI’18; PSA’18) 

• Selection bias (Zhang et al., UAI’16) 

• Confounding (SGS 1993; Zhang et al., 2018c; Cai et al., NIPS’19; Ding et al., NIPS’19); latent causal 
representation learning (Silva et  al., JMLR’06; Xie et al., NeurIPS’20; Cai et al., NeurIPS’19; Adams 
et al., NeurIPS’21)

• Missing values (Tu et al., AISTATS’19)

• Causality in time series 

• Time-delayed + instantaneous relations (Hyvarinen ICML’08; Zhang et al., 
ECML’09; Hyvarinen et al., JMLR’10)

• Subsampling / temporally aggregation (Danks & Plis, NIPS WS’14; Gong et al., 
ICML’15 & UAI’17)

• From partially observable time series (Geiger et al., ICML’15)

• Application in recommender systems (Wang et al., AAAI’18; Wang et al., NIPS’18)

• Nonstationary/heterogeneous data (Zhang et al., IJCAI’17; Huang et al, ICDM’17, 



Practical Issues in Causal Discovery…
• Nonlinearities (Zhang & Chan, ICONIP’06; Hoyer et al., NIPS’08; Zhang & Hyvärinen, UAI’09; Huang 

et al., KDD’18)

• Categorical variables or mixed cases (Huang et al., KDD’18; Cai et al., NIPS’18) 

• Measurement error (Zhang et al., UAI’18; PSA’18) 

• Selection bias (Spirtes 1995; Zhang et al., UAI’16) 

• Confounding (SGS 1993; Zhang et al., 2018c; Cai et al., NIPS’19; Ding et al., NIPS’19); latent causal 
representation learning (Silva et  al., JMLR’06; Xie et al., NeurIPS’20; Cai et al., NeurIPS’19; Adams 
et al., NeurIPS’21)

• Missing values (Tu et al., AISTATS’19)

• Causality in time series

• Time-delayed + instantaneous relations (Hyvarinen ICML’08; Zhang et al., ECML’09; 
Hyvarinen et al., JMLR’10)

• Subsampling / temporally aggregation (Danks & Plis, NIPS WS’14; Gong et al., ICML’15 & 
UAI’17)

• From partially observable time series (Geiger et al., ICML’15)

• Nonstationary/heterogeneous data (Zhang et al., IJCAI’17; Huang et al, ICDM’17, 
Ghassami et al., NIPS’18; Huang et al., ICML’19 & NIPS’19; Huang et al., JMLR’20) 

nonstationarity



With Nonlinearities

• Model

• Identifiability

• Identification



Some Real Data Sets
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Functional Causal Models

• Effect generated from cause with independent noise (Pearl et al.):           

• A way to encode the intuition “the generating process for X is ‘independent’ 
from that generates Y from X”

• :-( Without constraints on f, one can find independent noise for both 
directions (Darmois, 1951; Zhang et al., 2015)  

• Given any X1 and X2, E’ := conditional CDF of X2 | X1 is always independent 
from X1 and X2 = f (X1, E’)

• :-) Structural constraints on f imply asymmetry

fX

E

Y

P(X) →X→
P(Y|X)

Y
→

⫫

Y = f (X, E)



A Way to Construct 
Independent Error Term

• CDF(Y) is a random variable uniformly distributed over [0,1]

• E’ ≜ Conditional CDF(Y | X=x) is uniformly distributed over [0,1], 
irrelevant to the value of x

• E’ ⫫ X

• Y can be written as Y = f (X, E’), i.e., the transformation from (X, Y) to 
(X, E’) is invertible

• Why? The Jacobin !

fX

E

Y

x

C
C

D
F(

y|
x
)

x

y

Zhang et al.(2015), On Estimation of Functional Causal Models: General Results and Application to Post-
Nonlinear Causal Model, ACM Transactions on Intelligent Systems and Technology, Forthcoming



Then What Can We Do?

• The structure of f should be constrained & be able to 
approximate the true process...

Y = f (X, E)



FCMs with Which Causal Direction is 
Generally Identifiable

• Linear non-Gaussian acyclic causal model (Shimizu et 
al., ‘06)

• Additive noise model (Hoyer et al., ’09; Zhang & 
Hyvärinen, ‘09b)

• Post-nonlinear causal model (Zhang & Chen, 2006; 
Zhang & Hyvärinen, ‘09a)

Y = a·X +E

Y = f(X) +E

Y = f2 ( f1(X) +E )



Causal Asymmetry with Nonlinear 
Additive Noise: Illustration 

X

Y

Y = f(X) +E with E⫫X

(Hoyer et al., 2009)



Three Effects usually encountered in a causal 
model (Zhang & Chan, 2006; Zhang & Hyvärinen, ‘09a)

• Without prior knowledge, the assumed model is expected to be 
• general enough: adapt to approximate the true generating process 

• identifiable: asymmetry in causes and effects       

• Represented by post-nonlinear causal model with inner additive 
noise



PNL Causal Model

• Special cases: 

• Linear models

• Nonlinear additive noise models

• Multiplicative noise models: 

Xi = fi,2 ( fi,1 (pai) + Ei)

Variables: 
Y = Sales price 
X1 = Finished square feet 
X2 = 1 if air conditioning, 0 if no air conditioning 
X3 = 1 for high quality, 2 for medium quality, 3 for low quality construction 
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Identifiability in Two-variable Case: 
Theoretical Results

• Two-variable case: if X1→X2, then X2 = f2,2 ( f2,1 (X1) + E2)

• Is the causal direction implied by the model unique?

• By a proof of contradiction

• Assume both X1→X2 and X2→X1 satisfy PNL model 

• One can then find all non-identifiable cases

Xi = fi,2 ( fi,1 (pai) + Ei)



Identifiability Establishment: 
To Be Discussed

• Not Mysterious

• Will explain the basic idea with the identifiability of ICA 
as an example on March 18



Identifiability: A Mathematical Result



List of All Non-Identifiable Cases

Causal direction is generally 

identifiable if the data were 

generated according to 

X2 = f2 ( f1 (X1) + E). 

Linear models and nonlinear 

additive noise models are 

special cases.



Transitivity of FCMs and Intermediate 
Causal Variable Recovery

• Transitivity of causal direction violated by FCMs: Intermediate 
causal variable determination?



• Nonlinear deterministic case:

• Y = f(X)   ⇒   p(Y) = p(X) / |f’(X)| 

•  log f’(X) and p(X) uncorrlated w.r.t. a 
uniform reference; violated for the other 
direction

• Asymmetry ?

f
E

YX

Figure 3: If the structure of the density of PX is not correlated with the slope
of f , then flat regions of f induce peaks of PY . The causal hypothesis Y ⇥ X
is thus implausible because the causal mechanism f�1 appears to be adjusted
to the “input” distribution PY .

violation of one of our orthogonality conditions in backward direction follows
easily from the orthogonality in forward direction. Moreover, our simulations
suggest that the corresponding inference method is robust with respect to adding
some noise; and also the empirical results on noisy real-world data with known
ground truth were rather positive. This section largely follows our conference
paper [?] but put the ideas in a broader context and contains more systematic
experimental verifications.

4.1 Motivation

We start with a motivating example. For two real-valued variables X and Y ,
let Y = f(X) with an invertible di�erentiable function f . Let PX be chosen
independently of f . Then regions of high density PY correlate with regions
where f has small slope (see Fig. 3).

To make this phenomenon more explicit, we assume for simplicity that f
is a bijection of [0, 1]. To formally express the assumption that the slope of f
does not correlate with peaks of PX , we consider x ⇤⇥ P (x) and x ⇤⇥ log f ⇥(x)
as random variables on [0, 1] and compute their covariance with respect to the
uniform distribution UX :

CovUX (log f ⇥, PX) =

� 1

0
log f ⇥(x)P (x)dx�

� 1

0
log f ⇥(x)dx

� 1

0
P (x)dx

=

� 1

0
log f ⇥(x)P (x)dx�

� 1

0
log f ⇥(x)dx , (9)

and postulate that it vanishes approximately if X ⇥ Y . The reason why we
have chosen the logarithm of the slope instead of the slope itself is that the
covariance then gets an information theoretic meaning (see below).

For the backward direction, i.e. the hypothesis Y ⇥ X withX = g(Y ) where
g := f�1, the corresponding covariance with respect to the uniform density UY

9
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Another Type of Method: “Independence” 
between p(X) and Complex f

Janzing et al. (2012), Information-geometric approach to inferring causal direction, Artificial Intelligence
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Fig. 5. Left: violation of (9) due to a too global deviation of P X from the uniform measure. Right: P X oscillating around the constant density ensures
uncorrelatedness.

Note that the terminology “uncorrelated” is justified if we interpret f ′ and P X as random variables on the probability
space [0,1] with uniform measure (see the interpretation of (3) as uncorrelatedness). The lemma actually follows from more
general results shown later, but the proof is so elementary that it is helpful to see:

1∫

0

log
(

f −1)′
(y)P (y)dy −

1∫

0

log
(

f −1)′
(y)dy

= −
1∫

0

log f ′(x)P (x)dx +
1∫

0

log f ′(x) f ′(x)dx

= −
1∫

0

log f ′(x)dx +
1∫

0

log f ′(x) f ′(x)dx =
1∫

0

(
f ′(x) − 1

)
log f ′(x)dx ! 0.

The first equality uses standard substitution and exploits the fact that

log
(

f −1)′(
f (x)

)
= − log f ′(x). (10)

The second equality uses assumption (9), and the last inequality follows because the integral is non-negative everywhere.
Since it can only vanish if Z is constant almost everywhere, the entire statement of Lemma 4 follows.

Peaks of P Y thus correlate with regions of large slope of f −1 (and thus small slope of f ) if X is the cause. One can
show that this observation can easily be generalized to the case where f is a bijection between sets of higher dimension.
Assuming that P X is uncorrelated with the logarithm of the Jacobian determinant log |∇ f | implies that P Y is positively
correlated with log |∇ f −1|.

Before embedding the above insights into our information-geometric framework we will show an example where the
whole idea fails:

Example 2 (Failure of uncorrelatedness). Let f be piecewise linear with f ′(x) = a for all x < x0 and f ′(x) = b for all x ! x0.
Then

1∫

0

log f ′(x)P (x)dx −
1∫

0

log f ′(x)dx = (log a − log b)
(

P X
(
[0, x0]

)
− x0

)
.

Therefore, uncorrelatedness can fail spectacularly whenever |P X ([0, x0]) − x0| is large, meaning that P X and the uniform
measure differ on a larger scale as in Fig. 5, left. If P X only oscillates locally around 1, it still holds (Fig. 5, right).

The fact that the logarithm of the slope turned out to be particularly convenient due to (10), is intimately related to our
information-geometric framework: We first observe that

−→
P Y and

←−
P X have straightforward generalizations to the determin-

istic case as the images of U X and U Y under f and g := f −1, respectively. If U X and U Y are the uniform distributions on
[0,1], they are given by

−→
P (y) := g(y) and

←−
P (x) := f ′(x). (11)

We thus obtain that (9) is equivalent to

1∫

0

log g′(y)P (y)dy =
1∫

0

log g′(y)g′(y)dy,

Such independence 
violated

such independence 
holds



• Linear high-dimensional deterministic case:

• Y = AX  (causal direction) ⇒ cov(Y) = A·cov(X)·AT 

• Reverse direction: X = A-1Y 

• If A and the covariance matrix of X are chosen 
independently, then A-1 and the covariance matrix of Y will 
be coupled (in the reverse direction)

• Asymmetry ?

Similarly, “Independence” in 
Linear Transformations

Janzing et al. (2012), Information-geometric approach to inferring causal direction, Artificial Intelligence



Nonstationary/Heterogeneous Data and 
Causal Modeling

• Ubiquity of nonstationary/heterogeneous data

• Nonstationary time series (brain signals, 
climate data...)

• Multiple data sets under different 
observational or experimental conditions

• Causal modeling & distribution shift heavily 
coupled

• P(cause) and P(effect | cause) change 
independently

Huang, Zhang, Zhang, Ramsey, Sanchez-Romero, Glymour, Schölkopf, "Causal Discovery from Heterogeneous/
Nonstationary Data," JMLR, 2020 
Zhang, Huang, et al., Discovery and visualization of nonstationary causal models, arxiv 2015
Ghassami, et al., Multi-Domain Causal Structure Learning in Linear Systems, NIPS 2018



Causality and Invariance, Robustness, etc.
• Consider prediction (with regression) in different time periods
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Data
• Population growth and food consumption: 

• data for 174 countries or areas, during the period from 1990-92 
to 1995-97 (former 173 data points) and that from 1995-97 to 
2000-02 (latter 174 points).  

• X1: the average annual rate of change of population; X2: the 
average annual rate of change of total dietary consumption for 
total population (kcal/day)
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- Invariance!
- More generally, independent changes



Causal Discovery from Nonstationary/
Heterogeneous Data

• Determine changing causal modules & 
estimate skeleton 

• Causal orientation determination benefits 
from independent changes in P(cause) and 
P(effect | cause), including invariant 
mechanism/ cause as special cases 

• Visualization of  changing modules over time/ 
across data sets?
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Causal Discovery from Nonstationary Data

to reveal the correct causal structure when the data distri-
bution shifts. If the changes in some variables are related,
one can imagine that there exists some unobservable quan-
tity which influences all those variables and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Similarly, suppose a
variable Vi was generated from its direct causes with a cer-
tain functional causal model (e.g., the linear, non-Gaussian
model (Shimizu et al., 2006)) whose parameters change at
some point. Then if one fits a fixed functional causal model
from the directed causes to Vi, the noise term is usually not
independent from the causes any more, and accordingly it
fails to distinguish the correct causal structure from other
candidates. There exist some methods aiming to detect
the changes (Talih & Hengartner, 2005; Adams & Mackay,
2007; Kummerfeld & Danks, 2013) or directly model time-
varying causal relations (see, e.g., (Huang et al., 2015)) in a
dynamic manner. They usually focus on the linear case, in-
volve high computational load, and cannot quickly locate
changing causal relations. This motivated the following
questions, which are to be answered in this paper.

a) The conditional independence relationships in the data
between the given variables may be changed by shifted
causal models. However, can we find the correct skeleton
of the true causal model efficiently?

b) Can we efficiently identify the variables whose generat-
ing processes (i.e., causal models) change?

c) Compared to the situation with data from a fixed distri-
bution, can the distribution shift phenomenon provide some
benefit in causal discovery, especially in causal direction
determination?

This paper is organized as follows. In Section 2 we give
the problem definition and review related work. Section 3
proposes an enhanced constraint-based approach to robust
and specific causal skeleton discovery, which is able to re-
cover the skeleton of the causal structure underlying the
observed variables and identify those variables whose gen-
erating processes are nonstationary. The remaining prob-
lem is how to determine the direction of the causal con-
nections, which is addressed in Section 4: we show that
the nonstionarity of the distribution usually provides addi-
tional benefit in causal direction determination. Section 5
reports simulations results to test the performance of the
proposed causal discovery approach when the ground truth
is known. Finally, we apply the proposed approach to do
causal discovery from fMRI data and to find the causal re-
lations among a set of stocks from their daily returns in 2.

2. Problem Definition and Related Work

We aim at recovering the causal structure from data when
the causal influences associated with some causal relations

change over time or across domains. In this paper we
assume that the underlying causal structure is a directed
acyclic graph (DAG) and that the causal structure is fixed,
with changing causal models.

V1 V2 V3 V4

g(C)

V1 V2 V3 V4

(a) (b)

Figure 1. An illustration on how ignoring changes in the causal
model may lead to spurious connections by the constraint-based
method. (a) The true causal graph (including confounder g(C)).
(b) The estimated conditional independence graph on the ob-
served data in the asymptotic case.

Let us decompose the joint probability distribution of the
given variable set V = {Vi}ni=1 according to the DAG as

P (V) =
nY

i=1

P (Vi |PAi), (1)

where PAi denotes the set of parents (or direct causes)
of variable Vi in the causal DAG. Here we call each
P (Vi |PAi) a causal module. Clearly, in the presence of
distribution shifts, there must be changes in certain causal
modules P (Vk |PAk), k 2 N , to generate the change of
the data distribution. We call those causal modules non-
stationary causal modules. Their changes may be caused
by the change of the involved functional models, causal
strengths, noise levels, etc. We assume that the changes
in those quantities can be written as functions of the time
or domain index, and denote by C such an index.

If the changes in some modules are related, one can
imagine that there exist some unobservable quantity (con-
founder) which influences those modules and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Therefore, the original
constraint-based approach, like PC (Spirtes et al., 2001;
Pearl, 2000), may not be able to reveal the true causal struc-
ture. This is especially the case for the causal network in
the brain: the causal influences in different causal modules
in the brain may change with stimuli, tasks, states, the at-
tention of the subject, etc. As an illustration, suppose that
the observed data were generated according to Fig. 1(a),
where g(C), a function of C, is involved in the generating
processes in both V2 and V4; the conditional independence
graph on the observed data then contains spurious connec-
tions V1 � V4 and V2 � V4, because there is only one con-
ditional independence relationship, V3 ?? V1 |V2, as shown
in 1(b). Moreover, when one fits a fixed functional causal
model (e.g., the linear, non-Gaussian model (Shimizu et al.,
2006)) on the data with changing causal influences, the
estimated noise may not be independent from the cause

Kernel nonstationary 
driving force estimation

• Task:

- Huang et al., "Causal Discovery from Heterogeneous/Nonstationary Data," JMLR, 2020

- Tian, Pearl, “Causal discovery from changes,” UAI 2001

- Hoover, “ The logic of causal inference” Economics and Philosophy, 6:207–234, 1990.

i.i.d. data? Parametric 
constraints?

Latent 
confounders?

Yes No No
No Yes Yes



Discovery & Visualization of 
Changing Causal Modules

• Identify variables 
with changing 
causal modules & 
recover causal 
skeleton?

• Identify causal 
directions by using 
distribution shifts?

• Visualize the 
change in causal 
modules?
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Causal Discovery from Nonstationary Data

to reveal the correct causal structure when the data distri-
bution shifts. If the changes in some variables are related,
one can imagine that there exists some unobservable quan-
tity which influences all those variables and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Similarly, suppose a
variable Vi was generated from its direct causes with a cer-
tain functional causal model (e.g., the linear, non-Gaussian
model (Shimizu et al., 2006)) whose parameters change at
some point. Then if one fits a fixed functional causal model
from the directed causes to Vi, the noise term is usually not
independent from the causes any more, and accordingly it
fails to distinguish the correct causal structure from other
candidates. There exist some methods aiming to detect
the changes (Talih & Hengartner, 2005; Adams & Mackay,
2007; Kummerfeld & Danks, 2013) or directly model time-
varying causal relations (see, e.g., (Huang et al., 2015)) in a
dynamic manner. They usually focus on the linear case, in-
volve high computational load, and cannot quickly locate
changing causal relations. This motivated the following
questions, which are to be answered in this paper.

a) The conditional independence relationships in the data
between the given variables may be changed by shifted
causal models. However, can we find the correct skeleton
of the true causal model efficiently?

b) Can we efficiently identify the variables whose generat-
ing processes (i.e., causal models) change?

c) Compared to the situation with data from a fixed distri-
bution, can the distribution shift phenomenon provide some
benefit in causal discovery, especially in causal direction
determination?

This paper is organized as follows. In Section 2 we give
the problem definition and review related work. Section 3
proposes an enhanced constraint-based approach to robust
and specific causal skeleton discovery, which is able to re-
cover the skeleton of the causal structure underlying the
observed variables and identify those variables whose gen-
erating processes are nonstationary. The remaining prob-
lem is how to determine the direction of the causal con-
nections, which is addressed in Section 4: we show that
the nonstionarity of the distribution usually provides addi-
tional benefit in causal direction determination. Section 5
reports simulations results to test the performance of the
proposed causal discovery approach when the ground truth
is known. Finally, we apply the proposed approach to do
causal discovery from fMRI data and to find the causal re-
lations among a set of stocks from their daily returns in 2.

2. Problem Definition and Related Work

We aim at recovering the causal structure from data when
the causal influences associated with some causal relations

change over time or across domains. In this paper we
assume that the underlying causal structure is a directed
acyclic graph (DAG) and that the causal structure is fixed,
with changing causal models.
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g(C)

V1 V2 V3 V4

(a) (b)

Figure 1. An illustration on how ignoring changes in the causal
model may lead to spurious connections by the constraint-based
method. (a) The true causal graph (including confounder g(C)).
(b) The estimated conditional independence graph on the ob-
served data in the asymptotic case.

Let us decompose the joint probability distribution of the
given variable set V = {Vi}ni=1 according to the DAG as

P (V) =
nY

i=1

P (Vi |PAi), (1)

where PAi denotes the set of parents (or direct causes)
of variable Vi in the causal DAG. Here we call each
P (Vi |PAi) a causal module. Clearly, in the presence of
distribution shifts, there must be changes in certain causal
modules P (Vk |PAk), k 2 N , to generate the change of
the data distribution. We call those causal modules non-
stationary causal modules. Their changes may be caused
by the change of the involved functional models, causal
strengths, noise levels, etc. We assume that the changes
in those quantities can be written as functions of the time
or domain index, and denote by C such an index.

If the changes in some modules are related, one can
imagine that there exist some unobservable quantity (con-
founder) which influences those modules and, as a conse-
quence, the conditional independence relationships in the
distribution-shifted data will be different from those im-
plied by the true causal structure. Therefore, the original
constraint-based approach, like PC (Spirtes et al., 2001;
Pearl, 2000), may not be able to reveal the true causal struc-
ture. This is especially the case for the causal network in
the brain: the causal influences in different causal modules
in the brain may change with stimuli, tasks, states, the at-
tention of the subject, etc. As an illustration, suppose that
the observed data were generated according to Fig. 1(a),
where g(C), a function of C, is involved in the generating
processes in both V2 and V4; the conditional independence
graph on the observed data then contains spurious connec-
tions V1 � V4 and V2 � V4, because there is only one con-
ditional independence relationship, V3 ?? V1 |V2, as shown
in 1(b). Moreover, when one fits a fixed functional causal
model (e.g., the linear, non-Gaussian model (Shimizu et al.,
2006)) on the data with changing causal influences, the
estimated noise may not be independent from the cause

With our proposed approach:

Kernel nonstationarity 
visualization (KNV)

* Questions to answer for causal discovery:

• Incorporate time/domain 
index C as a surrogate + 
apply constraint-based 
causal discovery methods 

• Independent changes in 
P(cause) and P(effect | 
cause) 

• Find a mapping of P(Vi |
PAi ) to capture its 
variability

37



Method and Its Theoretical 
Guarantee: Assumptions

• Pseudo causal sufficiency: Confounders as smooth functions of C

• C: domain or time index; as a surrogate 

• Structural equation model:

• Causal Markov condition and faithfulness on augmented graph

from V1.
To tackle the issue of changing causal models, one may try to find causal

models on sliding windows [11] (for nonstationary data) or for di↵erent do-
mains (for data from di↵erent domains) separately, and then compare them.
Improved versions include the online changepoint detection method [12], the
online undirected graph learning [13], the locally stationary structure tracker
algorithm [14]. Such methods may su↵er from high estimation variance due
to sample scarcity, large type II errors, and a large number of statistical tests.
Some methods aim to estimate the time-varying causal model by making use of
certain types of smoothness of the change [15], but they do not explicitly locate
the nonstationary causal modules. Several methods aim to model time-varying
time-delayed causal relations [16, 17], which can be reduced to online parameter
learning because the direction of the causal relations is given (i.e., the past influ-
ences the future). Compared to them, learning changing instantaneous causal
relations, which we are concerned with, is generally more di�cult. Moreover,
most of these methods assume linear causal models, limiting their applicability
to complex problems with nonlinear causal relations.

In contrast, we will develop a nonparametric and computationally e�cient
method that can identify nonstationary causal modules and recover the causal
skeleton. We will also show that distribution shifts actually contain useful infor-
mation for the purpose of determining causal directions and develop practical
algorithms accordingly.

3 Enhanced Constraint-Based Procedure

3.1 Assumptions

As already mentioned, we allow changes in some causal modules to be related,
which may be explained by positing unobserved confounders. Intuitively, such
confounders may refer to some high-level background variables. For instance,
for fMRI data, they may be the subject’s attention or unmeasured background
stimuli impinging on a subject–scanner noise, random thoughts, physical sensa-
tions, etc.; for the stock market, they may be related to economic policies and
changes in the ownership among the companies, etc. Thus we do not assume
causal su�ciency for the set of observed variables. However, we assume that the
confounders, if any, can be written as smooth functions of time or domain index.
It follows that at each time or in each domain, the values of these confounders
are fixed. We call this a weak causal su�ciency assumption.

Denote by {gl(C)}Ll=1 the set of such confounders (which may be empty). We
further assume that for each Vi the local causal process for Vi can be represented
by the following structural equation model (SEM):

Vi = fi
�
PAi,gi(C), ✓i(C), ✏i

�
, (2)

where gi(C) ✓ {gl(C)}Ll=1 denotes the set of confounders that influence Vi,
✓i(C) denotes the e↵ective parameters in the model that are also assumed to be

5
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V5
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(a) (b)
Figure 1: An illustration on how ignoring changes in the causal model may lead
to spurious connections by the constraint-based method. (a) The true causal
graph (including confounder g(C)). (b) The estimated conditional independence
graph on the observed data in the asymptotic case.

If the changes in some modules are related, one can treat the situation as
if there exists some unobserved quantity (confounder) which influences those
modules and, as a consequence, the conditional independence relationships in
the distribution-shifted data will be di↵erent from those implied by the true
causal structure. Therefore, standard constraint-based algorithms such as PC [2,
3] may not be able to reveal the true causal structure. As an illustration,
suppose that the observed data were generated according to Fig. 1(a), where
g(C), a function of C, is involved in the generating processes for both V2 and
V4; the conditional independence graph for the observed data then contains
spurious connections V1 �V4 and V2 �V4, because there is only one conditional
independence relationship, V3 ?? V1 |V2, as shown in Fig. 1(b).
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Figure 2: Illustration on the failure of using the approach based on functional
causal models for causal direction determination when the causal model changes.
(a) Scatter plot of V1 and V2 on data set 1. (b) That on data set 2. (c) That
on merged data (both data sets). (d) The scatter plot of V1 and the estimated
regression residual on merged data.

Moreover, when one fits a fixed functional causal model (e.g., a linear, non-
Gaussian model [6]) to distribution-shifted data, the estimated noise may not
be independent from the cause any more. Consequently, the approach based
on restricted functional causal models in general cannot infer the correct causal
structure either. Fig. 2 gives an illustration on this. Suppose we have two data
sets for variables V1 and V2: V2 is generated from V1 according to V2 = 0.3V1+E
in the first and according to V2 = 0.7V1+E in the second, and in both data sets
V1 and E are mutually independent and follow a uniform distribution. Fig. 2(a
- c) show the scatter plots of V1 and V2 on data set 1, on data set 2, and on
merged data, respectively. (d) then shows the scatter plot of V1, the cause, and
the estimated regression residual on both data sets; they are not independent
any more, although on either data set the regression residual is independent
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Finding Causal Skeleton and 
Changing Modules

• Incorporate C into the variable set as a 
surrogate + apply constraint-based 
causal discovery

• Detecting changing causal modules

• “Robust” causal skeleton discovery

• We can find the correct causal skeleton 
asymptotically correctly, as if the 
confounders were known
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suppose that the observed data were generated according to Fig. 1(a), where
g(C), a function of C, is involved in the generating processes for both V2 and
V4; the conditional independence graph for the observed data then contains
spurious connections V1 �V4 and V2 �V4, because there is only one conditional
independence relationship, V3 ?? V1 |V2, as shown in Fig. 1(b).
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If the changes in some modules are related, one can treat the situation as if
there exists some unobserved quantity (confounder) which influences those mod-
ules and, as a consequence, the conditional independence relationships in the
distribution-shifted data will be di↵erent from those implied by the true causal
structure. Therefore, standard constraint-based algorithms such as PC [?, ?]
may not be able to reveal the true causal structure. As an illustration, suppose
that the observed data were generated according to Fig. ??(a), where g(C),
a function of C, is involved in the generating processes for both V2 and V4;
the conditional independence graph for the observed data then contains spu-
rious connections V1 � V4 and V2 � V4, because there is only one conditional
independence relationship, V3 ?? V1 |V2, as shown in Fig. ??(b).
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structure either. Fig. ?? gives an illustration on this. Suppose we have two data
sets for variables V1 and V2: V2 is generated from V1 according to V2 = 0.3V1+E
in the first and according to V2 = 0.7V1+E in the second, and in both data sets
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Crucial to use nonparametric 
conditional independence test !

Algorithm 1 Detection of Changing Modules and Recovery of Causal Skeleton

1. Build a complete undirected graph UC on the variable set V [ {C}.

2. (Detection of changing modules) For every i, test for the marginal and
conditional independence between Vi and C. If they are independent
given a subset of {Vk | k 6= i}, remove the edge between Vi and C in UC .

3. (Reovery of causal skeleton) For every i 6= j, test for the marginal and
conditional independence between Vi and Vj . If they are independent
given a subset of {Vk | k 6= i, k 6= j} [ {C}, remove the edge between Vi

and Vj in UC .

Step 3 aims to discover the skeleton of the causal structure over V. Its
(asympototic) correctness is justified by the following theorem (a proof of which
is given in the Supplementary Material):

Theorem 1. Given the previous assumptions, for every Vi, Vj 2 V, Vi and Vj

are not adjacent in the original causal DAG G if and only if they are independent
conditional on some subset of {Vk | k 6= i, k 6= j} [ {C}.

Proof. Before getting to the main argument, let us establish some implications
of the SEMs Eq. 2 and the assumptions in Section 3.1. Since the structure is
assumed to be acyclic or recursive, according to Eq. 2, all variables Vi can be
written as a function of {gl(C)}Ll=1 [ {✓m(C)}nm=1 and {✏m}

n
m=1. As a conse-

quence, the probability distribution of V at each value of C is determined by
the distribution of ✏1, ..., ✏n, and the values of {gl(C)}Ll=1 [ {✓m(C)}nm=1. In
other words, p(V|C) is determined by

Qn
i=1 p(✏i) (for ✏1, ..., ✏n are mutually in-

dependent), and {gl(C)}Ll=1 [ {✓m(C)}nm=1, where p(·) denotes the probability
density or mass function. For any Vi, Vj , and Vij

✓ {Vk | k 6= i, k 6= j}, because
p(Vi, Vj |Vij , C) is determined by p(V|C), it is also determined by

Qn
i=1 p(✏i)

and {gl(C)}Ll=1 [ {✓m(C)}nm=1. Since
Qn

i=1 p(✏i) does not change with C, we
have

p(Vi, Vj |V
ij
[ {gl(C)}Ll=1 [ {✓m(C)}nm=1 [ {C})

=p(Vi, Vj |V
ij
[ {gl(C)}Ll=1 [ {✓m(C)}nm=1). (3)

That is,
C ?? (Vi, Vj) |V

ij
[ {gl(C)}Ll=1 [ {✓m(C)}nm=1. (4)

By the weak union property of conditional independence, it follows that

C ?? Vj | {Vi} [Vij
[ {gl(C)}Ll=1 [ {✓m(C)}nm=1. (5)

We are now ready to prove the theorem. Let Vi, Vj be any two variables
in V. First, suppose that Vi and Vj are not adjacent in G. Then they are
not adjacent in Gaug, which recall is the graph that incorporates {gl(C)}Ll=1 [

7



Nonstationarity Helps 
Determine Causal Direction

• Independent changes in P(cause) and P(effect | cause): 
generalization of invariance; generally violated for wrong directions 

• Special cases: if                   , since             , we known 

•                      , if C ⫫ Vl  given a variable set excluding Vk

•                      , if C ⫫ Vl  given a variable set including Vk
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Figure 1: An illustration on how ignoring changes in the causal model may lead
to spurious connections by the constraint-based method. (a) The true causal
graph (including confounder g(C)). (b) The estimated conditional independence
graph on the observed data in the asymptotic case.

If the changes in some modules are related, one can treat the situation as
if there exists some unobserved quantity (confounder) which influences those
modules and, as a consequence, the conditional independence relationships in
the distribution-shifted data will be di↵erent from those implied by the true
causal structure. Therefore, standard constraint-based algorithms such as PC [2,
3] may not be able to reveal the true causal structure. As an illustration,
suppose that the observed data were generated according to Fig. 1(a), where
g(C), a function of C, is involved in the generating processes for both V2 and
V4; the conditional independence graph for the observed data then contains
spurious connections V1 �V4 and V2 �V4, because there is only one conditional
independence relationship, V3 ?? V1 |V2, as shown in Fig. 1(b).
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Figure 2: Illustration on the failure of using the approach based on functional
causal models for causal direction determination when the causal model changes.
(a) Scatter plot of V1 and V2 on data set 1. (b) That on data set 2. (c) That
on merged data (both data sets). (d) The scatter plot of V1 and the estimated
regression residual on merged data.

Moreover, when one fits a fixed functional causal model (e.g., a linear, non-
Gaussian model [6]) to distribution-shifted data, the estimated noise may not
be independent from the cause any more. Consequently, the approach based
on restricted functional causal models in general cannot infer the correct causal
structure either. Fig. 2 gives an illustration on this. Suppose we have two data
sets for variables V1 and V2: V2 is generated from V1 according to V2 = 0.3V1+E
in the first and according to V2 = 0.7V1+E in the second, and in both data sets
V1 and E are mutually independent and follow a uniform distribution. Fig. 2(a
- c) show the scatter plots of V1 and V2 on data set 1, on data set 2, and on
merged data, respectively. (d) then shows the scatter plot of V1, the cause, and
the estimated regression residual on both data sets; they are not independent
any more, although on either data set the regression residual is independent

4

V1 V2 V3 V4

C

V5
V1 V2 V3 V4

(a) (b)
Figure 1: An illustration on how ignoring changes in the causal model may lead
to spurious connections by the constraint-based method. (a) The true causal
graph (including confounder g(C)). (b) The estimated conditional independence
graph on the observed data in the asymptotic case.

If the changes in some modules are related, one can treat the situation as if
there exists some unobserved quantity (confounder) which influences those mod-
ules and, as a consequence, the conditional independence relationships in the
distribution-shifted data will be di↵erent from those implied by the true causal
structure. Therefore, standard constraint-based algorithms such as PC [?, ?]
may not be able to reveal the true causal structure. As an illustration, suppose
that the observed data were generated according to Fig. ??(a), where g(C),
a function of C, is involved in the generating processes for both V2 and V4;
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Gaussian model [?]) to distribution-shifted data, the estimated noise may not
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sets for variables V1 and V2: V2 is generated from V1 according to V2 = 0.3V1+E
in the first and according to V2 = 0.7V1+E in the second, and in both data sets
V1 and E are mutually independent and follow a uniform distribution. Fig. ??(a
- c) show the scatter plots of V1 and V2 on data set 1, on data set 2, and on
merged data, respectively. (d) then shows the scatter plot of V1, the cause, and
the estimated regression residual on both data sets; they are not independent

4

4.1 Inference of the Causal Direction between Variables
with Changing Modules

V1 V2

✓1(C) ✓2(C)

V1 V2

✓1(C) ✓2(C)

g1(C)

(a) (b)

Figure 3: Two possible situations where V1 ! V2 are adjacent to each other
and both of them are adjacent to C. (a) ✓1(C) ?? ✓2(C). (b) In addition to the
changing parameters, there is a confounder g1(C) underlying V1 and V2.

We now develop a heuristic method to deal with Case 2 above. For simplicity,
let us start with the two variable case: suppose V1 and V2 are adjacent and
are both adjacent to C (and not adjacent to any other variable). We aim
to identify the causal direction between them, which we suppose to be V1 !

V2. Note that although both of V1 and V2 are adjacent to C, there does not
necessarily exist a confounder. Fig. 3(a) shows the case where the involved
changing parameters, ✓1(C) and ✓2(C) are independent, i.e., P (V 1; ✓1) and
P (V 2 |V1; ✓2) change independently. (We dropped the argument C in ✓1 and ✓2
to simplify notations.)

For the reverse direction, one can decompose the joint distribution of (V1, V2)
according to

P (V1, V2; ✓
0
1, ✓

0
2) = P (V2; ✓

0
2)P (V1 |V2; ✓

0
1), (12)

where ✓01 and ✓02 are su�cient for the corresponding distribution terms. Gen-
erally speaking, ✓01 and ✓02 are not independent, because they are determined
jointly by both ✓1 and ✓2. We assume that this is the case, and identify the
direction between V1 and V2 based on this assumption.

Now we face two problems. First, how can we compare the dependence
between ✓1 and ✓2 and that between between ✓01 and ✓02? Second, in practice we
do not have such parameters, and how can we compare the dependence based
on the given data? We shall make use of the independent contributions from ✓1
and ✓2 and (usually) dependent contributions from ✓01 and ✓02.

The total contribution (or causal e↵ect; see [?]) from ✓01 and ✓02 to (V1, V2)
can be measured with mutual information:

S(✓0
1,✓

0
2)!(V1,V2) = I

�
(✓01, ✓

0
2); (V1, V2)

�

=I(✓02;V2) + I(✓01;V1 |V2) + I(✓02;V1 | ✓
0
1, V2)

=I(✓02;V2) + I(✓01;V1 |V2), (13)

where the second equality holds because of the chain rule, and the last one
because the su�ciency of ✓01 for P (V1 |V2; ✓01) implies ✓02 ?? V1 | ✓01, V2. Eq. 13
involves the regular mutual information and conditional mutual information.
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Therefore, Vi are Vj are not adjacent in G if and only if they are conditionally
independent given some subset of {Vk | k 6= i, k 6= j} [ {C}.

In the above procedure, it is crucial to use a general, nonparametric condi-
tional independence test, for how variables depend on C is unkown and usually
very nonlinear. In this work, we use the kernel-based conditional independence
test (KCI-test [?]) to capture the dependence on C in a nonparametric way.
By contrast, if we use, for example, tests of vanishing partial correlations, as is
widely used in the neuroscience community, the proposed method will not work
well.

4 An Advantage of Nonstationarity in Determi-
nation of Causal Direction

We now show that using the additional variable C as a surrogate not only
allows us to infer the skeleton of the causal structure, but also facilitates the
determination of some causal directions. Let us call those variables that are
adjacent to C in the output of Algorithm 1 “C-specific variables”, which are
actually the e↵ects of nonstationary causal modules. For each C-specific variable
Vk, it is possible to determine the direction of every edge incident to Vk, or in
other words, it is possible to infer PAk. Let Vl be any variable adjacent to Vk

in the output of Algorithm 1. There are two possible cases to consider:

1. Vl is not adjacent to C. Then C � Vk � Vl C ! Vk  Vl C ! Vk ! Vl

forms an unshielded triple in the skeleton. For practical purposes, we can
take the direction between C and Vk as C ! Vk (though we do not claim
C to be a cause in any substantial sense). Then we can use the standard
orientation rules for unshielded triples to orient the edge between Vk and
Vl [?, ?]: if Vl and C are independent given a set of variables excluding
Vk, then the triple is a V-structure, and we have Vk  Vl. Otherwise, if
Vl and C are independent given a set of variables including Vk, then the
triple is not a V-structure, and we have Vk ! Vl.

2. Vl is also adjacent to C. This case is more complex than Case 1, but it is
still possible to identify the causal direction between Vk and Vl, based on
the principle that P (cause) and P (effect | cause) change independently;
a heuristic method is given in Section 4.1.

The procedure in Case 1 contains the methods proposed in [?, ?] for causal
discovery from changes as special cases, which may also be interpreted as special
cases of the principle underlying the method for Case 2: if one of P (cause) and
P (effect | cause) changes while the other remains invariant, they are clearly
independent.
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determination of some causal directions. Let us call those variables that are
adjacent to C in the output of Algorithm 1 “C-specific variables”, which are
actually the e↵ects of nonstationary causal modules. For each C-specific variable
Vk, it is possible to determine the direction of every edge incident to Vk, or in
other words, it is possible to infer PAk. Let Vl be any variable adjacent to Vk

in the output of Algorithm 1. There are two possible cases to consider:

1. Vl is not adjacent to C. Then C � Vk � Vl C ! Vk  Vl C ! Vk ! Vl

forms an unshielded triple in the skeleton. For practical purposes, we can
take the direction between C and Vk as C ! Vk (though we do not claim
C to be a cause in any substantial sense). Then we can use the standard
orientation rules for unshielded triples to orient the edge between Vk and
Vl [?, ?]: if Vl and C are independent given a set of variables excluding
Vk, then the triple is a V-structure, and we have Vk  Vl. Otherwise, if
Vl and C are independent given a set of variables including Vk, then the
triple is not a V-structure, and we have Vk ! Vl.

2. Vl is also adjacent to C. This case is more complex than Case 1, but it is
still possible to identify the causal direction between Vk and Vl, based on
the principle that P (cause) and P (effect | cause) change independently;
a heuristic method is given in Section 4.1.

The procedure in Case 1 contains the methods proposed in [?, ?] for causal
discovery from changes as special cases, which may also be interpreted as special
cases of the principle underlying the method for Case 2: if one of P (cause) and
P (effect | cause) changes while the other remains invariant, they are clearly
independent.
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Hoover. The logic of causal inference. Economics and Philosophy, 6:207–234, 1990.
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Kernel Nonstationarity 
Visualization

• Capture the nonstationarity in causal module PAi→Vi :

• By maximizing the variability of λi (C) for all values of C

• Kernel nonstationarity visualization (KNV):

• Kernel embedding of conditional distributions to avoid explicitly 
estimating them

• Then borrow the idea of kernel principal component analysis: 
EVD

discover how the causal model changes, i.e., where the changes occur and how
fast it changes, and visualize the changes. Although the changes occur in the
conditional distribution P (Vi |PAi), usually it is not straightforward to see the
properties of the changes by directly looking at the distribution itself. A low-
dimensional representation of the changes is needed.

In the parametric case, if we know which parameters of the causal model
PAi

! Vi are changing, which could be the mean of a root cause, the coe�cients
in a linear SEM, etc., then we can estimate such parameters for di↵erent values of
C and see how they change. However, such knowledge is usually not available,
and more importantly, for the sake of flexibility we often model the causal
processes nonparametrically. Therefore, it is desirable to develop a general
nonparametric procedure for nonstationarity visualization of causal models.

Note that changes in P (Vi |PAi) are irrelevant to changes in P (PAi), and
accordingly, they are not necessarily the same as changes in the joint distribution
P (Vi, PAi). (If Vi is a root cause, PAi is an empty set, and P (Vi |PAi) reduces
to the marginal distribution P (Vi).) We aim to find a mapping of P (Vi |PAi)
which captures its nonstationarity:

�i(C) = hi(P (Vi |PAi, C)). (15)

We call �i(C) the nonstationarity encapsulator for P (Vi |PAi, C). This for-
mulation is rather general: any identifiable parameters in P (Vi |PAi, C) can
be expressed this way, and in the nonparametric case, �i(C) can be seems as a
statistic to summarize changes in P (Vi |PAi, C) along with C. If P (Vi |PAi, C)
does not change along with C, then �i(C) remains constant. Otherwise, �i(C)
is intended to capture the variability of P (Vi |PAi, C) across di↵erent values of
C.

Now there are two problems to solve. One is given only observed data,
not the conditional distribution, how to represent �i(C) in Eq. 15 conveniently.
The other is what criterion and method to use to enable �i(C) to capture the
variability in the conditional distribution along with C. We tackle the above
two problems by making use of kernels [?], and accordingly propose a method
called kernel nonstationarity visualization (KNV) of causal models.

5.1 Using Kernel Embedding of Conditional Probabilities

We use the kernel embedding of conditional distributions [?] instead of the

original conditional distributions. Suppose we have kernels k(1)X and k(1)Y for
variables X and Y , with the corresponding Reproducing Kernel Hilbert Spaces

(RKHS) H
(1)
X and H

(1)
Y , respectively. Given conditional distribution P (Y |X),

its kernel embedding can be seen as an operator mapping from H
(1)
X to H

(1)
Y ,

defined as UY |X = CY XC
�1
XX , where CY X and CXX denote the (uncentered) cross-

covariance and covariance operators, respectively [?]. The empirical estimate of
UY |X is ÛY |X =  Y (KX+�I)�1 |

X , where � is a regularization parameter (set
to 0.05 in our experiments), and  Y ,  X , and KX are the feature matrix on
Y , feature matrix on Y , and the kernel matrix on X, respectively [?]. We use

12
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Causal Analysis of Major Stocks in Hong 
Kong Market (10/09/2006 - 08/09/2010)

1. Cheng Kong Holdings,
2. Wharf (Holdings),
3. HSBC,
4.Hong Kong Electric Holdings,
5. Hang Seng Bank,
6. Henderson Land Dev.,
7. Sun Hung Kai Properties,
8. Swire Group,
9. Cathay Pacific Airways
10. Bank of China Hong Kong 

- HSF and HSP usually have 
nonstationary confounders
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Nonstationarity 
Driving Force

1. Cheng Kong Holdings,
2. Wharf (Holdings),
3. HSBC,
4.Hong Kong Electric Holdings,
5. Hang Seng Bank,
6. Henderson Land Dev.,
7. Sun Hung Kai Properties,
8. Swire Group,
9. Cathay Pacific Airways
10. Bank of China Hong Kong 
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Causal Analysis of Major Stocks in 
NYSE (07/05/2006 - 12/16/2009)

Fig. 8: Recovered causal graph from 80 NYSE stocks. Each
color of nodes represents one sector.

while the stocks SAN and CHK only have changes points
around 05/05/2008 (T2). Most stocks which have change
points only at T2 have more direct causes. The change points
match with the critical time of financial crisis–those in the
TED spread, as well as parts of the change points (T2 and T3)
in HK stock data.
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Fig. 9: The estimated nonstationary driving force of six stock
returns from 07/05/2006 ⇠ 12/16/2009. The stocks USB, JCP,
GE, and PBR have change points at 07/16/2007 (T1) and
05/05/2008 (T2) . The stocks SAN and CHK have change
points only at 05/05/2008 (T2). The change points match with
the critical time of financial crisis.

VI. CONCLUSION

Causal discovery has been an important tool to discover
underlying causal information from observational data. In
real world applications, especially with data collected over a
relatively long time or across different conditions, successful

causal discovery has to deal with nonstationarity or heteor-
geneity of the data. In this paper we proposed nonparametric
methods for estimating the underlying driving force of the
change in the local causal mechanisms and for determining
causal direction by leveraging distribution shift. The discov-
ered causal direction helps construct correct causal models
and, moreover, the estimated nonstationary driving force of
the changes in the causal mechanisms facilitates understanding
why and how the generating process changes and gives sug-
gestions about what variables to further incorporate into the
system to make it causally sufficient. Experimental results on
both synthetic and real data (including fMRI data and financial
data) demonstrated that the distribution shift property contains
reliable information for causal direction determination and that
the estimated nonstationary driving force provides essential
background knowledge for causal modeling of the observed
variables. We note that causal modeling and distribution shift
are heavily coupled and that distribution shift actually contains
useful information for causal direction determination. A line
of our future research is to exploit this connection to improve
online prediction in nonstationary environments.
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Summary

• Nonlinear models with additive noise 

• Just like linear, non-Gaussian models

• So some people say nonlinear or non-Gaussian methods for 
causal discovery can recover the DAG uniquely

• Other types of “independence” also help in causal discovery

• Nonstationarity facilitates causal discovery

• Next: Dealing with selection bias, measurement error, missing 
values, temporal constraints, etc.


